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Abstract. The paper examines prerequisites and assumptions of the classical Bass innovation

diffusion model with the aim of applying it in modeling of relevant stochastic processes related to

the pandemic. The Bass model has proven its versatility and applicability to various environments.

A thorough mathematical substantiation of the model properties is presented based on theories

of evolutionary equations and stochastic processes for its further development, as well as search for

uncertainty parameters and observable variables. The paper provides realistic estimation results

of the Bass model parameters for vaccination in Ukraine and Belarus on weekly data of the first half

of 2021. Similar studies are suggested for other countries, as well as regions and districts

of Ukraine.
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INTRODUCTION

Frank M. Bass (1926–2006), the author of the classical model, was the first winner of the William F. O’Dell Award

of the American Marketing Association (AMA) in 1979 for his publication [2], the winner of the AMA Paul D. Converse

Award (established in 1946) in 1986, the winner of the John DC Little Award (John DC Little was first Doctor of

Philosophy rewarded in operations research and the first President of the Institute for Operations Research and the

Management Sciences, INFORMS), which was established in 1982, in 1988 for the best management and marketing

publication [3] (the publication was published after two revisions), the winner of the Shelby D. Hunt/Harold H. Maynard

Award (started in 1974) in 1991 for the best publication in the Journal of Marketing [4] (the publication is a shortened

version of the material submitted to journal’s editorial board), the winner of the AMA Churchill Award (established

in 1996) in 2002, and the winner of the AMA and the Wharton Business School of the University of Pennsylvania

(founded in 1881, ranking as the best business school according to Financial Times) Charles Coolidge Parlin Marketing

Research Award (established in 1945) in 2003. In 2005, University of South Australia (founded in 1856 and ranked

295th in the QS World University rating in 2021) founded the Ehrenberg–Bass Institute for Marketing Science, and the

University of Groningen in the Netherlands (founded in 1614 and ranked 128th in QS the World University rating

in 2021) created the Frank M. Bass Chair at the Faculty of Economics and Business.
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The above-mentioned classic publication [1] is based on preprint [5] with a slightly changed title. At the same

time, preprint [5] is based on a talk given at conference [6]. A progress from a conference talk to a preprint and to a finite

publication in a journal is a true and tested method of achieving high-quality practical and scientific results.

PROBLEM STATEMENT

To measure features of a pandemic, experts analyze and evaluate evolutionary models [7–12], in particular, the

Bass diffusion model [13, 14]. Remarks of experts on using the Bass model for modeling the spread of a pandemic

focused on the importance of empirical data [14, 15], healthcare measures [14, 16], unidentified factors [14, 17–19], and

organizational priorities [14, 20, 21]. Thus, the Bass model deserves a detailed study and its conclusions deserve

a thorough justification.

The aim of this paper is to mathematically substantiate conclusions of the classical publication [1], as well as to

apply diffusion processes not only for modeling the dynamics of infected individuals, but also for modeling the dynamics

of vaccinated individuals according to real data. Note that in the Bass model, innovation is defined as consumption of a

new product, which is a certain vaccine on the modern pharmaceutical market [16].

Let us propose a theoretical model and test it using empirical data of consumer durables, such as data on color

television sales in the 1960s [1], to estimate initial purchase time periods of new products. The main model assumption is

that these periods depend on the number of previous buyers. Let us identify an innovation and an imitation component in

the behavior of the model. In accordance with historical data, the proposed model makes satisfactory predictions of peak

sales and the moment the sales peaked.

The model can be applied in the case of increasing initial purchases of a wide range of characteristic new general

product classes. Here, we distinguish between new product classes and new brands and models of old product classes that

are in demand.

For new brands or products, exponential sales growth models are known till a certain asymptote. Here, sales

grow rapidly till the moment they reach their peak, and stabilize later at a certain level below the peak. The stabilizing

effect is explained by the relative growth in the reserve purchasing component of sales and the decrease in the initial

purchase component.

Long-term forecasting of new product sales requires intuition, as well as information availability. This forecasting

is mathematically similar to the infection models widely used in epidemiology [22, 23]. Assumptions about behavior are

mostly similar to the theoretical concepts presented in scientific literature on reception and diffusion of new products

[24], as well as to certain learning models [25]. Explicit behavioral assumptions differentiate the proposed model from

models based on log-normal distribution and other sales growth models.

It is hard to tell assumptions apart from consequences necessary to assess time periods needed for reception

of new ideas or products in general theories of reception and diffusion (dissemination) of new ideas or products in

a social system [25].

If an individual decides to accept an innovation regardless of decisions of others in a social system, they

are considered to be an innovator. Here, it can usually be assumed that innovators are the first ones to implement

an innovation. Among these individuals, the following innovation adopter classes are distinguished according to the

chronology of their decisions to adopt an innovation: (a) innovators, (b) the first adopters, (c) initial majority, (d) critical

majority, and (e) waiting buyers.

In contrast to innovators, each adopter (of an innovation and a corresponding behavior) decides on whether to

accept an innovation in a specific time period that depends on the ever increasing pressure from the social system

on subsequent adopters in the case of increasing number of previous adopters. Classes from (b) to (e) can be grouped

together as imitators in a mathematical statement. Unlike innovators, imitators depend on decision-making periods of

other social system members concerning innovation reception. The first 2.5% of adopters can be innovators [25], who have

certain social and psychological qualities and can engage with other innovators. Innovators are not dependent on

decision-making periods of other social system members concerning innovation reception in a sense that the pressure on the

innovator group decreases rather than increases in the case where the reproduction process unfolds.
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MATHEMATICAL INNOVATION IMPLEMENTATION MODEL

Effects of diffusion and displacement (replacement) have to be accounted for in the model of growth and decline

in the demand for successive generations of technological innovations. A very famous model is Bass diffusion model of

demand for initial purchases [1, 5, 6]. This model is behaviorally justified, which is consistent with social science

research on reception (adoption and implementation) and innovation diffusion [25], while taking into account conditional

probability of a reception event at a time T if reception did not take place.

In the case of applying the theory to assessing initial purchase timing of a new consumer product, the following

main assumption is brought forward: a probability P T( ) that an initial purchase takes place at the moment in time T

under the condition that no purchases took place before is a linear function of the quantityY T( ) of previous buyers

P T p
q

m
Y T( ) ( ), (1)

where Y ( )0 0, P p( )0 is a constant, whose value reflects the importance of innovators in a social system

(innovation ratio), q m/ is the linear function slope coefficient, and parameter q is the imitation coefficient.

Seeing as the model parameters depend on the choice of timescale, such a time unit can be chosen, so that p reflects

a fraction of innovators among all the adopters [25]. Product

p

m
Y T( ) reflects pressures acting on imitators in the case of

increasing the number of previous buyers. For lower values of T , innovator influence is higher than that of imitators.

The above-mentioned main theory assumption can be formulated within a continuous model and a function of

density of the moment of time of initial purchases. Here, the linear part of Eq. (1) is denoted by a probability.

During a lifecycle of a product, let m of its initial purchases occur. As this product is rarely bought, its single sales

number is equal to the number of its initial purchases during the part of a time interval, when there was no resale, i.e.,

from the beginning of product resale. General sales include both initial purchases and repurchases. Then, a fraction of

previous buyers among the initial purchases at the moment in time T of first initial purchases is

F T
Y T

m
( )

( )

, F
Y

m
( )

( )

0

0

0 , (2)

and determines a fraction of the rest of buyers (potential market demand) as 1 F T( ). Initial product purchases are

made by innovators, who influence the first term of Eq. (1), and imitators, who influence the second term of

Eq. (1), in a sense learning from the experience of previous buyers. Number of previous buyers Y T( ) does not

influence the innovators during their first purchases.

Taking Eqs. (1) and (2) into account, the probability of product purchase at the moment in time T under the

condition that no purchases were performed before can be written as

f T

F T
P T p qF T

( )

( )

( ) ( )

1

, (3)

where f P p( ) ( )0 0 , F T f t dt

T

( ) ( )

0

, f t( ) is the density function of time t .

From here, general number of purchases in the time interval ( , )0 T is

m f t mF T Y T S t dt

T T

( ) ( ) ( ) ( )

0 0

, (4)

where the sales density function can be represented as

S t mf t mP T F T P T m mF T( ) ( ) ( )[ ( )] ( )[ ( )]1

as a consequence of Eq. (3), and where, as a consequence of Eqs. (3) and (4), we obtain
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P T p qF T p
q

m
S t dt

T

( ) ( ) ( )

0

, mF T Y T S t dt

T

( ) ( ) ( )

0

;

S T p
q

m
S t dt m S t dt

T T

( ) ( ) ( )

0 0

pm p S t dt q S t dt
q

m
S t dt pm

T T T

( ) ( ) ( )

0 0 0

2

( ) ( ) [ ( )] ;q p Y T
q

m
Y T

2

(5)

dF

dt
f T

S T

m
p q p

Y T

m
q

Y T

m
( )

( )

( )

( ) ( )

2

p q p F T q F T( ) ( ) [ ( )]

2

; t C
dF

p q p F qF( )

2

.

Let us denote a q , b q p , and c p. By taking into account that

b ac q p pq q qp p pq p q
2 2 2 2 2

4 4 2 4 0( ) ( ) ,

let us use the analytical expression of the integral of the rational function

dF

c bF aF b ac

aF b b ac

aF b b ac
2

2

2

2

1

4

2 4

2 4

ln

1 2

2

1 2 2

2 2p q

q p qF q p

q p qF q p p q

p qF

q qF
ln ln ,

as well as the initial condition

0

1 2 2 0

2 2 0

1

C
p q

p q

q q p q

p

q
ln ln .

Thus, taking into account positivity of values p, q, and F , we obtain the following:

1 1 1

1

1

p q

p

q
t

p q

p

q
t

p q

p qF

q F
ln ln ln

( ) p q

p qF

q F
ln

( )1

,

t
p q

p qF

q F

p

q p q

1

1

1

ln

( )

ln ln

( )

( )

ln

( )

p qF q

q F p p q

p qF

p F1

1

1

,

ln exp[ ( )] ( ) ln

( )

{ }t p q t p q
p qF

p F1

,

p t p q pF t p q p F t p q p qFexp[ ( )] exp[ ( )] ( )exp[ ( )]1 ,

p t p q p qF pF t p q F q p t p qexp[ ( )] exp[ ( )] exp[ ( )]{ },

F
p t p q

p t p q q

{ }exp[ ( )]

exp[ ( )]

1

1 ,

F T
p T p q

p T p q q
( )

exp[ ( )]

exp[ ( )]

{ }1

, (6)
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f
dF

dt

p p q t p q p t p q q p t p q( )exp[ ( )] exp[ ( )] exp[ ({ )]

exp[ ( )]

p

p t p q q

}

{ }

2

p p q t p q

p t p q q

( ) exp[ ( )]

exp[ ( )]

2

2

{ }

,

(7)

S t mf
mp p q t p q

p t p q q

( )

( ) exp[ ( )]

exp[ ( )]

2

2

{ }

,

dS

dt
mp p q

p q t p q p t p q q

p

( )

( )exp[ ( )] exp[ ( )]

ex

2

2

{ }

{ p[ ( )]t p q q}
4

mp p q
p t p q q p p q t p q

p t

( )

exp[ ( )] ( )exp[ ( )]

exp[

2

2{ }

{ ( )] }p q q
4

mp p q t p q
p t p q q q p t p q

( ) exp[ ( )]

exp[ ( )] exp[ ( )

3

{ }{ ]

exp[ ( )]

}

{ }p t p q q
4

.

Thus, for q p, as well as for sufficiently small values of t, function S t( ) grows, reaching its maximum under the

following condition:

0 q p t p qexp[ ( )], exp[ ( )]t p q
q

p
, t p q

q

p
( ) ln ,

T t
q p

p q

*

ln ln

0 for q p.
(8)

Here, the imitation coefficient value has to be high. Then,

exp[ ( )] exp lnt p q
q

p
p q

1

,

S T
mp p q p q

pp q q

m p q q

q

m p q

q
( )

( ) ( ) ( )

*

2 1

1 2

2

2

2

4

4

{ }

. (9)

Taking Eq. (5) into account, we obtain

m p q

q
S T pm q p Y T

q

m
Y T

( )

( ) ( ) ( ) [ ( )]

* * *

2

2

4

,

m p q m pq mq q p Y T q Y T
2 2 2 2 2

4 4 4( ) ( ) ( ) [ ( )]

* *

,

Y T
mq q p D

q

m q p

q
( )

( ) ( )

*

4

8

2

0

2

, (10)

where the discriminant is equal to

D m q q p q m p q m pq16 16 4

2 2 2 2 2 2 2

( ) [ ( ) ]

16 4

2 2 2 2

m q q p p q pq[( ) ( ) ]

16 2 2 4 0

2 2 2 2 2 2

m q q qp p p pq q pq( ) .
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If q p, then function S t( ) reaches its maximum for t 0 as follows:

S mf
mp p q p q

p p q q

( ) ( )

( ) exp[ ( )]

exp[ ( )]

0 0

0

0

2

2

{ }

mp p q

p q

mp
( )

( )

2

2

, (11)

S S T mp
m p q

q
m

pq p pq q

q

m

q
p q( ) ( )

( )

( )

*

0

4

4 2

4 4

2 2 2

2

0.

As a rule, the ratio p q/ is nearing 0 for profitable products; therefore, the sales volume S reaches its maximum,

when the aggregate sales volume is nearing m / 2 and exceeding critical mass [26–29] as follows:

Y T
m q p

q
m

p

q
( )

( )

*

2

1

2 2

.

EXPECTED DURATION OF A NEW PRODUCT ENTERING THE MARKET

In the case of arbitrarily choosing a buyer among m buyers, who performs the initial product purchase at a certain

moment in time, the expected duration of time T for this purchase, taking into account Eq. (7), is

E T tf t dt
tp p q t p q

p t p q q

( ) ( )

( ) exp[ ( )]

exp[ ( )]

0

2

{ }

2

0

dt

ln ( )

( )

( )

ln

( )

z

p q

p p q z

pz q

dz

p q z
p

z

pz q

dz

2

2

1

2

1

1

1 2

1

p

z

z p q

dz
ln

( )

,

where z t p qexp[ ( )], dz p q zdt( ) , and ln ( )z t p q . Using the expression

ln

( )

ln

ln

x

x a

dx
x

x a a

x

x a2

1

for a p q
1

, we obtain

E T
p p q

p

q p q q
p q( )

ln

ln ln (

1 1

1

1

1

1

1

1 1

1

) ln

1

q

p q

p
. (12)

The product is received by innovators and imitators. At the beginning of the product reception process, a greater role

is given to innovators, but later their influence decreases, while the influence of imitators increases. If the innovation is

a consumer durable (for example, a television, a lawnmower, an air conditioner, a telephone, etc.), then sales S t( ) in a time

period, when demand consists out of initial purchases, are proportional to innovation reception density function f t( ).

If sales consist out of repurchases or multiple purchases of an innovative product, the levels of product reception and

product sales are measured separately.

Theoretically, the distribution can be exponential or logistic distribution, as well as the Weibull distribution. Since

exponential distribution is memoryless, it does not represent the essence of innovation spread. Applying logistic

distribution and the Weibull distribution, results similar to the Bass model are obtained based on the data of not a few,

but many observations. Resulting distribution (6) gives the best forecast for any number of observations. Taking into

account diffusion models, Bass’s logistical statement was somewhat modified and generalized. In the light of the nature

of the data available for problems of (approximate) sales forecasting for most of new products and the (insufficient)

amount of corresponding information, there are significant difficulties in reliable extrapolation of initial sales of a new

product. To construct improved sales forecasting models, data constraints have to be accounted for. Bass’s logistical

statement [1, 5, 6] reflects the essence of the innovation process, including diffusion and substitution effects.
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ASSESSING MODEL PARAMETERS

Let us turn from the basic continuous model (5) to a discrete analog

S a bY c YT T T1 1

2

( ) ,

(13)

where ST is sales at the moment in time T , Y ST t

t

T

1

0

1

is cumulative sales performed until and including moment

in time ( )T 1 , a is the assessment parameter of pm, b is the assessment parameter of ( )q p , and c is the

assessment parameter of ( )m q
1

. From here,

b q p mc m a
1

, cm bm a
2

0,

m
b b ac

c

2

4

2

, (14)

q mc
m b p b ac( )

2

4

2

, p m a
ac

b b ac

1

2

2

4

. (15)

From (13), it follows that

0 2

1

1

dS

dY
b cY

T

T

T ;

from here, as a result of Eq. (10), we obtain

Y
b

c

m q p

q
Y TT 1

2 2

*
*

( )

( ) ,

S Y a bY c Y a
b

c

b c

c

a
b

c
T T T T( ) ( )

* * *

1 1 1

2

2 2

2

2

2

4

2

b

c
a

b

c

2 2

4 4

a c
b

c
pm

q

m

m q p

q

pmq m q p

q2

4

4

4

2

2 2

2

2

( ) ( )

m pq q qp p

q

m p q

q
S T

( ) ( )

( )

*

4 2

4 4

2 2 2

taking Eq. (9) into account. Thus, a conclusion can be made from equation S Y S TT T( ) ( )

* *

1

that the maximum sales

number S in the form of a time function coincides with the maximum sales number S in the form of a cumulative

sales function.

To test the Bass model, a regression analysis of parameter assessment was performed using annual time series data for

11 different consumer durables over different time periods, such as electric refrigerators from 1920–1940 (forecasting period

from 1926 to 1940), freezers (forecasting period from 1947 to 1961), black and white televisions (forecasting period from

1949 to 1961), air conditioners from 1946–1961 (forecasting period from 1950 to 1961), dryers (forecasting period from 1950

to 1961), lawn mowers (forecasting period from 1949 to 1961), automatic coffee machines from 1948–1961 (forecasting

period from 1951 to 1961), steam irons from 1949–1960 (forecasting period from 1950 to 1961), water softeners (forecasting

period from 1950 to 1961), electric blankets from 1949–1961 (forecasting period from 1950 to 1961), and record players from

1952–1961 (forecasting period from 1953 to 1958). Time periods were determined by subjective assessment of product

durability, as well as limited published data on write-offs and repurchase cycles. Here, such time periods were chosen, when
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repurchases were not important. The main sources of data is the Statistical Abstract of the United States, published by the

United States Census Bureau and the United States Department of Commerce. This publication was annual from 1878 to

2011, describing the social, political, and economic conditions of the United States.

In addition to estimates a, b, and c in regression dependence (11), for each product, their variances a , b , and c ,

relations ( )a a
1

, ( )b b
1

, and ( )c c
1

, as well as the determination coefficient R
2

were calculated, respectively.

Then, using relations (13), estimates m, p, and q can be calculated. Regression estimate c has a negative value for each

product in accordance with the model’s nature. Estimates m take a plausible form for each product. One of the most

important regression analysis results is the implicit estimate of the total number of initial purchases that are made during

the life cycle of a product. For each product, the regression equation describes a general trend of the sales growth

dynamics in a satisfactory manner, while trend deviations can be explained by short-term changes in income, which, in

turn, correlate with economic growth or decline. For each product, the regression equation predicts the peak sales volume

and its achievement moment in a satisfactory manner.

Correspondence of the regression equation to the actual sales is a relatively weak test of the model’s efficiency,

as it compares past observations with the equation estimates. A stronger test is the base model efficiency in accordance

with time variables and certain regression estimates of parameter values, where, for each product, the peak sales moment

can be forecast based on Eq. (8) based on estimates m, p, and q and be compared with the actual time (time period is

determined in a manner for the sales to exceed value mp that is equal to S ( )0 as a result of relation (11) for the first time).

Peak sales volume can also be forecast based on Eq. (9) and be compared with the actual one. For electric refrigerators,

the estimated peak sales moment was the longest (about 20 years), while the actual peak sales moment was not

determined due to the Second World War. The shortest estimated peak sales moment was for record players (5 years),

steam irons (7 years), and black and white televisions and dryers (8 years).

With estimates of parameters m, p, and q, we can forecast sales

S t
mp p q t p q

p t p q q

( )

( ) exp[ ( )]

{ exp[ ( )] }

2

2

over a long time period and evaluate forecast accuracy for each product according to the determination coefficient

value. The value was the lowest for black and white televisions due to significant (but short) trend deviations for

1950 and 1958. However, it did not affect the trend correctness in general, i.e., the Bass model is verified for the

above-mentioned products. This model has played and continues to play an important role in development and

implementation of new high-tech products.

New products during the pandemic are vaccines. To assess parameters of model (13), data from [30] on vaccine

doses from COVID-19 administered per 100 people is used (total number of administered doses divided by the total

population number). Each dose is calculated for vaccines that require multiple doses, and since the same individual can

receive more than one dose, the number of doses per 100 people may exceed 100 [30]. Non-observable values that are

generated, in particular, by empirical means [8] are presented by italics in Table 1 [8]. Data from Ukraine and Belarus

was analyzed, taking into account the positive experience of the international project “Development of methods,

algorithms, and intelligent analytical system for processing and analyzing various clinical and biomedical data with the

aim to improve complex disease diagnosis” (M/99-2019 and M/37-2020 with support of the Ministry of Education and

Science of Ukraine) performed at the V. M. Glushkov Institute of Cybernetics of the NAS of Ukraine together with

United Institute of Informatics Problems of the NAS of Belarus (F19UKRG-005 with support of the Belarusian

Republican Foundation for Fundamental Research) [31–34].

Table 1 presents Covid vaccine doses administered per 100 people in the weeks of the first half of 2021. Estimates of

dependence parameters (13) calculated using MS Excel software are satisfactory for further practical observations in the

second half of 2021. Table 2, respectively, presents estimates of parameters a , b, and c of regression (12), values of parameters

m, p, and q from Eqs. (14) and (15), and values S T( )

*

, Y T( )

*

, T *

, and E T( ) from (9), (10), (8) and (12).
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CONCLUSIONS

With proper organization of scientific and practical research, classical Bass model can be used to model stochastic

processes describing the pandemic spread in other countries, as well as in regions and districts of Ukraine. This

application requires careful examination of input information, verification and generation of input data, possible classical

model modifications, development and justification of appropriate assessment methods, appropriate computer

implementation of both algorithmic and program software, and statistical analysis of assessment results. Moreover,

modern distributed information technologies of scientific and organizational activities of the NAS of Ukraine can be used

to develop systemic methods and measures for healthcare [35].
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