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Abstract
Purpose  In patients with type 2 diabetes mellitus (T2DM), both sodium-glucose cotransporter 2 inhibitors (SGLT2is) and 
glucagon-like peptide receptor agonists (GLP-1 RAs) have demonstrated significant improvements in cardiovascular and 
kidney outcomes independent of their glycemic benefits. This paper will briefly compare the effect of SGLT2is and GLP-1 
RAs to that of the SGLT1/2 inhibitor sotagliflozin on the incidence of myocardial infarction (MI) and stroke in patients with 
T2DM and further postulate mechanisms to account for these findings.
Methods and Results  Thus far, the results from SCORED and SOLOIST (trials studying the SGLT1/2 inhibitor sotagliflozin) 
suggest that an increase in SGLT1 inhibition when added to SGLT2 inhibition may contribute to reductions in MI and stroke 
in patients with T2DM. This benefit is beyond what SGLT2is alone can accomplish and at least similar to GLP-1 RAs but 
with the added benefit of a reduction in hospitalizations and urgent visits for HF. Larger and longer studies are required to 
confirm the effectiveness of SGLT1/SGLT2 inhibition in reducing MI and stroke in patients with T2DM and elucidate the 
mechanisms associated with this finding.
Conclusions  The role of SGLT1/2 inhibition as an addition to GLP-1 RAs in patients with and without T2DM at increased 
risk for MI and stroke requires further study. Regardless, the finding that a relative increase in SGLT1/2 inhibition reduces 
the risk of MI and stroke as well as hospitalizations and urgent visits for heart failure could improve quality of life and reduce 
the healthcare burden associated with T2DM.
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In patients with type 2 diabetes mellitus, both sodium-
glucose cotransporter 2 inhibitors (SGLT2is) and gluca-
gon-like peptide receptor agonists (GLP-1 RAs) have been 
shown to significantly improve cardiovascular and kidney 
outcomes independent of their effect on glycemia. Current 
guidelines, as well as a recent meta-analysis of SGLT2is 
and GLP-1 RAs, reflect the efficacy of these drug classes 

[1–4]. Although they significantly improve cardiovascular 
and kidney outcomes in patients with type 2 diabetes, their 
utility in preventing myocardial infarction (MI) and stroke is 
relatively modest and inconsistent, especially with SGLT2is.

The recent findings from the SCORED (10,584 patients 
with type 2 diabetes and CKD randomized to sotagliflozin 
or placebo) and SOLOIST (1222 patients with type 2 dia-
betes admitted with worsening heart failure randomized to 
sotagliflozin or placebo) trials suggest that like SGLT2is, 
SGLT1/2 s reduce the composite of deaths from cardiovas-
cular causes, hospitalization for heart failure, and urgent vis-
its for heart failure but may provide greater reduction in MI 
and stroke [5, 6]. Although there is no direct comparison of 
the SGLT1/2i sotagliflozin to the SGLT2is, a meta-analysis 
of SGLT2is has failed to show a reduction of stroke and 
only a modest reduction in the incidence of MI [3]. There-
fore, the combination of SGLT1/SGLT2 inhibition may 
benefit patients with type 2 diabetes beyond what current 
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therapeutic options can offer. Previously, we illustrated the 
benefit of a relative increase in SGLT1/SGLT2 inhibition 
with regard to reduction in stroke and MI [7]. This paper will 
briefly compare the effect of SGLT2is and GLP-1 RAs to 
that of the SGLT1/2 inhibitor sotagliflozin on the incidence 
of MI and stroke in patients with type 2 diabetes and further 
postulate mechanisms associated with SGLT1 inhibition that 
could account for these findings.

In general, SGLT2is reduce cardiovascular mortality, 
kidney outcomes, and heart failure hospitalizations (HHF). 
In contrast, GLP-1 RAs primarily reduce atherosclerotic 
events. A recent meta-analysis of 6 trials with unique indi-
vidual data from 46,969 patients with type 2 diabetes found 
that SGLT2is significantly reduced the risk of major car-
diovascular events (HR 0.90; 95% CI 0.85–0.95), HHF/
cardiovascular mortality (HR 0.78; 95% CI 0.73–0.84), and 
kidney outcomes (HR 0.62; 95% CI 0.56–0.70) [3]. The 
presence or absence of atherosclerotic cardiovascular disease 
did not significantly modify the benefit for these adverse 
cardio-renal events. Overall, there was a modest reduction 
in MI (HR 0.91; 95% CI 0.84–0.99). In those with base-
line ASCVD, MI was similarly reduced (HR 0.90; 95% CI 
0.82–0.99). Thus, SGLT2is are effective in reducing the inci-
dence of MI but their effects are modest and likely related 
to a reduction in myocardial oxygen demands rather than an 
effect on thrombosis [8]. Surprisingly, there was no overall 
reduction in stroke (HR 0.96; 95% CI 0.87–1.07), even in 
those with baseline atherosclerotic cardiovascular disease 
(HR 0.99; 95% CI 0.87–1.11) [3] despite the reductions in 
inflammatory cytokines, oxidative stress, visceral obesity, 
and blood pressure that occur with these agents [9]. The 
reasons SGLT2is fail to reduce the occurrence of MI to a 
greater degree and overall stroke remain uncertain, espe-
cially in view of their reduction in blood pressure which on 
the basis of prior epidemiologic studies should have pre-
dicted a reduction in stroke [10]. However, their resultant 
increase in erythropoietin and as a consequence hematocrit 
and blood viscosity [11], which could in part be attributed 
to the effect of SGLT2i to increase sodium excretion and 
to decrease plasma volume, could predispose to a slight 
increase in thrombosis [12], thereby offsetting the reduction 
in stroke that would otherwise be expected from the blood 
pressure lowering.

A meta-analysis of GLP-1 RAs from trials comprising 
56,004 patients found a significant reduction in 3-point 
MACE (cardiovascular mortality, nonfatal MI, and nonfatal 
stroke) (HR 0.88, 95% CI 0.79–0.98), cardiovascular mortal-
ity (HR 0.88, 95% CI 0.76–0.94), all-cause mortality (HR 
0.89, 95% CI 0.81–0.97), fatal and nonfatal stroke (HR 0.84, 
95% CI 0.76–0.94), and HHF (HR 0.92, 95% CI 0.86–0.97) 
as well as a trend towards reduction in nonfatal and fatal 
MI (HR 0.91, 95% CI 0.82–1.02) [4]. In a sensitivity analy-
sis using a less conservative statistical approach, there was 

significant benefit on fatal and nonfatal MI (HR 0.91, 95% 
CI 0.83–1.00; p = 0.039). The meta-analysis also found no 
increase in the incidence of hypoglycemia, pancreatitis, and 
pancreatic cancer in patients taking a GLP-1 RA compared 
with those on placebo [4]. However, the various GLP-1 RAs 
differ in structure, duration of action, and effects. The great-
est reduction in fatal and nonfatal MI was seen in the HAR-
MONY trial of albiglutide (HR 0.75; 95% CI 0.61–0.90) 
[13], but there was no significant reduction in fatal stroke 
(HR 0.86; 95% CI 0.65–1.14). SUSTAIN-6 [14] with subcu-
taneous semaglutide saw the greatest numerical reduction in 
fatal and nonfatal stroke, but it was not statistically signifi-
cant (HR 0.65; 95% CI 0.41–1.03) in this smaller phase 3 
trial (N = 3297) nor was this observed with oral semaglutide 
in PIONEER-6 [15] (HR 0.76; 95% CI 0.37–1.56). Similarly, 
fatal and nonfatal MI were not reduced significantly in SUS-
TAIN-6 (HR 0.81; 95% CI 0.57–1.16) or PIONEER-6 (HR 
1.04; 95% CI 0.66–1.64).

A recent observational study from SWEDEHEART of 
patients with DM surviving their first MI found that patients 
taking a GLP-1 RA (86.6% on liraglutide) compared with 
standard diabetes care had numerically lower rates of myo-
cardial reinfarction (HR 0.71; 95% CI 0.49–1.04) and stroke 
(HR 0.42; 95% CI 0.18–1.02) [16]. Although the impact on 
reinfarction and stroke was similar to that of sotagliflozin in 
SCORED and SOLOIST [5, 6], patients in this observational 
study were early post MI and at a high risk of recurrent MI 
and stroke, and the effects did not reach statistical signifi-
cance [16].

Thus, despite similarity to SCORED (sotagliflozin) in the 
magnitude of reduction in both fatal and nonfatal MI and 
stroke with semaglutide in SUSTAIN-6 [14] and GLP-1 RAs 
(mainly liraglutide) in the SWEDEHEART observational 
study [16], the results were not statistically significant. Until 
further comparative studies are available, it is, however, rea-
sonable to assume that the magnitude of benefit for MI and 
stroke reduction is similar in patients receiving an SGLT1/2 
inhibitor or a GLP-1 RA. Of note, the reduction in HHF with 
GLP-1 RAs [4], although significant, is less than with the 
SGLT2is [3] and the SGLT1/2i sotagliflozin [5, 6].

Combining both types of agents may yield additional 
benefits: in a recent observational propensity-matched study 
from 3 US claims databases of 12,854 patients with type 2 
diabetes who added an SGLT2i or sulfonylurea to baseline 
GLP-1 RA treatment, adding an SGLT2i produced greater 
cardiovascular benefit (comprising MI, stroke, all-cause 
mortality, and HHF) [17]. The magnitude of cardiovascular 
risk reduction echoed the pivotal cardiovascular outcome tri-
als studying SGLT2is versus placebo, in which the baseline 
use of GLP-1 RAs was minimal. While the proposed mecha-
nisms associated with the reduction in cardiovascular events 
with SGLT2is and GLP-1 RAs are complementary, further 
prospective trials will be required to determine whether or 
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not the addition of an SGLT2i to a GLP-1 RA is additive or 
synergistic.

Evidence supports significant reduction in cardiovascular 
and kidney outcomes with both SGLT2is and GLP-1 RAs as 
well as potential benefit from their combination. Although 
evidence from preclinical studies suggests that SGLT2is 
reduce infarct size [18], the reduction in incidence of non-
fatal and fatal MI in patients with type 2 diabetes on this 
treatment is modest, approximately 11% [3]. Rather than a 
direct effect on platelet activation, thrombus formation, or 
atherosclerotic plaque stability, this benefit is postulated to 
result from a reduction in preload with a resultant reduction 
in myocardial wall tension, myocardial oxygen demands, 
and a consequential reduction in myocardial ischemia [8]. 
Overall, SGLT2is have not been found to reduce the inci-
dence of nonfatal and fatal stroke [3]. In contrast, GLP-1 
RAs demonstrably reduce the incidence of nonfatal and fatal 
stroke [4], an effect credited to a reduction in thrombosis 
and an increase in atherosclerotic plaque stability [19, 20].

Therefore, although these medications provide substantial 
cardiovascular benefits, their protective effect against MI 
and stroke is modest given the impact of type 2 diabetes as 
a risk factor for MI as well as ischemic and hemorrhagic 
stroke. Patients with type 2 diabetes have greater mortality 
and worse stroke outcomes compared with patients without 
type 2 diabetes. MI is the primary cause of death in patients 
with type 2 diabetes. There is a > 20% risk of developing a 
first MI within the 10 years of developing type 2 diabetes. 
In patients who experienced MI, the risk of a recurrent one 
is > 40% [21]. Thus, strategies to prevent stroke and MI in 
patients with type 2 diabetes are crucial as we face the pro-
jected increase in type 2 diabetes over the next decade. The 
increased risk of stroke associated with prediabetes brings 
further urgency to stroke prevention in patients at risk of or 
with type 2 diabetes [22].

With this in mind, we point to the relative increase in 
SGLT1 vs SGLT2 inhibition with sotagliflozin resulting 
in a greater reduction in MI and stroke in SCORED [5] 
compared with the results of the meta-analysis of SGLT2is 
which failed to show a reduction in stroke [3] and a similar 
reduction as the GLP-1 RAs [4] but with a greater reduc-
tion in HHF. In SCORED [5], sotagliflozin reduced total 
fatal and nonfatal MI by 32% (HR 0.68, 95% CI 0.52–0.89, 
p = 0.004), total fatal and nonfatal stroke by 34% (HR 0.66, 
95% CI 0.48–0.91, p = 0.012), and HHF and urgent visits for 
HF by 33% (HR 0.67; 95% CI 0.55–0.82, p ≤ 0.001).

The mechanisms associated with the development of MI 
and stroke in patients with type 2 diabetes include insulin 
resistance, increased formation of advanced glycation end 
products (AGEs), activation of protein kinase C isoforms, 
over activity of the hexose amine pathway, vascular cal-
cification, an increase in reactive oxygen species (ROS), 
decreased nitric oxide availability, endothelial dysfunction, 

inflammatory cytokine activation, increased vascular stiff-
ness, platelet activation, an increased risk of thrombosis, 
and an increase in plasma and blood viscosity as well as 
autonomic dysfunction [23, 24]. Chronic kidney disease 
(CKD) has been recognized as an important risk factor for 
stroke. However, recent studies suggest that the relationship 
between CKD and stroke is confounded by its connection to 
longstanding hypertension [25].

The mechanisms accounting for the reduction in MI and 
stroke with sotagliflozin in the SCORED [5] and SOLOIST 
trials [6] remain undetermined. SGLT1 is expressed not only 
in the brush border of the small intestine and proximal renal 
tubule but also in salivary glands, liver, pancreatic alpha 
cells, lungs, heart, skeletal muscle, brain, cervix of the 
uterus, stomach, mesenteric adipose tissue, and in capillaries 
of the heart and skeletal muscle [26]. A Mendelian randomi-
zation study examining the missense variants in SLC5A1, 
which is associated with a decrease in SGLT1 function, has 
shown decreased incidence of type 2 diabetes, obesity, heart 
failure, and death. Visceral obesity is a risk factor for MI 
and stroke, and it may cause an increase in inflammatory 
cytokines, leptin, endothelial dysfunction, and thrombosis 
[27]. SGLT1 levels are increased in patients with type 2 
diabetes [28]. Selective SGLT1 inhibition in the early intes-
tine results in increased glucose delivery to the distal intes-
tine and colon [29–32], where it reduces colonic pH and is 
metabolized by the gut microbiome, resulting in an increase 
in short chain fatty acids (SCFA) [33]. A reduction in intesti-
nal glucose absorption and its increased delivery to the distal 
intestines as a result of SGLT1 inhibition is also linked to 
a sustained increase in GLP-1 [31]. An increase in native 
GLP-1 can suppress thrombus growth at both venous and 
arterial shear rates [19] as well as increase atherosclerotic 
plaque stability [20]. In view of the reduction in incidence 
of MI and stroke in SCORED and SOLOIST [5, 6]—greater 
than that seen with the SGLT2is [3] and many GLP-1 RAs 
[4, 34]—it is likely that mechanisms other than reduction in 
blood pressure, visceral obesity, myocardial oxygen demand, 
and increase in GLP-1 explain this reduction. Other aspects 
of SGLT1 inhibition may also play an important role.

The development of MI and stroke could be affected by 
alterations in the intestinal microbiome as a result of SGLT1 
inhibition and an increase in delivery of glucose to the distal 
intestines. Alterations in the gut microbiome associated with 
obesity and type 2 diabetes trigger inflammation, intestinal 
permeability, and insulin sensitivity [35]. Aging can cause 
a decrease in SCFAs in the intestinal microbiome, which is 
linked to an increase in inflammatory cytokines and weak-
ening of immune defenses [36]. An increase in bacterial 
lipopolysaccharides (LPS) is associated with an increase 
in coagulation. LPS binds to toll-like receptors to activate 
endothelial cells and platelets, leading to activation of the 
coagulation cascade [37]. The microbiome also produces 
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trimethylamine-N-oxide (TMAO), which causes an increase 
in platelet activation, thrombosis, and cardiovascular risk 
[38]. TMAO levels are increased at admission in patients 
with ischemic stroke and then decrease after 48 h [39]. An 
increase in TMAO levels is also associated with an increase 
in 5-year all-cause mortality in patients with stable coronary 
artery disease [40].

Alterations in the intestinal microbiome as a result of 
SGLT1 inhibition are of potential importance and deserve 
further exploration. However, the expression of SGLT1 in 
the brain and heart [26] is likely connected to the effect that 
SGLT1 inhibition with sotagliflozin has on stroke and MI.

Cerebral ischemia increases the permeability of the 
blood–brain barrier (BBB), which increases cerebral edema 
[41]. SGLT1 expression is increased in cultured endothelial 
cells from small vessels in the bovine brain under hypoxic 
conditions [42]. Administration of intracerebral ventricular 
phlorizin [43, 44] as well as intracerebral ventricular admin-
istration of antisense SGLT1mRNA [45] reduced infarct size 
and cognitive deficits after medial cerebral artery occlusion 
(MCAO).

Cardiac overexpression of SGLT1 increases myocyte size, 
collagen 1 gene expression, and interstitial fibrosis in mouse 
hearts subjected to ischemia, independent of glucose [46]. 
SGLT1 knockdown demonstrably protected the heart from 
ischemic-reperfusion injury in mice [47]. Importantly, pre-
treatment of mice with the selective SGLT1 inhibitor KGA-
2727 protected against cardiac remodeling and heart failure 

in mice after left anterior descending coronary artery occlu-
sion [46]. Phlorizin, a non-selective SGLT inhibitor shown 
to also block SGLT1, increases infarct size in mice [48]. 
However, phlorizin’s effect on ischemic-reperfusion injury 
has been suggested to be due to its effects on glucose trans-
porters in contrast to its effect on SGLT1 [47].

The undetermined mechanisms linking SGLT1 inhibition 
to MI and stroke necessitate further exploration. Consider-
ing the effect of SGLT1 inhibition on the intestinal micro-
biome as well as the direct effect of inhibition of SGLT1 
expression in the heart and brain, there are several ways that 
SGLT1 inhibition could favorably alter the risk of thrombo-
sis (Fig. 1).

The adverse effects of adding SGLT1 to SGLT2 inhibition 
with sotagliflozin resemble those of the SGLT2is alone. All 
these drugs increase the risk of mycotic genital infections, 
have an increased but rare incidence of diabetic ketoacido-
sis, and are associated with a transient hemodynamically 
mediated decrease but long-term benefit in eGFR [3, 5]. As 
expected from the expression of SGLT1 in the small intes-
tine, sotagliflozin is also associated with a 2.5–2.8% increase 
in diarrhea as well as a significant increase in volume deple-
tion (1.3%) and hypotension [5, 6].

Larger and longer studies are required to confirm the 
effectiveness of combined SGLT1/SGLT2 inhibition in 
reducing MI and stroke in patients with type 2 diabetes and 
elucidate the mechanisms associated with this finding. Thus 
far, the results from SCORED and SOLOIST suggest that an 
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Fig. 1   Effects of SGLT1/2 inhibition and GLP-1 receptor agonism on the incidence of myocardial infarction and stroke in patients with type 2 
diabetes mellitus. BBB, blood brain barrier; Hct, hematocrit; MI, myocardial infarction; ROS, reactive oxygen species
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increase in SGLT1 inhibition when added to SGLT2 inhi-
bition may contribute to the reduction in MI and stroke in 
patients with type 2 diabetes [5, 6]. This benefit is beyond 
what SGLT2is alone can accomplish and at least similar 
to GLP-1 RAs but with the added benefit of a reduction 
in hospitalizations and urgent visits for HF. However, the 
role of SGLT1/2 inhibition with sotagliflozin as an addition 
to GLP-1 RA in patients with and without type 2 diabetes 
at increased risk for stroke and MI remains to be studied. 
Regardless, finding that a relative increase in SGLT1/SGLT2 
inhibition reduces the risk of MI and stroke as well as hos-
pitalizations and urgent visits for heart failure provides an 
opportunity to further improve quality of life for patients and 
reduce the healthcare burden associated with type 2 diabetes 
[49].
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