Skip to main content
Log in

Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic Inflammation And Oxidative Stress

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. Inflammation and oxidative stress play important roles in DCM development. Bicyclol is a hepatoprotective drug in China that exerts anti-inflammatory effects by inhibiting the MAPK and NF-κB pathways to prevent obesity-induced cardiomyopathy. Our purpose was to explore the effect and mechanism of bicyclol on DCM.

Methods

A type 1 diabetes mouse model was established using C57BL/6 mice by intraperitoneal injection of STZ. The therapeutic effect of bicyclol was evaluated in both heart tissues of diabetic mice and high concentration of glucose (HG)-stimulated H9c2 cells.

Results

We showed that bicyclol significantly attenuated diabetes-induced cardiac hypertrophy and fibrosis, which is accompanied by the preservation of cardiac function in mice. In addition, bicyclol exhibited anti-inflammatory and anti-oxidative effects both in vitro and in vivo. Furthermore, bicyclol inhibited the hyperglycemia-induced activation of MAPKs and NF-κB pathways, while upregulating the Nrf-2/HO-1 pathway to exhibit protective effects.

Conclusion

Our data indicate that bicyclol could be a promising cardioprotective agent in the treatment of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data in this study are available upon reasonable request from the corresponding author.

Code Availability

Not applicable.

Abbreviations

BIC:

bicyclol

BNP:

brain natriuretic peptide

BSA:

bovine serum albumin

CK-MB:

creatine kinase-MB

CMC-Na:

Carboxymethylcellulose sodium

Col-1:

type 1 collagen

DAB:

diaminobenzidine

DCM:

diabetic cardiomyopathy

DM:

diabetes mellitus

DMSO:

dimethylsulphoxide

DMEM:

Dulbecco’s Modified Eagle’s Medium

EF:

ejection fraction

ERK:

extracellular regulated protein kinases

FBS:

fetal bovine serum

FS:

fractional shortening

HG:

high concentration glucose

HO-1:

heme oxygenase-1

IL-1β:

interleukin 1β

IL-6:

interleukin 6

IκB-α:

inhibitor of NF-κB-α

JNK:

c-Jun N-terminal kinase

Keap-1:

Kelch-like ECH-associated protein 1

LDH:

lactic dehydrogenase

MAPK:

mitogen-activated protein kinase

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazoliumbromide

NAFLD:

nonalcoholic fatty liver

NF-κB:

nuclear factor kappa-B

Nrf-2:

nuclear factor-erythroid 2-related factor 2

ROS:

reactive oxygen species

STZ:

streptozotocin

T1DM:

type 1 diabetes mellitus

TGF-β:

transforming growth factor-β

TNF-α:

tumor necrosis factor-α

β-Myhc:

β-myosin heavy chain

References

  1. Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81.

    Article  CAS  PubMed  Google Scholar 

  2. de Ferranti SD, de Boer IH, Fonseca V, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2014;37(10):2843–63.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–53.

    Article  CAS  PubMed  Google Scholar 

  4. Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020;126(11):1501–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018;71(3):339–51.

    Article  PubMed  Google Scholar 

  6. Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol. 2013;168(4):3160–72.

    Article  PubMed  Google Scholar 

  7. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 2014;57(4):660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bou-Teen D, Kaludercic N, Weissman D, et al. Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med. 2021;167:109–24.

    Article  CAS  PubMed  Google Scholar 

  9. Rendra E, Riabov V, Mossel DM, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224(2):242–53.

    Article  CAS  PubMed  Google Scholar 

  10. Wang YH, Qiu C, Wang DW, et al. Identification of multiple constituents in the traditional Chinese medicine formula Sheng-Mai San and rat plasma after oral administration by HPLC-DAD-MS/MS. J Pharm Biomed Anal. 2011;54(5):1110–27.

    Article  CAS  PubMed  Google Scholar 

  11. Tian J, Tang W, Xu M, et al. Shengmai San alleviates diabetic Ccardiomyopathy through improvement of mitochondrial lipid metabolic disorder. Cell Physiol Biochem. 2018;50(5):1726–39.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao T, Mao L, Yu Z, et al. Therapeutic potential of bicyclol in liver diseases: lessons from a synthetic drug based on herbal derivative in traditional Chinese medicine. Int Immunopharmacol. 2021;91:107308.

    Article  CAS  PubMed  Google Scholar 

  13. Yao XM, Li Y, Li HW, et al. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice. Can J Physiol Pharmacol. 2016;94(1):1–8.

    Article  PubMed  Google Scholar 

  14. Cui J, Li Z, Qian LB, et al. Reducing the oxidative stress mediates the cardioprotection of bicyclol against ischemia-reperfusion injury in rats. J Zhejiang Univ Sci B. 2013;14(6):487–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao W, Yan Y, Xiao Z, et al. Bicyclol ameliorates nonalcoholic fatty liver disease in mice via inhibiting MAPKs and NF-kappaB signaling pathways. Biomed Pharmacother. 2021;141:111874.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Liu Z, Wu J, et al. New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity. Eur J Med Chem. 2018;148:291–305.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Lin W, Zhong L, et al. Bicyclol attenuates obesity-induced cardiomyopathy via inhibiting NF-kappaB and MAPK signaling pathways. Cardiovasc Drugs Ther. 2022. online ahead of print.

  18. You S, Qian J, Sun C, et al. An Aza resveratrol-chalcone derivative 6b protects mice against diabetic cardiomyopathy by alleviating inflammation and oxidative stress. J Cell Mol Med. 2018;22(3):1931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Luo W, Qian Y, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-kappaB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 2019;59:152774.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Liu W, Su X, et al. The beneficial effects of Chinese herbal monomers on ameliorating diabetic cardiomyopathy via Nrf2 signaling. Oxidative Med Cell Longev. 2022;2022:3959390.

    Article  Google Scholar 

  21. Tian J, Zhao Y, Liu Y, et al. Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: current status and perspective. Oxidative Med Cell Longev. 2017;2017:8214541.

    Article  Google Scholar 

  22. Liu X, Guo B, Zhang W, Ma B, Li Y. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-kappaB signalling pathway. J Biochem. 2021;170(3):349–62.

    Article  CAS  PubMed  Google Scholar 

  23. Ge Q, Zhao L, Ren XM, Ye P, Hu ZY. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp Biol Med (Maywood). 2019;244(12):1028–39.

    Article  CAS  PubMed  Google Scholar 

  24. Gao Y, Kang L, Li C, et al. Resveratrol ameliorates diabetes-induced cardiac dysfunction through AT1R-ERK/p38 MAPK signaling pathway. Cardiovasc Toxicol. 2016;16(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  25. Zuo G, Ren X, Qian X, et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol. 2019;234(2):1925–36.

    Article  CAS  PubMed  Google Scholar 

  26. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ceriello A. Oxidative stress and diabetes-associated complications. Endocr Pract. 2006;12(Suppl 1):60–2.

    Article  PubMed  Google Scholar 

  28. Anderson EJ, Kypson AP, Rodriguez E, et al. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54(20):1891–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saha S, Buttari B, Panieri E, Profumo E, Saso L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 2020;25(22):5474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy. Exp Ther Med. 2021;22(1):678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balligand JL. Reducing damage through Nrf-2. Cardiovasc Res. 2013;100(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta A, Behl T, Sehgal A, et al. Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy. Mol Biol Rep. 2021;48(3):2761–74.

    Article  CAS  PubMed  Google Scholar 

  33. Luo J, Yan D, Li S, et al. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med. 2020;24(2):1760–73.

    Article  CAS  PubMed  Google Scholar 

  34. Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. 2012;30(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Ren J. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management. Pharmacol Ther. 2016;161:52–66.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang M, Lin J, Wang S, et al. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res. 2017;63(2):e12418.

    Article  Google Scholar 

  37. Bao XQ, Liu GT. Bicyclol protects HepG2 cells against D-galactosamine-induced apoptosis through inducing heat shock protein 27 and mitochondria associated pathway. Acta Pharmacol Sin. 2010;31(2):219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia S, Jin L, Cheng X, et al. Bicyclol alleviates high-fat diet-induced hepatic ER stress- and autophagy-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in mice. Drug Dev Ind Pharm. 2022;48(6):247–54.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    Article  PubMed  Google Scholar 

  40. Henstridge DC, Bruce CR, Pang CP, et al. Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia. 2012;55(10):2769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li H, Xu Q, Xu C, et al. Bicyclol regulates hepatic gluconeogenesis in rats with type 2 diabetes and non-alcoholic fatty liver disease by inhibiting inflammation. Front Pharmacol. 2021;12:644129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82170373 to Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

Yi Wang and Ying He contributed to the literature search and study design. Lingxi Zhang, Chenghong Hu, Bo Jin, Jing Liao, Bin Bai, Leiming Jin, Minxiu Wang, Weiwei Zhu, Xuelian Xu and Li Zheng carried out experiments. Lingxi Zhang, Xuedan Wu and Yongsheng Jiang contributed to data collection and analysis. Lingxi Zhang participated in the drafting of the article. Yi Wang and Ying He revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yi Wang or Ying He.

Ethics declarations

Ethics Statement

All animal experiments were in compliance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Welfare Committee of Wenzhou Medical University (Approved ID: wydw2018-0124).

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Mote

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 76 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Hu, C., Jin, B. et al. Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic Inflammation And Oxidative Stress. Cardiovasc Drugs Ther 38, 555–568 (2024). https://doi.org/10.1007/s10557-023-07426-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-023-07426-3

Keywords

Navigation