
Cybernetics and Systems Analysis, Vol. 58, No. 5, September, 2022
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Abstract. The approach to estimating distribution parameters with a priori constraints has been

developed. The Lorentz six-sector model has been constructed. Based on this model, the authors

have studied the relationships between food, energy, water resources, supply systems, epidemic, and

social situations. They also have investigated the impact of the successive transitions of

interconnected sectors to the deterministic chaos regime on the operation mode of the whole system.

The method of risk assessment for food security and risk management has been elaborated.

Keywords: Lorentz model, mathematical modeling, economic development model, optimal control,

deterministic chaos, stochastic models.

INTRODUCTION

A complex global economy network has significantly strengthened the fields of technogenic, climate-related,

economic, biomedical, and social risks. The cumulative effects of various stressors emanating from multiple sources

become important generators of uncertainty and instability in the present-day society. They produce a set of interlinked

crises that multiply each other. Therefore, an integrated policy is needed to minimize their consequences. Thus, this

requires elaborating new methods for the integrated modeling and robust risk management. These methods will allow us

to investigate the synergistic interactions between risks of various origins, estimate the critical parameters of risk

management, expand the horizon of prediction under uncertainty, provide the risk management of irreversible changes in

the safety space, and develop a strategy to minimize their devastating consequences.

The study of complex interdependencies between the above dimensions of security of modern society requires

using integrated models that combine the various control loops of socio-economic systems. The efficiency of modeling

depends on the completeness of information about the parameters of the studied system. The lack of this knowledge due

to the incompleteness of statistical data sample leads to insufficient stability of the approaches based on regression

analysis. Therefore, there is a need to create new risk analysis methods, given the efficiency of traditional statistical

approaches is rapidly declining. The purposes of this work are as follows: 1) to create a method that will improve the

quality of estimation of the parameters of distributions when it is possible to create a system of a priori constraints,

combining the possibilities of deterministic and probabilistic approaches; 2) to study, using the six-sector Lorenz model,

the relationships between food, energy, and water resources, supply systems, epidemic, and social situation; 3) to create

a method for assessment and management of risks for food security.
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ESTIMATION OF THE DISTRIBUTION PARAMETERS

WITH A PRIORI CONSTRAINTS

In [1], the method of missing data recovery by solving the problem of identification of parameters of the

mathematical model used to study the functioning of a complex system is proposed. The underlying concept of the

method consists in determining the trajectories of the variables characterizing the system behavior using the mathematical

model. The algorithm for missing data recovery is as follows: 1) based on hypotheses about the laws of functioning of the

system, the authors construct its mathematical model; 2) using available data about the dynamics of the system, they

solve the problem of identification of its parameters; 3) by solving the Cauchy problem, they determine missing data.

Problem statement. Let the available sample be composed of the results of observations of some complex system

( , )t xi i , i n1, , where n is the number of elements in the sample, ti is the time of the kth observation, x x xi i ij( , , )

1

is the vector of variables characterizing the system at time ti , and j is the number of variables. Denote by S a set of all

ordered index pairs i j, , i n1, , j m1, , which correspond to the values xij . Determine from the set S the subset S1 of

index pairs i j, , for which there are no observation results xij . Let the mathematical model describing the dynamics of

the observed system be given as follows:

dx

dt
F x x A A t

j

j j k( , , , , , , )

1 1

,

where A A tk k ( ) are the model parameters.

The solution to the problem of recovering missing sample data is to find the missing results of observations xij for

index pairs i j S S, 1 . For this purpose, we solve the following optimization problem: determine the parameters Ak

minimizing the functional

I x xs ij ij

j

m

i

n

( )

2

11

,

where xij are the values of variables x j at time ti obtained as a result of solving the optimization problem, and xij

are the corresponding values x j from the sample ( , )t xi i . To get a numerical solution to the problem of identification

of the model parameters, we used a modified random search method, i.e., the stochastic gradient method.

Thus, the proposed method makes statistical methods less vulnerable to missing observation data, as it allows for

generating additional data quantity.

ORIGIN OF DETERMINISTIC CHAOS IN THE SIX-SECTOR LORENTZ MODEL

In [2], the authors have developed an approach to studying the relationship between food, water, and energy

resources using the three-sector Lorenz model. In addition, they have determined conditions of deterministic chaos origin

in the minimum economic development model and revealed the possible causes of the increasing vulnerability of the

global economy to small changes in the control parameters. They have considered the problem of determining efficient

controls to minimize aggregate structural disturbances over the selected time interval. As a result of model experiments,

the trajectories of changes in the control parameters, allowing to reduce the number of structural disturbances, have been

revealed. Let us consider the problem of developing the six-sector Lorentz model to study the relationship between food,

energy, and water resources, supply systems, and medical, epidemical, and social situations.

Let us construct a model that combines in a holistic structure the sectors of the economy described in the same way.

Each of them we will consider in terms of the normalized level of productivity ( )xi , the normalized number of jobs ( )yi ,

and the normalized level of structural disturbances ( )zi ( , , ... , )i 1 2 6 for food, water, and energy resources, supply systems,

medical and epidemical, and social spheres, respectively). Let us take as a basis the basic model presented in [3]. We rely

on the following postulates: 1) there is a competition for labor between different sectors of the economy, so the growth of

the production system function in one sector slows down the creation of jobs in other sectors; 2) such factors as variability
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of crop yields, fluctuations in energy prices, weather-induced changes in the water balance, implementation of new

technologies that significantly change workplaces productivity, provoke random disturbances w tij ( ) which become additional

factors in the increase of the level of structural disturbances; 3) processes in the different sectors of the economy can occur at

different speeds, with time scaling by sector using parameters i . The mathematical model has the following form:

i
i

i i i i ij

dx

dt
y x w( ) ,

i
i

i i i i i ij

dy

dt
F x x x z x y w[ ( , , ..., ) ]

1 2 6

, (1)

i
i

i i i i i ij

dz

dt
x y b z w ,

where F r a xi i ij i1 , aij are the parameters characterizing competition between different sectors of the economy in

labor markets ( )i j , w tij ( ) are the independent standard Wiener processes with parameters E w t w sij ij( ( ) ( )) 0, and

E w t w sij ij( ( ) ( ))

2

| |t s , i , ri , and bi are the parameters of the Lorentz model, i are the intensities of disturbances.

A study of the canonical Lorentz model shows that, when increasing, the parameter r can take values that are critical

for the origin of both periodic and turbulent trajectories [4]. There are several such values of this parameter: r 13.926,

r 24.06, and r 24.74. Since in the six-sector model, the linkage between sectors is performed through parameters F ti ( ),

we actually have Lorentz models with a variable parameter r. Parameters i and aij were estimated using the data given

in [5]. The impact of infectious disease threats is the most significant compared to other threats being of relevance for the

next two years. The anti-epidemic measures taken by national governments lead to a supply chain crisis. Therefore, we

assume that this crisis is a short-term risk. Socio-economic crises belong to the category of medium-term risks, which will

be of importance for 3–5 years. Water, food, and energy crises are the most influential long-term risks, which are essential

for 5–10 years. Therefore, for the long-term processes we select values i 1 ( , )i 1 3 . For medium-term processes, we

select

4

and

5

equal to 2.5 each, and for short-term ones, we choose

6

5. The weights aij are chosen depending on the

influence of the corresponding threat. The ranking of these threats based on the data from [5] is presented in Table 1.

Different sectors of the economy are characterized by parameters aij ( ,i 1 6 ; j 1 6, ).

According to the results obtained in [2], the parameters i , ri , and bi are related to the characteristics determining

the functioning of economy sectors as follows:

i i i i i( ) / ( )

1 2 2 2

, ri i i i i( ) / ( )

1 1 2 2

, bi i i i( ) / ( )

2 2

,

where

1i and

2i are parameters characterizing the adaptive capabilities;

1i is the demand for activity of ith

manufacturing system normalized to the unit of material production system, i.e., to a job in the corresponding

branch of manufacturing Yi ; 2i is the level of supply, normalized to the unit of the function of ith manufacturing

system X i ; 1i is the demand for insreasing the number of jobs, normalized to the unit of X i ; 2i is a share of

jobs Yi involved in the maintenance of X i ; i is the rate of disturbance elimination.

The transition of parameters ri to the range of values corresponding to the regime of metastable chaos is achieved

by increasing the specific demand for the products of the manufacturing system and the number of jobs employed in it

(parameters

1i and 1i ) or by reducing their specific supply (parameters

2i and 2i ).

Based on the modeling results we have investigated how the successive transition of interconnected sectors into the

deterministic chaos regime due to changes in parameter r affects the dynamics of system (1) as a whole (Figs. 1 and 2).

When in one or two sectors, the values of r correspond to the deterministic chaos regime, the rest of the sectors

suppress it. But when one more sector joins the chaotic sectors, a stable strange attractor appears in the system, and

a kind of phase synchronization of auto-oscillations from the six coupled oscillation generators occurs.

Figure 3 shows the dynamics of changes in the single-sector model as the noise intensity j increases. The noise

impact leads to the stochastic deformation of deterministic attractors of the Lorentz model. In the case of random

perturbations, the trajectories of the stochastic system leave the deterministic attractor and form around it some bundle of

trajectories with an appropriate probability distribution. The variance of random states near the deterministic attractor

depends on the noise intensity and stability of the local parts of the attractor.
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Model (1) can be written in a complex form. As shown in [6], in the complex system of Lorentz equations,

the scenario of transition to chaos through a subharmonic cascade of bifurcations of two-dimensional tori is realized. The
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TABLE 1. Ranking of Threats

Threats Rank of Influence Parameter Values

Food, Water, and Energy Crises 43.9 a
ij

0.013 ( , )j 1 3

Supply Risks 38.3 a
i4

0.012

Spread of Infectious Diseases 58 a
i5

0.018

Socio-economic Risks 43.4 a
i6

0.013

Fig. 1. Dynamics of the level of structural disturbances in the food (z
1

)

and energy (z
3

) sectors under the consecutive crossing of the bifurcation

boundaries of the parameter r.
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study of n economic sectors is reduced to consideration of the behavior of an assembly of n coupled oscillators

generating oscillations with frequencies ³ , respectively. Collective synchronization of these oscillators can be

investigated using the Kuramoto model [7], which has the following form:

d

dt
K N

i
i k j

j

N

/ sin ( )

1

, i N1, , ,

where i [ , ]0 2 are phase variables, i are natural frequencies, and K 0 is a coupling parameter.

Thus, the problem of managing socio-economic development under emerging chaotic regimes is reduced to the

control of the frequency of the field with a non-zero average value, which is generated by the coupled oscillators.
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Fig. 2. Projections of the phase space of system (1) on planes y z
1 1

–

and y z
3 3

– when the parameter r changes.
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The study of deterministic chaos resulted in a reinterpretation of its role in the self-organization of complex

dynamical systems. It turned out that, due to chaotic modes, it is possible to move the system from one unstable limit

cycle to another and to qualitatively change the system behavior through small changes in control parameters. Given this,

a transformation of the chaos management process from actions aimed at stopping it to the choice of controls stabilizing

some unstable periodic trajectories [6] has occurred.

Resource base depletion resulting from climate change, the economic consequences of pandemics, and other global

turbulences, narrows down the opportunities for sustainable development. Resource scarcity allows only a slight change in

the parameters of management. Therefore, the search for such development trajectories, which would enable a “jump” from

one development trajectory to another by the small changes in control parameters, becomes very important. Strange

attractor models can be used to study exactly those controls that enable a phase transition from one limit cycle to another.

As the results of this study show, the above management can be carried out by changing the demand/supply ratio

for jobs and products in the different sectors of economy. If the critical values of these ratios are exceeded, the solution of

system (1) does not converge to an equilibrium point. It is transformed first into an oscillatory and then chaotic regime.

Different values of this ratio correspond to various scenarios of economic development. Based on the analysis of

macroeconomic indicators for multiple regions, we can classify them in the space of model parameters and determine the

critical parameter values. Upon reaching these values, the saltatory transitions from one economic development trajectory

to another occur. We also emphasize that the parameters of the model (1) are determined by more detailed models [8]

developed during 2017–2020.

MATHEMATICAL METHOD FOR ASSESSING THE LEVEL OF FOOD SECURITY

Because of global changes, sustainable economic development, food security, and health are significantly

interlinked. Therefore, the COVID-19 pandemic posed complex and far-reaching threats not only to the healthcare sector

but also to the economic, food, and social sectors. This situation may require significant changes in the daily practices of

the global world and affects food security. According to estimates, the impact of the COVID-19 pandemic and measures

to address it is fraught with an economic downturn and exacerbate hunger [9]. However, while the pandemic, which has

disrupted supply chains, mainly affects access to food, the political destabilization of the world in 2022 may also reduce

the level of food resources due to the reduction of crop areas. Thus, the food security state becomes a critical problem for

the global economy.

Assume that such parameters as indicators of the sufficiency of consumption ( )Y
1

, differentiation value of food by

social groups (the highest and lowest decile groups) (Y
2

), differentiation of the daily energy value of the human diet (Y
3

),

and availability of food (Y
4

) characterize the socio-economic and climatic-ecological dimensions of the food system. At

the same time, the system is affected by several other factors that are changing much faster. They are associated with the

spread of the global pandemic and have disruptive effects on food chains, complicate access to food, alter the balance of

supply and demand through reduced economic activity, and lead to a rise in unemployment levels. To characterize these

threats, we introduce an index Y
5

. We compute it using the following indicators: (1) the level of patients hospitalized,

immunized, or dead during the pandemic; (2) the level of unemployment and arrearage of wages due to the imposing of
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lockdowns and other measures aimed at overcoming the pandemic; (3) the level of degeneration of the health system

performance due to the overload during the period of overcoming the pandemic. To the group of rapid factors, we include

threats of large-scale military action, which can also have a devastating effect on food security. To characterize the

consequences of the impact of military action, we introduce an index Y
6

, which considers the reduction of crop areas, the

disruption of transport chains, and the shortage of fertilizers.

However, not only the levels of individual indicators of complex hierarchical structures characterize the stability

of their functioning. The system’s reserve capacities, safety and efficiency depend strongly on the balance of its specific

chains. There is a kind of “mobile” of security, i.e., dynamic invariant, where the negative dynamics of some indicators is

offset by others. Therefore, the quantitative assessment of the level of food security requires the creation of models that

allow formalizing the dependence of critical parameters on environmental, economic, biomedical, and social factors for

an integrated robust management of food security.

We determine the level of food security using the mathematical approach to assessing the vulnerability of complex

systems presented in [3]. It is based on catastrophe theory formalism and uses the heterogeneity of the phase space of

complex dynamic systems. We consider food security management in the space of a limited number of control

parameters, each of which is the function of the variables determining the system behavior. Assume that this system

satisfies the main properties of potential systems, is described by some potential functionU x( ) of behavioristic variable

x , is continuous, has local extremums, in which the time derivative of variable x is zero. It means that there is a certain

number of stationary states. Some of them are stable, and some are unstable. Let us introduce the function F x( ) as

follows: U x F x dx( ) ( ) .

For studying the system behavior near local extrema U x( ), the function F x( ) is expanded into a series in the

neighborhood of stationary points and limited to a few small terms of this expansion. For studying a wide range of

systems, the assembly model of catastrophe is the most commonly used, for which functions F x( ) andU x( ) have the

following form:

F x x ax b( )

3

, U x x ax bx( ) / /

4 2

4 2 , (2)

where a and b are the control parameters characterizing the reserve capacities of the system and the external load on

the system.

According to the Sturm’s theorem, a cubic polynomial has three or one real root. The number of roots depends on

the discriminant 4 27

3 2

a b . If condition 0 is satisfied, we have three real roots. The system has three steady

states, two of which are stable. The first stable steady state characterizes the norm (sufficient level of food security), the

second — the food crisis (low level of food security). For 0, we have one real root and two imaginary ones. The curve

( , )a b 0 is the curve of bifurcation values.

To perform a comprehensive assessment of the food security level, we use model (2). Control parameters a and b

can be computed using behavioristic variables. As these variables, we will use previously defined integral indices

Y ii ( , )1 6 as follows:

a a a Y a Y
0 1 1 6 6

, b b b Y b Y
0 1 1 6 6

.

Knowing the actual value of a, we obtain its bifurcation value for the parameter b from equation (2). The difference

between the bifurcation value and the actual value of parameter b is a measure of risk. The more the current value of

parameter b is distant from its bifurcation value, the less the deformation of the safety space. As the level of reserve

capacities increases, so does the magnitude of the external load that the system can withstand before the deformation of

the food security space occurs. The problem of robust control, which will provide a system transition from a high-risk

area to a low-risk one, can be formulated as follows: there is mathematical model (2), and there is a system of constraints

that defines the acceptable range of values of model variables and control parameters Yi . It is necessary to determine

control parameters Y ti ( ) that minimize the functional F Y a bi( ) | |4 27

3 2

.

The method proposed makes it possoble to perform the following actions: (1) comprehensive assessment of food

security, (2) risk ranking, and (3) identification of efficient ways of adapting agriculture to climate change. Striving to

use the same-type approaches for different sectors, we note that this approach can be applied to the environmental,

energy, epidemic, technogenic, and social dimensions of security.
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CONCLUSIONS

We have proposed the approach to improve the quality of estimation of distribution parameters in cases where it is

possible to create a system of a priori constraints. This approach combines the capabilities of the deterministic and

probabilistic approaches. Using the six-sector Lorenz model, we have studied the interconnection between food, energy,

and water resources, supply systems, and epidemic and social situations and have determined the conditions for the

transition of interconnected sectors to a deterministic chaos mode due to changes in unit demand and supply for the

products of manufacturing systems and the number of jobs involved. We have created the method for assessing risks for

food security and managing them based on the data on sufficiency of consumption, differentiation value of food by social

groups, differentiation of the daily energy value of the human diet, economic availability of food, disruption of supply

chains, labor force shrinking, rise in unemployment levels, reduction of crop areas, rise in food prices, and shortage of

fertilizers.
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