Skip to main content

Advertisement

Log in

Direct Oral Anticoagulants: Navigating Through Clinical Challenges

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Direct oral anticoagulants (DOACs) have been approved, for over a decade, by both European and American medicine agencies, for treatment and prevention of several cardiovascular conditions. Since then, an increasing amount of data has been added to the medical literature day by day, resulting in a dichotomy in selection of the appropriate agent, dosage, and duration of treatment for special populations with multiple comorbidities. Considering these issues, we have prepared a comprehensive review for the clinical practitioner, to optimize the DOAC utilization in clinical practice.

Methods

A thorough literature search and review was conducted, concerning mainly the last decade. Our review focused on the current guidelines and the most recently published studies in PubMed, Science Direct Scopus, and Google Scholar to date.

Conclusion

The purpose of this study is to provide guidance for healthcare professionals for making proper decisions when confronted with clinical challenges. Nevertheless, further research is required to establish DOAC superiority in complicated cases, where there is clinical uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Rose DK, Bar B. Direct oral anticoagulant agents: pharmacologic profile, indications, coagulation monitoring, and reversal agents. J Stroke Cerebrovasc Dis: Off J Natl Stroke Assoc. 2018;27(8):2049–58.

    Article  Google Scholar 

  2. Carnicelli AP, et al. Direct oral anticoagulants versus warfarin in patients with atrial fibrillation: patient-level network meta-analyses of randomized clinical trials with interaction testing by age and sex. Circulation. 2022;145(4):242–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen A, et al. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc. 2020;9(13):e017559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Direct oral anticoagulants: assessment report, European Medicines Agency. 2020. https://www.ema.europa.eu/en/documents/referral/assessment-report-article-53-procedure-direct-oral-anticoagulants-doacs_en.pdf. Accessed 19/04/2023.

  5. Eliquis: EPAR – product information, European Medicines Agency. 2011. (Last updated: 09/09/2022). https://www.ema.europa.eu/en/documents/product-information/eliquis-epar-product-information_en.pdf. Accessed 19/04/2023.

  6. Xarelto: EPAR – product information, European Medicines Agency. 2009. (Last updated: 23/02/2023). https://www.ema.europa.eu/en/documents/product-information/xarelto-epar-product-information_en.pdf. Accessed 19/04/2023.

  7. Pradaxa: EPAR – product information, European Medicines Agency. 2009. (Last updated: 25/07/2022). https://www.ema.europa.eu/en/documents/product-information/pradaxa-epar-product-information_en.pdf. Accessed 19/04/2023.

  8. Lixiana: EPAR – product information, European Medicines Agency. 2015. (Last updated: 25/05/2023). https://www.ema.europa.eu/en/documents/product-information/lixiana-epar-product-information_en.pdf. Accessed 19/04/2023.

  9. Khan SU, et al. Dual antiplatelet therapy after percutaneous coronary intervention and drug-eluting stents: a systematic review and network meta-analysis. Circulation. 2020;142(15):1425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park DY, et al. Shortening the duration of dual antiplatelet therapy after percutaneous coronary intervention for acute coronary syndrome: a systematic review and meta-analysis. Am Heart J. 2022;251:101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gibson CM, et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med. 2016;375(25):2423–34.

    Article  CAS  PubMed  Google Scholar 

  12. Cannon CP, et al. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N Engl J Med. 2017;377(16):1513–24.

    Article  CAS  PubMed  Google Scholar 

  13. Dewilde WJM, et al. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet (London, England). 2013;381(9872):1107–15.

    Article  CAS  PubMed  Google Scholar 

  14. Lopes RD, et al. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. N Engl J Med. 2019;380(16):1509–24.

    Article  CAS  PubMed  Google Scholar 

  15. Berteotti M, et al. Clinical impact of high platelet reactivity in patients with atrial fibrillation and concomitant percutaneous coronary intervention on dual or triple antithrombotic therapy. J Thromb Thrombolysis. 2023;55(4):667–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lianos I, et al. Platelet function testing in atrial fibrillation patients undergoing percutaneous coronary intervention. J Thromb Thrombolysis. 2023;55(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  17. Lip GYH, et al. 2018 Joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the European Heart Rhythm Association (EHRA), European Society of Cardiology Working Group on Thrombosis, European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), Latin America Heart Rhythm Society (LAHRS), and Cardiac Arrhythmia Society of Southern Africa (CASSA). Europace: Eur Pacing, Arrhythmias, Cardiac Electrophysiol: J Working Groups Cardiac Pacing, Arrhythmias, Cardiac Cell Electrophysiol Eur Soc Cardiol. 2019;21(2):192–3.

    Article  Google Scholar 

  18. Angiolillo DJ, et al. Antithrombotic therapy in patients with atrial fibrillation treated with oral anticoagulation undergoing percutaneous coronary intervention: a North American perspective: 2021 update. Circulation. 2021;143(6):583–96.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu H, et al. Secondary prevention of antithrombotic therapy in patients with stable cardiovascular disease at high ischemic risk: a network meta-analysis of randomized controlled trials. Front Cardiovasc Med. 2023;9:1040473.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Antithrombotic Trialists’ (ATT) Collaboration, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet (London, England). 2009;373(9678):1849–60.

    Article  Google Scholar 

  21. Coppens M, et al. Synergy of dual pathway inhibition in chronic cardiovascular disease. Circ Res. 2019;124(3):416–25.

    Article  CAS  PubMed  Google Scholar 

  22. Mega JL, et al. Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med. 2012;366(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  23. Eikelboom JW, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377(14):1319–30.

    Article  CAS  PubMed  Google Scholar 

  24. Knuuti J, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77.

    Article  PubMed  Google Scholar 

  25. Yasuda S, et al. Antithrombotic therapy for atrial fibrillation with stable coronary disease. N Engl J Med. 2019;381(12):1103–13.

    Article  CAS  PubMed  Google Scholar 

  26. Tanigawa T, et al. Model-based dose selection for phase III rivaroxaban study in Japanese patients with non-valvular atrial fibrillation. Drug Metab Pharmacokinet. 2013;28(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  27. Renda G, et al. Non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation and valvular heart disease. J Am College Cardiol. 2017;69(11):1363–71.

    Article  Google Scholar 

  28. Eikelboom JW, et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14.

    Article  CAS  PubMed  Google Scholar 

  29. Durães AR, et al. Usefulness and safety of rivaroxaban in patients following isolated mitral valve replacement with a mechanical prosthesis. Am J Cardiol. 2018;122(6):1047–50.

    Article  PubMed  Google Scholar 

  30. Roost E, et al. Rivaroxaban in patients with mechanical heart valves: a pilot study. Thromb Res. 2020;186:1–6.

    Article  CAS  PubMed  Google Scholar 

  31. Duraes AR, et al. Rivaroxaban versus warfarin in patients with mechanical heart valves: open-label, proof-of-concept trial-the RIWA study. Am J Cardiovasc Drugs: Drugs, Devices, Other Interv. 2021;21(3):363–71.

    Article  CAS  Google Scholar 

  32. Ryu R, Tran R. DOACs in mechanical and bioprosthetic heart valves: a narrative review of emerging data and future directions. Clin Appl Thromb/Hemost: Off J Int Acad Clin Appl Thromb/Hemost. 2022;28:10760296221103578.

    Article  Google Scholar 

  33. Jawitz OK, et al. Rationale and design of PROACT Xa: a randomized, multicenter, open-label, clinical trial to evaluate the efficacy and safety of apixaban versus warfarin in patients with a mechanical On-X Aortic Heart Valve. Am Heart J. 2020;227:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Connolly SJ, et al. Rivaroxaban in rheumatic heart disease-associated atrial fibrillation. N Engl J Med. 2022;387(11):978–88.

    Article  CAS  PubMed  Google Scholar 

  35. Vahanian A, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632.

    Article  PubMed  Google Scholar 

  36. Guimarães PO, et al. Efficacy and safety of apixaban vs warfarin in patients with atrial fibrillation and prior bioprosthetic valve replacement or valve repair: insights from the ARISTOTLE trial. Clin Cardiol. 2019;42(5):568–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Caterina R, et al. Valvular heart disease patients on edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. J Am College Cardiol. 2017;69(11):1372–82.

    Article  Google Scholar 

  38. Montalescot, G. “Anti-thrombotic strategy to lower all cardiovascular and neurologic ischemic and hemorrhagic events after trans-aortic valve implantation for aortic stenosis—ATLANTIS.” American College of Cardiology Virtual Annual Scientific Session (ACC 2021). 2021.

  39. Van Mieghem NM, et al. Edoxaban versus vitamin K antagonist for atrial fibrillation after TAVR. N Engl J Med. 2021;385(23):2150–60.

    Article  PubMed  Google Scholar 

  40. Guimarães HP, et al. Rivaroxaban in patients with atrial fibrillation and a bioprosthetic mitral valve. N Engl J Med. 2020;383(22):2117–26.

    Article  PubMed  Google Scholar 

  41. Durães AR, et al. Dabigatran versus warfarin after bioprosthesis valve replacement for the management of atrial fibrillation postoperatively: DAWA pilot study. Drugs R&D. 2016;16(2):149–54.

    Article  Google Scholar 

  42. Collet JP, et al. Apixaban vs. standard of care after transcatheter aortic valve implantation: the ATLANTIS trial. Eur Heart J. 2022;43(29):2783–97.

    Article  PubMed  Google Scholar 

  43. Dangas GD, et al. A controlled trial of rivaroxaban after transcatheter aortic-valve replacement. N Engl J Med. 2020;382(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  44. Maniwa N, et al. Anticoagulation combined with antiplatelet therapy in patients with left ventricular thrombus after first acute myocardial infarction. Eur Heart J. 2018;39(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  45. Camaj A, et al. Left ventricular thrombus following acute myocardial infarction: JACC state-of-the-art review. J Am College Cardiol. 2022;79(10):1010–22.

    Article  Google Scholar 

  46. Kajy M, Shokr M, Ramappa P. Use of direct oral anticoagulants in the treatment of left ventricular thrombus: systematic review of current literature. Am J Ther. 2020;27(6):e584–90.

    Article  PubMed  Google Scholar 

  47. Sedhom R, et al. Use of direct oral anticoagulants in the treatment of left ventricular thrombi: a systematic review. Am J Med. 2020;133(11):1266-1273.e6.

    Article  CAS  PubMed  Google Scholar 

  48. Ibanez B, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.

    Article  PubMed  Google Scholar 

  49. Robinson AA, et al. Off-label use of direct oral anticoagulants compared with warfarin for left ventricular thrombi. JAMA Cardiol. 2020;5(6):685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lip GYH, et al. Left atrial thrombus resolution in atrial fibrillation or flutter: results of a prospective study with rivaroxaban (X-TRA) and a retrospective observational registry providing baseline data (CLOT-AF). Am Heart J. 2016;178:126–34.

    Article  PubMed  Google Scholar 

  51. Cheng Y-Y, et al. Left atrial appendage thrombosis and oral anticoagulants: a meta-analysis of risk and treatment response. J Cardiovasc Dev Dis. 2022;9(10):351.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Delewi R, et al. Left ventricular thrombus formation after acute myocardial infarction. Heart (Br Cardiac Soc). 2012;98(23):1743–9.

    Google Scholar 

  53. Nso N, et al. Direct oral anticoagulants (DOAC) versus warfarin for the treatment of left ventricular thrombus (LVT) in patients with or without cardiorenal comorbidities, including CKD (chronic kidney disease) and atrial fibrillation: a systematic review and meta-analysis. Circulation. 2021;144(Suppl_1):A12654–A12654.

    Article  Google Scholar 

  54. Huang L, et al. Systematic review of efficacy of direct oral anticoagulants and vitamin K antagonists in left ventricular thrombus. ESC Heart Failure. 2022;9(5):3519–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Condello F, et al. Direct oral anticoagulants versus vitamin K antagonists in the treatment of left ventricular thrombosis: a systematic review and meta-analysis. Minerva Cardiol Angiol. 2022;70(6):666–76.

    PubMed  Google Scholar 

  56. Isa WYHW, et al. Apixaban versus warfarin in patients with left ventricular thrombus: a pilot prospective randomized outcome blinded study investigating size reduction or resolution of left ventricular thrombus. J Clin Prev Cardiol. 2020;9(4):150.

    Article  Google Scholar 

  57. Alcalai R, et al. Apixaban vs. warfarin in patients with left ventricular thrombus: a prospective multicentre randomized clinical trial. Eur Heart J Cardiovasc Pharmacother. 2022;8(7):660–7.

    Article  PubMed  Google Scholar 

  58. Abdelnabi M, et al. Comparative study of oral anticoagulation in left ventricular thrombi (No-LVT Trial). J Am College Cardiol. 2021;77(12):1590–2.

    Article  Google Scholar 

  59. He J, et al. Rationale and design of a prospective multi-center randomized trial of EARLY treatment by rivaroxaban versus warfarin in ST-segment elevation MYOcardial infarction with Left Ventricular Thrombus (EARLY-MYO-LVT trial). Ann Transl Med. 2020;8(6):392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shokr M, et al. Use of direct oral anticoagulants in the treatment of left ventricular thrombi: a tertiary center experience and review of the literature. Clin Case Rep. 2018;7(1):135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Makrides Constantinos Andreas. Resolution of left ventricular postinfarction thrombi in patients undergoing percutaneous coronary intervention using rivaroxaban in addition to dual antiplatelet therapy. BMJ case reports. 2016;2016(bcr2016217843):26.

  62. Wilks ML. Direct oral anticoagulants and cancer thrombosis: what APs need to know. J Adv Pract Oncol. 2022;13(3):253–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Falanga A, et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann Oncology Off J Eur Soc Med Oncol. 2023;34(5):452–67.

  64. Young AM, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J Clin Oncol: Off J Am Soc Clin Oncol. 2018;36(20):2017–23.

    Article  CAS  Google Scholar 

  65. McBane RD 2nd, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Thromb Haemost: JTH. 2020;18(2):411–21.

    Article  CAS  PubMed  Google Scholar 

  66. Agnelli G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382(17):1599–607.

    Article  CAS  PubMed  Google Scholar 

  67. Raskob GE, et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N Engl J Med. 2018;378(7):615–24.

    Article  CAS  PubMed  Google Scholar 

  68. Planquette B, et al. Rivaroxaban vs dalteparin in cancer-associated thromboembolism: a randomized trial. Chest. 2022;161(3):781–90.

    Article  CAS  PubMed  Google Scholar 

  69. Lee AYY, et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003;349(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  70. Sabatino J, et al. Direct oral anticoagulants in patients with active cancer: a systematic review and meta-analysis. JACC: CardioOncology. 2020;2(3):428–40.

    PubMed  PubMed Central  Google Scholar 

  71. Toyoda K. Antithrombotic therapy for pregnant women. Neurol Med Chir. 2013;53(8):526–30.

    Article  Google Scholar 

  72. Youssef G. “Management of atrial fibrillation during pregnancy.” E-Journal of Cardiology Practice. 2019. Vol. 17, N° 15 - 17 Jul 2019

  73. Beyer-Westendorf J, et al. Safety of direct oral anticoagulant exposure during pregnancy: a retrospective cohort study. Lancet Haematol. 2020;7(12):e884–91.

    Article  PubMed  Google Scholar 

  74. Beyer-Westendorf J, Marten S, Michalski F. Outcome of NOAC exposure during pregnancy (... and the problem of event reporting...). Blood. 2015;126(23):1125.

    Article  Google Scholar 

  75. Said S, Hernandez GT. The link between chronic kidney disease and cardiovascular disease. J Nephropathol. 2014;3(3):99–104.

    PubMed  PubMed Central  Google Scholar 

  76. Lau YC, et al. Atrial fibrillation and thromboembolism in patients with chronic kidney disease. J Am College Cardiol. 2016;68(13):1452–64.

    Article  Google Scholar 

  77. Christiansen CF, et al. Kidney disease and risk of venous thromboembolism: a nationwide population-based case-control study. J Thromb Haemost: JTH. 2014;12(9):1449–54.

    Article  CAS  PubMed  Google Scholar 

  78. Rogula S, et al. Safety and efficacy of DOACs in patients with advanced and end-stage renal disease. Int J Environ Res Public Health. 2022;19(3):1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jain N, Reilly RF. Clinical pharmacology of oral anticoagulants in patients with kidney disease. Clin J Am Soc Nephrol: CJASN. 2019;14(2):278–87.

    Article  CAS  PubMed  Google Scholar 

  80. Kumar S, et al. Anticoagulation in concomitant chronic kidney disease and atrial fibrillation: JACC Review Topic of the Week. J Am College Cardiol. 2019;74(17):2204–15.

    Article  CAS  Google Scholar 

  81. Aursulesei V, Costache II. Anticoagulation in chronic kidney disease: from guidelines to clinical practice. Clin Cardiol. 2019;42(8):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  82. ROCKET AF Study Investigators. Rivaroxaban-once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation: rationale and design of the ROCKET AF study. Am Heart J. 2010;159(3):340-347.e1.

    Article  Google Scholar 

  83. Landman GW, Gans ROB. Oral rivaroxaban for symptomatic venous thromboembolism. N Engl J Med. 2011;364(12):1178.

    Article  CAS  PubMed  Google Scholar 

  84. Connolly SJ, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  PubMed  Google Scholar 

  85. Schulman S, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342–52.

    Article  CAS  PubMed  Google Scholar 

  86. Giugliano RP, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  PubMed  Google Scholar 

  87. Investigators H-VTE, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med. 2013;369(15):1406–15.

    Article  Google Scholar 

  88. Lopes RD, et al. Apixaban for reduction in stroke and other ThromboemboLic events in atrial fibrillation (ARISTOTLE) trial: design and rationale. Am Heart J. 2010;159(3):331–9.

    Article  CAS  PubMed  Google Scholar 

  89. Agnelli G, et al. Oral apixaban for the treatment of acute venous thromboembolism. N Engl J Med. 2013;369(9):799–808.

    Article  CAS  PubMed  Google Scholar 

  90. Steffel J, et al. 2021 European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Europace: Eur Pacing, Arrhythmias, Cardiac Electrophysiol: J Working Groups Cardiac Pacing, Arrhythmias, Cardiac Cell Electrophysiol Eur Soc Cardiol. 2021;23(10):1612–76.

    Article  Google Scholar 

  91. Eliquis: highlights of prescribing information, Food and Drug Administration. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202155s000lbl.pdf. Accessed 25/04/2023.

  92. Harrington, Josephine et al. “Direct Oral Anticoagulants Versus Warfarin Across the Spectrum of Kidney Function: Patient-Level Network Meta-Analyses From COMBINE AF.” Circulation. 2023;147,23:1748-1757.

  93. Bohula EA, et al. Impact of Renal function on outcomes with edoxaban in the ENGAGE AF-TIMI 48 trial. Circulation. 2016;134(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  94. Yu HT, et al. Impact of renal function on outcomes with edoxaban in real-world patients with atrial fibrillation. Stroke. 2018;49(10):2421–9.

    Article  CAS  PubMed  Google Scholar 

  95. Wang Y, et al. Efficacy and safety of renal function on edoxaban versus warfarin for atrial fibrillation: a systematic review and meta-analysis. Medicines (Basel, Switzerland). 2023;10(1):13.

    CAS  PubMed  Google Scholar 

  96. Chan KE, et al. Dabigatran and rivaroxaban use in atrial fibrillation patients on hemodialysis. Circulation. 2015;131(11):972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Siontis KC, et al. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation. 2018;138(15):1519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miao B, et al. Rivaroxaban versus apixaban in non-valvular atrial fibrillation patients with end-stage renal disease or receiving dialysis. Eur J Haematol. 2020;104(4):328–35.

    Article  CAS  PubMed  Google Scholar 

  99. Pokorney SD, et al. Apixaban for patients with atrial fibrillation on hemodialysis: a multicenter randomized controlled trial. Circulation. 2022;146(23):1735–45.

    Article  PubMed  Google Scholar 

  100. Reinecke H, et al. A randomized controlled trial comparing apixaban with the vitamin K antagonist phenprocoumon in patients on chronic hemodialysis: the AXADIA-AFNET 8 study. Circulation. 2023;147(4):296–309.

    Article  CAS  PubMed  Google Scholar 

  101. Strategies for the management of atrial fibrillation in patients receiving dialysis (SAFE-D). 2019. ClinicalTrials.gov. Access 25 April 2023.

  102. Semmler G, et al. Safety of direct oral anticoagulants in patients with advanced liver disease. Liver Int: Off J Int Assoc Study Liver. 2021;41(9):2159–70.

    Article  CAS  Google Scholar 

  103. O’Leary JG, et al. AGA clinical practice update: coagulation in cirrhosis. Gastroenterology. 2019;157(1):34-43.e1.

    Article  PubMed  Google Scholar 

  104. Qamar A, et al. Oral anticoagulation in patients with liver disease. J Am College Cardiol. 2018;71(19):2162–75.

    Article  CAS  Google Scholar 

  105. Lawal OD, et al. Comparative effectiveness and safety of direct oral anticoagulants and warfarin in patients with atrial fibrillation and chronic liver disease: a nationwide cohort study. Circulation. 2023;147(10):782–94.

    Article  CAS  PubMed  Google Scholar 

  106. Chagnac A, et al. Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol. 2000;278(5):F817–22.

    Article  CAS  PubMed  Google Scholar 

  107. Wallace JL, et al. Comparison of initial warfarin response in obese patients versus non-obese patients. J Thromb Thrombolysis. 2013;36(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  108. Malik AH, et al. Impact of weight on the efficacy and safety of direct-acting oral anticoagulants in patients with non-valvular atrial fibrillation: a meta-analysis. Europace: Eur Pacing, Arrhythmias, Cardiac Electrophysiol: J Working Groups Cardiac Pacing, Arrhythmias, Cardiac Cell Electrophysiol Eur Soc Cardiol. 2020;22(3):361–7.

    Article  Google Scholar 

  109. Martin K, et al. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemost: JTH. 2016;14(6):1308–13.

    Article  CAS  PubMed  Google Scholar 

  110. Piran S, et al. Peak plasma concentration of direct oral anticoagulants in obese patients weighing over 120 kilograms: a retrospective study. Res Pract Thromb Haemost. 2018;2(4):684–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Coons, James C., et al. Effectiveness and safety of direct oral anticoagulants versus warfarin in obese patients with acute venous thromboembolism. Pharmacother J Human Pharmacol Drug Ther 2020;40.3:204-210.

  112. Mhanna M, et al. Direct oral anticoagulants versus warfarin in morbidly obese patients with nonvalvular atrial fibrillation: a systematic review and meta-analysis. Am J Ther. 2021;28(5):e531–9.

    Article  PubMed  Google Scholar 

  113. Park CS, et al. Increased risk of major bleeding in underweight §patients with atrial fibrillation who were prescribed non-vitamin K antagonist oral anticoagulants. Heart Rhythm. 2017;14(4):501–7.

    Article  PubMed  Google Scholar 

  114. Boriani G, et al. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. Eur Heart J. 2019;40(19):1541–50.

    Article  CAS  PubMed  Google Scholar 

  115. Hohnloser SH, et al. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and extremes in body weight. Circulation. 2019;139(20):2292–300.

    Article  CAS  PubMed  Google Scholar 

  116. Lee C-H, et al. Body mass index is an independent predictor of major bleeding in non-valvular atrial fibrillation patients taking dabigatran. Int J Cardiol. 2017;228:771–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design and implementation. Angeliki Mouzarou supervised the study. All authors were involved in literature search and review. The first draft of the manuscript was written by Maria Ioannou. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Maria Ioannou.

Ethics declarations

Ethics Approval

Fully compliant with ethical issues.

Consent to Participate/Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannou, M., Leonidou, E., Chaziri, I. et al. Direct Oral Anticoagulants: Navigating Through Clinical Challenges. Cardiovasc Drugs Ther 38, 637–650 (2024). https://doi.org/10.1007/s10557-023-07499-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-023-07499-0

Keywords

Navigation