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Abstract. The dynamics of coronavirus cases is proposed to be modeled using switching regression

whose switching points are unknown. The stepwise process of constructing the regression in time is

described. The dynamics of the number of coronavirus cases in Ukraine is analyzed.
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INTRODUCTION

Switching regression is a set of regression models arranged sequentially in time, which can be both not related or

related to each other. Regressions are divided one from another by switching points, which are often unknown. This case

is a subject of the study. Noteworthy are the studies by P. Perron with co-authors (see, for example, [1–3]). They propose

to use the Bellman and Roth algorithm [4] for estimation of switching points by the dynamic programming method.

Developments by Perron and his co-authors were used to solve economic problems. The authors of the present paper also

propose a number of results in generating switching regressions. The studies [5, 6] describe the methods of estimating

switching points based on the given sampling, which allow taking into account the constraints imposed on these

switching points and regression parameters that follow from the a priori information about the process being modeled.

Such constraints cannot be taken into account when a dynamic programming scheme is used.

In some applications (for example, economy, public health services), the concept of a fixed observation interval,

which is used in [1–3, 5, 6], is not always acceptable in view of continuous data renewal. As an example, we will

consider the coronavirus infection process, which is of current concern.

In the paper, we propose to analyze the infection dynamics based on the switching regression model and create the

model by steps in time. The observation interval, whose length is fixed or increases in time, is divided into a sequence of

rather short overlapping intervals I j , j �1 2, ,� , which a priori contain a small number of switching points, for example,

no more than two. This considerably simplifies the problem of their estimation.

1. METHODOLOGY OF CREATING THE MODEL OF THE TIME SERIES

OF CORONAVIRUS CASES

Figure 1 (whose data are taken from [7]) shows a time series of the daily number of coronavirus cases (NCC) in

Ukraine since April 12, 2020, when NCC level had an evident growth tendency. As is seen from the figure, the rate of

NCC variation is not constant: it varies in time not only in the value but also in the sign. Therefore, it is expedient to
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describe NCC variation by a linear switching regression. An analysis of the NCC dynamics has shown that regular

oscillations with one week phase are typical for it. This fact should be taken into account when creating a switching

regression.

The NCC time series consists of the trend TR , regular oscillations K , and a random component E . The trend is

a sequence of straight lines separated one from another by switching points, which not necessarily should be linked up

at these points. Regular oscillations are apparently related to labor activity. Random oscillations are caused by a set of

minor factors such as coronavirus testing errors and occurrence of random centers of infection.

It is natural to assume the additive structure of NCC time series defined by the model

y TR K E� � � , (1)

where y is the number of cases.

Let us determine the values on the right-hand side of (1). First, let us eliminate the trend from y by using moving

average with the averaging interval equal to seven (the number of days in a week):
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, t � 4 5, ,� , (2)

where yi is the NCC at the tth day (t �1 corresponds to 04.12.2020).

According to (1), the difference u y yt i t� � , t � 4 5, ,� , is the sum K E� of regular oscillations and of a random

component. The value of ut depends on the day of the week to which the number of the day t corresponds. It can be

presented by the sum u K Et i t t� �

( )

0

, where i t i( ) � is the number of the day of the week corresponding to the number of

observation (days); for definiteness, we assume that i �1 corresponds to Monday; K
i t( )

0

is the true unknown value of the

regular deviation of NCC from the trend for the ith day of the week; Et is the value of the random component of

the original time series.

To find the estimate Ki

0

, let us average all the values ut corresponding to the ith day of the week:

�
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� , i �1 7, ,� , (3)

where � i is the set of indices of days in the NCC time series to which day i of the week corresponds; | |� i is the

number of elements in � i . According to (2), six observations are lost when

�Ki is calculated using (3): three

observations in the beginning and three at the end of the observation interval.
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Fig. 1. NCC time series and the line of switching regression

approximating it (bold line).



From (3), we get

�
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�

� . If Et , t �1 2, ,� , is a sequence of mutually independent equally

distributed random variables and E Et{ } � 0, then as t � 	 (since | |� i � 	) the second term in the formula for

�Ki

converges to zero in mean square. Then

�Ki is a consistent estimate of Ki

0

, i �1 7, ,� .

Due to symmetry of the regular oscillations with respect to the trend, which can be assumed according to Fig. 1,

we get Ki

i

0

1

7

0

�

�
� . Estimates of regular oscillations for a finite number of observations, defined by (3), will not satisfy

this condition. Therefore, it is necessary to modify them to obtain

i

iK

�

�
�

1

7

0

�

. (4)

Table 1 shows the results of calculation of

�Ki for the time interval I
1

� [04.12.20, 05.12.20] with 31 observations.

In the sixth row of Table 1,

�Ki

�

are calculated by the formula (3), and in the last row they are modified according

to the condition (4). Note that

�Ki

i

�

�

�
�

1

7

35.784, which is a big number.

The graph of

�Ki , i �1 7, ,� , is not smooth. However, as the number of observations grows, it varies. For example,

for NCC on the interval from 04.12.20 till 07.10.20, containing 90 observations out of which 84 observations are used for

calculations by (3),

�Ki

i

�

�

�
� �

1

7

2.143, and the graph of these values becomes nearly smooth (Fig. 2). As we can see, the

maximum oscillation amplitude is observed in the middle of the week; at the end and in the beginning of the week we

have a minimum: a negative number which determines the least number of cases per week; therefore, Fig. 2 reflects the

situation where household cases are accumulated with cases related to workplace and public transportation.

After separating regular oscillations, we delete them from the original NCC time series. As a result, according

to (1) we get z y K TR E� � � � . The levels of time series z are defined by the formula z y Kt t i t� �

�

( )

.

The technique presented here is similar to the procedure of extracting seasonal fluctuations from a time series

described by the multiplicative model (all the components of the series are multiplied) [8, Ch. 15].

Let us describe the obtained sum of the trend and random component on each time interval I j , j �1 2, ,� , on

which the estimation is carried out, by a switching regression consisting of k �1 linear regressions:
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TABLE 1

Cases

Results of Calculation of �Ki Corresponding to Days of the Week

Monday

i � 1

Tuesday

i � 2

Wednesday

i � 3

Thursday

i � 4

Friday

i � 5

Saturday

i � 6

Sunday

i � 7

1 �73.799 34.774 26.348 116.922 46.496 �67.93 �5.373

2 �22.783 15.791 105.365 12.365 13.365 27.365 �125.738

3 �63.635 �8.635 75.365 �9.635 85.365 37.365 �72.635

4 �98.635 22.365 42.365 39.365 50.365 57.365 �46.635

5 �89.635 �62.635 0 0 0 0 �46.635

�K
i

�
�69.698 0.332 62.361 39.754 48.897 13.541 �59.404

�K
i

�74.81 �4.78 57.249 34.642 43.786 8.429 �64.515
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(5)

Here, k k j� ( ) is the number of switching points; �
0

0

i
and �

1

0

i
, i k� �1 1, ,� , are unknown regression parameters; ti

0

,

i k�1, ,� , are unknown switching points; �
0 j and �

1 j are respectively the beginning and the end of the interval I j ;

and � ti are random components of regressions that characterize the influence of minor factors on the NCC. The

superscript 0 of the above-mentioned quantities specifies that the value of the regression parameter or of

the switching point is true. Hereinafter, to simplify the notation, we omit the subscript j of the interval I j for k,

parameters, and switching points of the regression.

Since random components in (5) are subsequences of the sequence Et , t �1 2, ,� , according to its properties

presented above they correspond to standard assumptions of regression analysis: do not correlate with each other, have

zero expectations, and identical variances �
2

. Let us present the aforesaid as assumptions.

Assumption 1. Random components of regressions (5) have the following characteristics:

expectation

E ti{ }� � 0, t t ti i i� � �

�

�
0

1

0 0

1{ }, ,� , i k� �1 1, ,� ; (6)

variance

E ti{ }� �
2 2

� , t t ti i i� � �

�

�
0

1

0 0

1{ }, ,� , i k� �1 1, ,� ; (7)

random components of one regression are uncorrelated:

E i i{ }� �
� �
1 2

0� , � � �
1 2

0

1

0 0

1, , ,� � �

�
i i it t{ }� , i k� �1 1, ,� ;

(8)

random components of different regressions are also uncorrelated:

E t ti i i i i
{ } { }� � � �

� �
1 1 2 2

1 1 1

0 1
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0
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0 0
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(9)
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t t i i k{ }, , , , , ,� � .

Here, � i

0

is the time interval on which the regression parameters �
0

0

i
and �

1

0

i
are constant; for the jth interval

t j
0

0

0

� � and t
k j

�

�

1

0

1

� .
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Fig. 2. The graph of regular NCC oscillations based on 84 observations.



Assumption 2. Random components of the regressions (5) are normally distributed.

As is seen from Fig. 1, a substantial difference between NCC in two adjacent days is possible. Therefore, intervals

of the straight lines � �
0

0

1

0

i i
t� , i k� �1 1, ,� , should not necessarily form a continuous piecewise linear function t ,

i.e., this function can be discontinuous at switching points.

Properties of the random components of the regression (6)–(9) stipulate the problem of estimation of switching

points and parameters of switching regression on each estimation interval I j , j �1 2, ,� :
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( ) min� � , (10)

� �
0 1j i jt� � , t ti i� �

�1

2, i k� �1 1, ,� , t j0 0

� � , tk j�

�
1 1

� . (11)

Minimization in the problem (10), (11) is carried out with respect to the parameters �
0i and �

1i , i k� �1 1, ,� ,

continuous quantities and integer switching points ti , i k�1, ,� . Since these quantities vary, their superscript 0 is omitted. To

variable switching points in (10), (11) there correspond intervals � i of constancy of parameters with variable ends:

� i i it t� �
�

{ }

1

1, ,� , i k� �1 1, ,� . (12)

The constraint (11) establishes the minimum number of observations: two for estimation of two parameters of each

of the (k �1)th straight line on the intervals � i , i k� �1 1, ,� , of constancy of the switching regression parameters.

The problem (10), (11) can be considered as a generalization of the problem of parameter estimation of a constrained

nonlinear regression [9, Ch. 1, 10–13]. Since it contains unknown integers, it was solved by a special method [5]. Below, we

present the process and results of the solution for overlapping estimation intervals I I I
1 2 3

, , : I I I I
1 2 1 3

� �� � � �, ,

I I
2 3

� � �. The values of

�Ki , i �1 7, ,� , were found from the NCC at the end of the respective interval. For example, when

constructing a switching regression on the interval I
1

, these values were calculated based on observations over this interval:

from 04.12.20 till 05.12.20. When constructing regression on the interval I
2

, we used observations beginning with 04.12.20

till the end of this interval 06.21.20. Such approach has allowed, in particular, simulating step-by-step inflow of NCC data,

which actually took place. Note that other approaches, based on discrete optimization methods, can also be proposed for

solution of the considered problem [14, 15].

2. CONSTRUCTING THE SWITCHING REGRESSION ON THE INTERVAL I1

According to Fig. 3, on the interval I
1

� [04.12.20, 05.12.20], containing 31 observations, there are no more than

one switching point at which NCC can vary (decrease or increase). Adding one switching point, where velocity probably

varies, we obtain k � 2 in the estimation problem (10), (11). Its solution is estimates of switching points:

�t
1

4� and

�t
2

19� . Estimate of the length of the first interval of constancy of regression parameters �
1

0

equals four. It is too small,

which allows us to advance the null hypothesis H
0

: � �
01

0

02

0

� ; � �
11

0

12

0

� (the first and second regressions in (5)

coincide). Assuming that the second switching point is fixed, to test the formulated hypothesis on the basis of

Assumptions 1 and 2, we will use the criterion from [16]. According to it, we find S , the squared sum of deviations of the

linear regression with n parameters of observations on the time interval of length T ; S
1

and S
2

are the sums of squared

deviations of two other linear regressions: the first and the second ones with n parameters each of the same observations

on the time intervals of length, respectively, T
1

and T
2

, and T T T
1 2

� � . Let us calculate the statistics

F
S S S

S S

T n

n

�

�

� �

�

�( )

( )

1 2

1 2

2

. (13)

Hypothesis H
0

is rejected if F F n T np

�

� �( , )2 , where F n T np ( , )�2 is the 100 p% -point of F -distribution with

the degrees of freedom n and T n�2 . In this case, T �19, T
1

4� , T
2

15� , n � 2, S � 34936.83, and S S
1 2

� � 31107.86.
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We get F
*

� 0.925, F
0 05

2 15

.

( , ) � 3.682. Thus, at the 5%-level, the hypothesis about coincidence of the first and second

regressions is not rejected. Therefore, the hypothesis that there is one switching point on the interval [1, 19] is

not rejected. Let us determine it by solving the problem of estimating (10), (11) for k �1, j �1, �
01

1� , and �
11

31� .

The date 04.22.20 corresponds to the obtained estimate of the unique switching point

�t
1

11 19� � . The sum of squared

residues in (10) makes S � 42251.76, and at point t t�
�

1

the straight lines � �� �
01 11

� t and � �� �
02 12

� t, where �� kl is the

estimate �
kl

0

, k l� �0 1 1 2, ; , , are pairwise close. Therefore, the constraint was added to the problem (10), (11):

� � � �
01 11 1 02 12 1

� � �t t . (14)

As a result, we obtained a switching regression with the regression line being a linear spline (see Fig. 3). The sum

of squared deviations (10) for this case S � 42559.85 slightly increased after adding the constraint to the estimation

problem. This testifies that above-mentioned discrepancy of two straight lines in

�t
1

was due to random factors.

Approximate accuracy analysis of the estimates of parameters of the obtained spline was based on the fact that the

obtained switching point coincides with the true one. Such assumption is not a severe constraint for the problem under

study since time, rather than some complex function, is an independent variable. Then according to [8, Ch. 15] we will

consider the obtained two regressions as one, whose variable parameters are combined by Eq. (14), where t t
1 1

�
�

is fixed.

Then the covariance matrix of regression parameter estimates is defined by the expression

V X X J G SG X X� � � � �

�

�

�

�
2 1

2 1

1

( ) [ ( ) ]

( )k ,

(15)

where the prime denotes transposition, J
2 1( )k�

is a unit matrix of order 2 1( )k � , and S G X X G� � �

�

[ ( ) ]

1

.

In the case under study, X X X� diag ( , )

1 2

and G � � �[

� �

]1 1

1 1

t t , and

X
1

1

1 1

1 2

1

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�t

, X
2

1

1

11

1 1

1 2

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

t

t

� �

�

, �
11

31� . (16)

Generally, the quantities in (15) for the jth estimation interval have the form

948

Fig. 3. Creating a switching regression on the interval I
1

.



X X X X X� �
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0
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1
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1
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k

j

j

t

�

�

�

�

, X k

k

k

j

t

t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

1

1 1

1 2

1

�

�

� �

�

,

(17)

X l

l

l

l

t

t

t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1

1 2

1

1

1

�

�

�

� �

, l k� 2, ,� ; G

O

O
�

� �

� �

� �

1 1 0 0

0 0 1 1

0 0 1 1

1 1 1

2 2 1

� �

� �

� �

t t

t t

t

m

m

k

� � � � � � �

� tk

�

�

�

�

�

�

�

�

�

�

�

�

,

where O
1m is the row with m columns, m k kn� � �2 1( ) . For m � 0, O

10

means that the row is absent.

If straight lines do not mate at some points, then the corresponding rows of the matrix G are deleted. In case of zero

matrixG, which corresponds to the absence of constraints on regression parameters, from (15) we get V X X� �

�

�
2 1

( ) .

The significance of the estimates of regression parameters for the fixed switching points was determined on the

basis of (15) and Assumptions 1 and 2 by well-known methods. Noncorrelatedness analysis of random components of

the regression was carried out by the Darbin–Watson criterion, and analysis of their normality by the criterion based

on asymmetry and kurtosis coefficients [17, Sec. 3.2], for its application see [18, Sec. 9.3].

For the case k �1, according to the formula (15), estimate of the covariance matrix

�V was found by replacing �
2

with its estimate s
2

1464� .

Estimates of spline parameters turned out to be significant at the 5%-level, except for the estimate ��
12

� � 1.374.

Therefore, the estimation problem (10), (11) with the added constraints (14) and �
12

0� was solved. As a result, a spline

that describes smooth passage from NCC growth to a plateau, a horizontal section (see Fig. 3) with highly significant

nonzero estimates of its parameters, was obtained: ��
01

� 340.69; ��
11

�11.56; and ��
02

� 467.81. The estimate of the

covariance matrix V was calculated according to the initial data (16), where matrix X
2

is a column of ones.

3. CONSTRUCTING THE SWITCHING REGRESSION ON THE INTERVAL I2

The beginning of the interval I
2

� [04.23.20, 06.21.20] coincides with the beginning of the plateau, the switching

point defined on I
1

, plus 1. Then leaving the plateau towards increase or decrease of the NCC is possible. A repeated

change in the direction of the NCC dynamics is possible. Therefore (as well as in Sec. 2), we will suppose in the

estimation problem that k � 2. Let us establish �
02

1� , �
12

60� . Thus, time reference in I
2

begins with one. Solving the

estimation problem for I
2

, we obtain estimates of two switching points:

�t
1

37� (05.29.20) and

�t
2

48� (06.09.20), as well

as estimates of parameters of three regressions that form a switching regression:

� .

( )

; � .

( )

; � .

( . )

; �� � �
01 11 02

493 65

0

3 335

0

121 71

0 471

� � � � �
12

8 498

0 033

� .

( . )

;

(18)

� .

( . )

; � .

( )

� �
03 13

102 3

0 585

15 275

0

� � �

(digits in brackets mean the significance of the parameter, which was determined in the same way as in Sec. 2).

According to (18), at point t � 37 the plateau has ended. It began at t �1 and has a small declination with

a significant angular coefficient whose estimate �3.335. According to Sec. 2, its value is insignificant and the estimate

is 1.374; it is possible to explain such a discrepancy by a great amount of data on the plateau on the interval I
2

.

Straight lines of the second and third regressions, according to (18), have angular coefficients of identical signs,

and the angular coefficient of the second straight line is insignificant at the 1%-level. Therefore, the null hypothesis about

equality of parameters of the specified regressions was advanced and was tested with the help of statistics (13), where

T � 23 and n � 2 . It was obtained that F
*

� 4.97. Since F
0 05

2 19

.

( , ) � 3.52, the null hypothesis was rejected.
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Let us now predict the NCC based on the obtained switching regression on the considered interval, which means

extrapolation of the straight line of the third regression. From here, we get the pointwise prediction of the NCC

�
� �

�

�

�

,
�

[ � � ]

( ) ( )

y t K Kt i t t i t� � � � � � �� � � �
03 13 3 3 03 13

w � � '
, w t t� [ ]1

'
, t T� ,

(19)

where the prime denotes transposition.

Due to Assumptions 1 and 2, we get the interval prediction

�
( ) � ( )

�
( ) � ( )y u q t y y u q tt p f t t p f� � � �� � , t T� , (20)

where u qp ( ) is the 100p%-point of the Student distribution with the number of degrees of freedom q T k n� � �( )1 ;

� ( )� f t is the estimate of the mean square deviation of the prediction. We will find it based on (1); as a result, we

get y K Et t i t t� � � �w �
3

0 0

( )

, �
3

0

03

0

13

0

� [ ]� � '
, t T� . This equality and (19) yield the prediction error:

�
(
�

) (

�

)

( )

( )

y y K K Et t t i t i t t� � � � � � �w � �
3

3

0 0

. From here, since
��
3

and

�

( )

Ki t do not depend on Et , neglecting the

dependence of

�

( )

Ki t on
��
3

, we obtain the variance of the NCC prediction � � �
f t t i tt K
2

3

2 2

( ) (

�

)

( )

� � � �w K w ,

where K
3

is a covariance matrix
��
3

; �
2

(

�

)

( )

Ki t is the variance

�

( )

Ki t . Replacing in it all the quantities with their

estimates, we obtain

� ( )

�

� (

�

)

( )

� �
f t t i tt K s
2

3

2 2

� � � �w K w . (21)

Figure 4 shows the results of the prediction for t � 61 69, ,� (06.22.20–06.30.20) calculated based on (19).

The boundaries of the confidence interval for the prediction are defined by means of (20) and (21) for p � 0.05,

q � � �60 6 54. According to the figure, the true NCC value does not get into the confidence interval at points t equal to

64, 67, 68, and 69, which can testify about the ocurrence of one or two new switching points in the neighborhood of these

time intervals and hence, necessity to pass to a new estimation interval for I
3

.

Average prediction error on the time interval [61, 66], where there was only one NCC value that did not get into

the confidence interval, was determined as the ratio of the estimate of the root mean square deviation of the prediction

to the average true value of the NCC on the interval [ , ]61 66 . It was 9.9%. As calculations have shown, the prediction

error can be reduced to 7.4% if we make the estimate ��
03

significant, i.e., increase its accuracy. This can be attained by

jointing the second and third regressions at the point t � 48 .

For comparison, average relative error of the prediction for eight days for the model obtained on the interval I
1

was 19%. Such a large error can be explained by a low accuracy of estimation of regular oscillations of NCC on the small

number of data equal to 31.
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Fig. 4. NCC prediction based on the results of estimation on I
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4. CONSTRUCTING THE SWITCHING REGRESSION ON THE INTERVAL I3

On the interval I
3

� [06.10.20, 07.07.20], days are indexed as a continuation of indexing on the previous interval.

Therefore, �
03

49� : the beginning of I
3

is at the last switching point on the interval I
2

plus 1. The end of the interval

�
13

76� . For the case of possible decrease or increase in the NCC revealed in Sec. 3, we suppose k � 2.

The solution of the estimation problem (10), (11) determines the estimates of switching points

�t
1

63� (06.24.20)

and

�t
2

69� (06.30.20) and estimates of regression parameters:

� .

( . )

; � .

( )

; � .

( )

;� � �
01 11 02

411 77

0 034

21 11

0

4810 11

0

� � � � � .

( )

;�
12

59 55

0

� �

(22)

� .

( )

; � . ,

( . )

� �
03 13

2277 1

0

20 55

0 059

� � �

where the notation in brackets have the same sense as in (18).

According to (22), all the angular coefficients, except for ��
13

, are highly significant, at the point

�t
1

sharp decrease

has begun, followed by slow decrease at

�t
2

. In view of the proximity of these points, the hypothesis about equality of

parameters of the second and third regressions was tested, assuming that

�t
1

63� is approximately known since sharp

decrease of the NCC has begun at its neighborhood. According to the criterion (13), this assumption was rejected at the

5%-level: F
�

� 5.36, F
0 05

2 9

.

( , ) � 4.26. Sharp decrease in the NCC can be due to liquidation of one or several centers of

infection. Insignificance of ��
13

can be explained by the fact that infection dynamics probably has gone out to the next

plateau for a short while.

CONCLUSIONS

In the paper, we have considered a model of the dynamics of coronavirus cases in the form of a switching

regression whose switching points are unknown.

We have proposed stepwise solution of the problem of its creation. First, at each step, we solved the estimation

problem for two switching points based on observations on some small time interval I j , j �1 2 3, , . Then we carried out

statistical analysis of the constructed part of regression, which considerably simplified the estimation problem. As

a result, the required regression was determined on three sequential time intervals: I I I
1 1 2

\ � , I I I
2 2 3

\ � , and I
3

.

Completely, the line of this regression was obtained in the form of a piecewise linear function of time since the ends of

these intervals coincide with the last switching points of the previous interval plus one or with the ends of the observation

interval (see Fig. 1).

The use of prediction allows obtaining a satisfactory approximation to NCC if the process is between two

switching points, and determining if it hits the domain where a new switching point can be. The latter is important in

making a decision to step up (ease) the quarantine and related measures.

As is shown in the paper, without a priori information about the number of switching points, five such points are

found and the pattern of NCC variation (growth, decay, stabilization) to the right from these points based on a small

number of observations available in this domain is determined. Thus, switching regression allows not only obtaining

a short-term prediction of the dynamics of the epidemy, but also promptly determining the trend of its development.

Note that even in case of 87 observations at the very beginning of the research, finding all the switching points

simultaneously when their number is not known would be a challenge. The idea of stepwise estimation has simplified

the solution.
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