Skip to main content

Advertisement

Log in

Challenges in Optimizing Lipid Management in Women

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

While there are physiologic differences in lipid metabolism in men and women, pharmacologic therapy is very effective in both with similar management strategies recommended in the current guidelines for the management of dyslipidemia. Despite similar guidelines for treatment, studies have shown that women have worse control of dyslipidemia than their male counterparts. This may stem from multiple contributing factors including underestimation of cardiovascular disease risk in women, decreased prescription and utilization of lipid-lowering therapies, decreased medication adherence, and higher risk of statin intolerance, all of which may contribute to lower attainment of lipid targets. Furthermore, heart disease is the leading cause of mortality in women, with heart disease noted an average of 7–10 years later than in men. This has historically led to the misperception that women are protected from heart disease and can be treated less aggressively. In fact, traditional risk factors for atherosclerotic cardiovascular disease often impact risk in women to a greater extent than they do in men. Unique risk factors such as pregnancy-related disorders also contribute to the level of risk and therefore warrant consideration in risk stratification. This review summarizes the efficacy of contemporary lipid-lowering therapies in women versus men and discusses the challenges that arise with lipid management in women along with potential ways to tackle these obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Li Z, McNamara JR, Fruchart JC, et al. Effects of gender and menopausal status on plasma lipoprotein subspecies and particle sizes. J Lipid Res. 1996;37:1886–96.

    Article  CAS  PubMed  Google Scholar 

  2. Swiger KJ, Martin SS, Blaha MJ, et al. Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: the very large database of lipids (VLDL-10B). J Am Heart Assoc. 2014;3:e000851.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pascot A, Lemieux I, Bergeron J, et al. HDL particle size: a marker of the gender difference in the metabolic risk profile. Atherosclerosis. 2002;160:399–406.

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer EJ, Lamon-Fava S, Cohn SD, et al. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J Lipid Res. 1994;35:779–92.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Klein K, Sugathan A, et al. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One. 2011;6:e23506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020;141:e139–596.

    Article  PubMed  Google Scholar 

  7. Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab. 2007;92:1311–8.

    Article  CAS  PubMed  Google Scholar 

  9. Matthan NR, Jalbert SM, Barrett PH, et al. Gender-specific differences in the kinetics of nonfasting TRL, IDL, and LDL apolipoprotein B-100 in men and premenopausal women. Arterioscler Thromb Vasc Biol. 2008;28:1838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryu S, Suh BS, Chang Y, et al. Menopausal stages and non-alcoholic fatty liver disease in middle-aged women. Eur J Obstet Gynecol Reprod Biol. 2015;190:65–70.

    Article  PubMed  Google Scholar 

  11. Zhu L, Brown WC, Cai Q, et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes. 2013;62:424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Liu Y, Wang L, et al. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J Lipid Res. 2013;54:345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh M, Gälman C, Rudling M, Angelin B. Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol. J Lipid Res. 2015;56:463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Palmisano BT, Zhu L, Stafford JM. Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol. 2017;1043:227–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Badeau RM, Metso J, Kovanen PT, et al. The impact of gender and serum estradiol levels on HDL-mediated reverse cholesterol transport. Eur J Clin Invest. 2013;43:317–23.

    Article  CAS  PubMed  Google Scholar 

  16. Canoy D, Boekholdt SM, Wareham N, et al. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation. 2007;116:2933–43.

    Article  PubMed  Google Scholar 

  17. Park SJ, Yang HM, Seo KW, et al. The relationship between coronary atherosclerosis and body fat distribution measured using dual energy X-ray absorptiometry. Atherosclerosis. 2016;248:190–5.

    Article  CAS  PubMed  Google Scholar 

  18. Pilote L, Raparelli V. Participation of women in clinical trials: not yet time to rest on our laurels. J Am Coll Cardiol. 2018;71:1970–2.

    Article  PubMed  Google Scholar 

  19. Scott PE, Unger EF, Jenkins MR, et al. Participation of women in clinical trials supporting FDA approval of cardiovascular drugs. J Am Coll Cardiol. 2018;71:1960–9.

    Article  PubMed  Google Scholar 

  20. Khan SU, Khan MZ, Raghu Subramanian C, et al. Participation of women and older participants in randomized clinical trials of lipid-lowering therapies: a systematic review. JAMA Netw Open. 2020;3:e205202.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khan MS, Shahid I, Siddiqi TJ, et al. Ten-year trends in enrollment of women and minorities in pivotal trials supporting recent US Food and Drug Administration approval of novel cardiometabolic drugs. J Am Heart Assoc. 2020;9:e015594.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang SC, Koutroumpakis E, Schulman-Marcus J, et al. Sex differences remain under-reported in cardiovascular publications. J Womens Health (Larchmt). 2021;30(9):1253–8.

    Article  Google Scholar 

  23. Walsh JM, Pignone M. Drug treatment of hyperlipidemia in women. JAMA. 2004;291:2243–52.

    Article  CAS  PubMed  Google Scholar 

  24. Petretta M, Costanzo P, Perrone-Filardi P, Chiariello M. Impact of gender in primary prevention of coronary heart disease with statin therapy: a meta-analysis. Int J Cardiol. 2010;138:25–31.

    Article  PubMed  Google Scholar 

  25. Nakamura H. Primary prevention of cardiovascular diseases among hypercholesterolemic Japanese with a low dose of pravastatin. Atheroscler Suppl. 2007;8:13–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16.

    Article  CAS  PubMed  Google Scholar 

  27. Mora S, Glynn RJ, Hsia J, et al. Statins for the primary prevention of cardiovascular events in women with elevated high-sensitivity C-reactive protein or dyslipidemia: results from the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) and meta-analysis of women from primary prevention trials. Circulation. 2010;121:1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ray KK, Seshasai SR, Erqou S, et al. Statins and all-cause mortality in high-risk primary prevention: a meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch Intern Med. 2010;170:1024–31.

    Article  CAS  PubMed  Google Scholar 

  29. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  30. Gulati M, Merz CN. Advances in lipid therapy: the role of lipid treatment in women in primary prevention. Prog Cardiovasc Dis. 2016;59:178–89.

    Article  PubMed  Google Scholar 

  31. Kostis WJ, Cheng JQ, Dobrzynski JM, Cabrera J, Kostis JB. Meta-analysis of statin effects in women versus men. J Am Coll Cardiol. 2012;59:572–82.

    Article  CAS  PubMed  Google Scholar 

  32. Fulcher J, O’Connell R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397–405.

    Article  PubMed  Google Scholar 

  33. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:7-22.

  34. Hague W, Forder P, Simes J, Hunt D, Tonkin A. Effect of pravastatin on cardiovascular events and mortality in 1516 women with coronary heart disease: results from the Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) study. Am Heart J. 2003;145:643–51.

    Article  CAS  PubMed  Google Scholar 

  35. Puri R, Nissen SE, Shao M, et al. Sex-related differences of coronary atherosclerosis regression following maximally intensive statin therapy: insights from SATURN. JACC Cardiovasc Imaging. 2014;7:1013–22.

    Article  PubMed  Google Scholar 

  36. Wenger NK, Lewis SJ, Welty FK, Herrington DM, Bittner V. Beneficial effects of aggressive low-density lipoprotein cholesterol lowering in women with stable coronary heart disease in the Treating to New Targets (TNT) study. Heart. 2008;94:434–9.

    Article  CAS  PubMed  Google Scholar 

  37. Truong QA, Murphy SA, McCabe CH, Armani A, Cannon CP. Benefit of intensive statin therapy in women: results from PROVE IT-TIMI 22. Circ Cardiovasc Qual Outcomes. 2011;4:328–36.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gutierrez J, Ramirez G, Rundek T, Sacco RL. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med. 2012;172:909–19.

    Article  CAS  PubMed  Google Scholar 

  39. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339:1349-57.

  40. Willerson JT. Effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Circulation. 1996;94:3054.

    Article  CAS  PubMed  Google Scholar 

  41. Kato ET, Cannon CP, Blazing MA et al. Efficacy and safety of adding ezetimibe to statin therapy among women and men: insight from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). J Am Heart Assoc. 2017;6(11):e006901.

  42. Sever P, Gouni-Berthold I, Keech A et al. LDL-cholesterol lowering with evolocumab, and outcomes according to age and sex in patients in the FOURIER Trial. Eur J Prev Cardiol. 2020. Online ahead of print.

  43. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  44. Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.

    Article  PubMed  Google Scholar 

  45. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.

    Article  CAS  PubMed  Google Scholar 

  46. d’Emden MC, Jenkins AJ, Li L, et al. Favourable effects of fenofibrate on lipids and cardiovascular disease in women with type 2 diabetes: results from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia. 2014;57:2296–303.

    Article  CAS  PubMed  Google Scholar 

  47. Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  PubMed  Google Scholar 

  48. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  PubMed  Google Scholar 

  49. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  CAS  PubMed  Google Scholar 

  50. Brinton EA, Ballantyne CM, Guyton JR, et al. Lipid effects of icosapent ethyl in women with diabetes mellitus and persistent high triglycerides on statin treatment: ANCHOR trial subanalysis. J Womens Health (Larchmt). 2018;27:1170–6.

    Article  PubMed Central  Google Scholar 

  51. Peters SA, Huxley RR, Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014;57:1542–51.

    Article  PubMed  Google Scholar 

  52. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

  53. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalstad AA, Myhre PL, Laake K, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized controlled trial. Circulation. 2021;143(6):528–39.

    Article  CAS  PubMed  Google Scholar 

  55. De Smedt D, De Bacquer D, De Sutter J, et al. The gender gap in risk factor control: Effects of age and education on the control of cardiovascular risk factors in male and female coronary patients. The EUROASPIRE IV study by the European Society of Cardiology. Int J Cardiol. 2016;209:284–90.

    Article  PubMed  Google Scholar 

  56. Chopra I, Kamal KM. Factors associated with therapeutic goal attainment in patients with concomitant hypertension and dyslipidemia. Hosp Pract. 1995;2014(42):77–88.

    Google Scholar 

  57. Schoen MW, Tabak RG, Salas J, Scherrer JF, Buckhold FR. Comparison of adherence to guideline-based cholesterol treatment goals in men versus women. Am J Cardiol. 2016;117:48–53.

    Article  PubMed  Google Scholar 

  58. Victor BM, Teal V, Ahedor L, Karalis DG. Gender differences in achieving optimal lipid goals in patients with coronary artery disease. Am J Cardiol. 2014;113:1611–5.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao M, Woodward M, Vaartjes I, et al. Sex differences in cardiovascular medication prescription in primary care: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9:e014742.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nanna MG, Wang TY, Xiang Q, et al. Sex differences in the use of statins in community practice. Circ Cardiovasc Qual Outcomes. 2019;12:e005562.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Blomkalns AL, Chen AY, Hochman JS, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol. 2005;45:832–7.

    Article  PubMed  Google Scholar 

  62. Peters SAE, Colantonio LD, Zhao H, et al. Sex differences in high-intensity statin use following myocardial infarction in the United States. J Am Coll Cardiol. 2018;71:1729–37.

    Article  CAS  PubMed  Google Scholar 

  63. Smolina K, Ball L, Humphries KH, Khan N, Morgan SG. Sex disparities in post-acute myocardial infarction pharmacologic treatment initiation and adherence: problem for young women. Circ Cardiovasc Qual Outcomes. 2015;8:586–92.

    Article  PubMed  Google Scholar 

  64. Goldstein KM, Zullig LL, Bastian LA, Bosworth HB. Statin adherence: does gender matter? Curr Atheroscler Rep. 2016;18:63.

    Article  PubMed  Google Scholar 

  65. Lewey J, Shrank WH, Bowry AD, et al. Gender and racial disparities in adherence to statin therapy: a meta-analysis. Am Heart J. 2013;165:665–78 (78 e1).

    Article  PubMed  Google Scholar 

  66. Manteuffel M, Williams S, Chen W, et al. Influence of patient sex and gender on medication use, adherence, and prescribing alignment with guidelines. J Womens Health (Larchmt). 2014;23:112–9.

    Article  Google Scholar 

  67. Billimek J, Malik S, Sorkin DH, et al. Understanding disparities in lipid management among patients with type 2 diabetes: gender differences in medication nonadherence after treatment intensification. Womens Health Issues. 2015;25:6–12.

    Article  PubMed  Google Scholar 

  68. Dempe C, Junger J, Hoppe S, et al. Association of anxious and depressive symptoms with medication nonadherence in patients with stable coronary artery disease. J Psychosom Res. 2013;74:122–7.

    Article  PubMed  Google Scholar 

  69. Mosca L, Mochari-Greenberger H, Dolor RJ, Newby LK, Robb KJ. Twelve-year follow-up of American women’s awareness of cardiovascular disease risk and barriers to heart health. Circ Cardiovasc Qual Outcomes. 2010;3:120–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Abuful A, Gidron Y, Henkin Y. Physicians’ attitudes toward preventive therapy for coronary artery disease: is there a gender bias? Clin Cardiol. 2005;28:389–93.

    Article  PubMed  Google Scholar 

  71. Hemal K, Pagidipati NJ, Coles A, et al. Sex Differences in demographics, risk factors, presentation, and noninvasive testing in stable outpatients with suspected coronary artery disease: insights from the PROMISE trial. JACC Cardiovasc Imaging. 2016;9:337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karalis DG, Wild RA, Maki KC, et al. Gender differences in side effects and attitudes regarding statin use in the Understanding Statin Use in America and Gaps in Patient Education (USAGE) study. J Clin Lipidol. 2016;10:833–41.

    Article  PubMed  Google Scholar 

  73. Leifheit-Limson EC, D’Onofrio G, Daneshvar M, et al. Sex differences in cardiac risk factors, perceived risk, and health care provider discussion of risk and risk modification among young patients with acute myocardial infarction: the VIRGO study. J Am Coll Cardiol. 2015;66:1949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mosca L, Hammond G, Mochari-Greenberger H, et al. Fifteen-year trends in awareness of heart disease in women: results of a 2012 American Heart Association national survey. Circulation. 2013;127(1254–63):e1-29.

    Google Scholar 

  75. Cushman M, Shay CM, Howard VJ et al. Ten-year differences in women’s awareness related to coronary heart disease: results of the 2019 American Heart Association National Survey: A Special Report From the American Heart Association. Circulation. 2021;143(7):e239-e248.

  76. Mauri M, Calmarza P, Ibarretxe D. Dyslipemias and pregnancy, an update. Clin Investig Arterioscler. 2021;33:41–52.

    PubMed  Google Scholar 

  77. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1046–81.

    PubMed  Google Scholar 

  78. Karalis DG, Hill AN, Clifton S, Wild RA. The risks of statin use in pregnancy: a systematic review. J Clin Lipidol. 2016;10:1081–90.

    Article  PubMed  Google Scholar 

  79. Sobotka T. Post-transitional fertility: the role of childbearing postponement in fuelling the shift to low and unstable fertility levels. J Biosoc Sci. 2017;49:S20–45.

    Article  PubMed  Google Scholar 

  80. Mathews TJ, Hamilton BE. Mean age of mothers is on the rise: United States, 2000-2014. NCHS Data Brief. 2016;(232):1-8.

  81. Jochmann N, Stangl K, Garbe E, Baumann G, Stangl V. Female-specific aspects in the pharmacotherapy of chronic cardiovascular diseases. Eur Heart J. 2005;26:1585–95.

    Article  CAS  PubMed  Google Scholar 

  82. Skilving I, Eriksson M, Rane A, Ovesjo ML. Statin-induced myopathy in a usual care setting-a prospective observational study of gender differences. Eur J Clin Pharmacol. 2016;72:1171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tamargo J, Rosano G, Walther T, et al. Gender differences in the effects of cardiovascular drugs. Eur Heart J Cardiovasc Pharmacother. 2017;3:163–82.

    Article  CAS  PubMed  Google Scholar 

  84. Pasternak RC, Smith SC Jr, Bairey-Merz CN, et al. ACC/AHA/NHLBI clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;40:567–72.

    Article  PubMed  Google Scholar 

  85. Jacobson TA. Statin safety: lessons from new drug applications for marketed statins. Am J Cardiol. 2006;97:44C-51C.

    Article  CAS  PubMed  Google Scholar 

  86. Insull W Jr, Isaacsohn J, Kwiterovich P, et al. Efficacy and safety of cerivastatin 0.8 mg in patients with hypercholesterolaemia: the pivotal placebo-controlled clinical trial. Cerivastatin Study Group. J Int Med Res. 2000;28:47–68.

    Article  CAS  PubMed  Google Scholar 

  87. Culver AL, Ockene IS, Balasubramanian R, et al. Statin use and risk of diabetes mellitus in postmenopausal women in the Women’s Health Initiative. Arch Intern Med. 2012;172:144–52.

    Article  PubMed  Google Scholar 

  88. Gurgoze MT, Muller-Hansma AHG, Schreuder MM, et al. Adverse events associated with PCSK9 inhibitors: a real-world experience. Clin Pharmacol Ther. 2019;105:496–504.

    Article  PubMed  Google Scholar 

  89. Laufs U, Banach M, Mancini GBJ, et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc. 2019;8:e011662.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Banach M, Duell PB, Gotto AM Jr, et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol. 2020;5(10):1124–35.

    Article  PubMed  Google Scholar 

  91. Mehta LS, Watson KE, Barac A, et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137:e30–66.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Desai P, Chlebowski R, Cauley JA, et al. Prospective analysis of association between statin use and breast cancer risk in the women’s health initiative. Cancer Epidemiol Biomarkers Prev. 2013;22:1868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang J, Li C, Shen Y, et al. Impact of statin use on cancer-specific mortality and recurrence: a meta-analysis of 60 observational studies. Medicine (Baltimore). 2020;99:e19596.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bragg F, Holmes MV, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA. 2017;317:280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Emerging Risk Factors C, Sarwar N, Gao P et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215-22.

  96. Juutilainen A, Kortelainen S, Lehto S, et al. Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care. 2004;27:2898–904.

    Article  PubMed  Google Scholar 

  97. Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Prospective Studies C, Asia Pacific Cohort Studies C. Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018;6:538-46.

  99. Breuker C, Clement F, Mura T, et al. Non-achievement of LDL-cholesterol targets in patients with diabetes at very-high cardiovascular risk receiving statin treatment: Incidence and risk factors. Int J Cardiol. 2018;268:195–9.

    Article  PubMed  Google Scholar 

  100. Clemens KK, Woodward M, Neal B, Zinman B. Sex disparities in cardiovascular outcome trials of populations with diabetes: a systematic review and meta-analysis. Diabetes Care. 2020;43:1157–63.

    Article  PubMed  Google Scholar 

  101. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk. 1996;3:213–9.

    Article  CAS  PubMed  Google Scholar 

  102. Bass KM, Newschaffer CJ, Klag MJ, Bush TL. Plasma lipoprotein levels as predictors of cardiovascular death in women. Arch Intern Med. 1993;153:2209–16.

    Article  CAS  PubMed  Google Scholar 

  103. Bittner V, Johnson BD, Zineh I, et al. The triglyceride/high-density lipoprotein cholesterol ratio predicts all-cause mortality in women with suspected myocardial ischemia: a report from the Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J. 2009;157:548–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Norris CM, Yip CYY, Nerenberg KA, et al. Introducing the Canadian Women’s Heart Health Alliance ATLAS on the Epidemiology, Diagnosis, and Management of Cardiovascular Diseases in Women. CJC Open. 2020;2:145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378:1297–305.

    Article  PubMed  Google Scholar 

  106. Manfrini O, Yoon J, van der Schaar M, et al. Sex differences in modifiable risk factors and severity of coronary artery disease. J Am Heart Assoc. 2020;9: e017235.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wilson PW, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.

    Article  PubMed  Google Scholar 

  108. Hermes W, Ket JC, van Pampus MG, et al. Biochemical cardiovascular risk factors after hypertensive pregnancy disorders: a systematic review and meta-analysis. Obstet Gynecol Surv. 2012;67:793–809.

    Article  PubMed  Google Scholar 

  109. McKenzie-Sampson S, Paradis G, Healy-Profitos J, St-Pierre F, Auger N. Gestational diabetes and risk of cardiovascular disease up to 25 years after pregnancy: a retrospective cohort study. Acta Diabetol. 2018;55:315–22.

    Article  PubMed  Google Scholar 

  110. Minissian MB, Kilpatrick S, Eastwood JA, et al. Association of spontaneous preterm delivery and future maternal cardiovascular disease. Circulation. 2018;137:865–71.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Okoth K, Chandan JS, Marshall T, et al. Association between the reproductive health of young women and cardiovascular disease in later life: umbrella review. BMJ. 2020;371:m3502.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Young L, Cho L. Unique cardiovascular risk factors in women. Heart. 2019;105:1656–60.

    Article  CAS  PubMed  Google Scholar 

  113. Zhu D, Chung HF, Dobson AJ, et al. Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health. 2019;4:e553–64.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Muka T, Oliver-Williams C, Kunutsor S, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 2016;1:767–76.

    Article  PubMed  Google Scholar 

  115. Roeters van Lennep JE, Heida KY, Bots ML, Hoek A, Collaborators of the Dutch Multidisciplinary Guideline Development Group on Cardiovascular Risk Management after Reproductive D. Cardiovascular disease risk in women with premature ovarian insufficiency: a systematic review and meta-analysis. Eur J Prev Cardiol. 2016;23:178-86.

  116. Lee JJ, Cook-Wiens G, Johnson BD, et al. Age at menarche and risk of cardiovascular disease outcomes: findings from the National Heart Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation. J Am Heart Assoc. 2019;8:e012406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao L, Zhu Z, Lou H, et al. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): a meta-analysis. Oncotarget. 2016;7:33715–21.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ramezani Tehrani F, Amiri M, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Cardiovascular events among reproductive and menopausal age women with polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2020;36:12–23.

    Article  PubMed  Google Scholar 

  119. Wolf D, Ley K. Immunity and Inflammation in atherosclerosis. Circ Res. 2019;124:315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–75.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  122. Elder P, Sharma G, Gulati M, Michos E. Identification of female-specific risk enhancers throughout the lifespan of women to improve cardiovascular disease prevention. Am J Prev Cardiol. 2020;2:100028.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297:611–9.

    Article  CAS  PubMed  Google Scholar 

  124. McSweeney JC, Rosenfeld AG, Abel WM, et al. Preventing and Experiencing ischemic heart disease as a woman: state of the science: a scientific statement from the American Heart Association. Circulation. 2016;133:1302–31.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Michos ED, Nasir K, Braunstein JB, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184:201–6.

    Article  CAS  PubMed  Google Scholar 

  126. Ford ES, Giles WH, Mokdad AH. The distribution of 10-Year risk for coronary heart disease among US adults: findings from the National Health and Nutrition Examination Survey III. J Am Coll Cardiol. 2004;43:1791–6.

    Article  PubMed  Google Scholar 

  127. Cook NR, Paynter NP, Eaton CB, et al. Comparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women’s Health Initiative. Circulation. 2012;125(1748–56):S1-11.

    Google Scholar 

  128. Kavousi M, Leening MJ, Nanchen D, et al. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA. 2014;311:1416–23.

    Article  PubMed  Google Scholar 

  129. DeFilippis AP, Young R, McEvoy JW, et al. Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. Eur Heart J. 2017;38:598–608.

    CAS  PubMed  Google Scholar 

  130. Rana JS, Tabada GH, Solomon MD, et al. Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population. J Am Coll Cardiol. 2016;67:2118–30.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pylypchuk R, Wells S, Kerr A, et al. Cardiovascular disease risk prediction equations in 400 000 primary care patients in New Zealand: a derivation and validation study. Lancet. 2018;391:1897–907.

    Article  PubMed  Google Scholar 

  132. Muntner P, Colantonio LD, Cushman M, et al. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA. 2014;311:1406–15.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mora S, Wenger NK, Cook NR, et al. Evaluation of the pooled cohort risk equations for cardiovascular risk prediction in a multiethnic cohort from the women’s health initiative. JAMA Intern Med. 2018;178:1231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Pennells L, Kaptoge S, Wood A, et al. Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. Eur Heart J. 2019;40:621–31.

    Article  PubMed  Google Scholar 

  135. Stuart JJ, Tanz LJ, Cook NR, et al. Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction. J Am Coll Cardiol. 2018;72:1252–63.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Timpka S, Fraser A, Schyman T, et al. The value of pregnancy complication history for 10-year cardiovascular disease risk prediction in middle-aged women. Eur J Epidemiol. 2018;33:1003–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Markovitz AR, Stuart JJ, Horn J, et al. Does pregnancy complication history improve cardiovascular disease risk prediction? Findings from the HUNT study in Norway. Eur Heart J. 2019;40:1113–20.

    Article  PubMed  Google Scholar 

  138. Cho L, Davis M, Elgendy I, et al. Summary of updated recommendations for primary prevention of cardiovascular disease in women: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:2602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA). Arch Intern Med. 2007;167:2437–42.

    Article  PubMed  Google Scholar 

  140. Kavousi M, Desai CS, Ayers C, et al. Prevalence and prognostic implications of coronary artery calcification in low-risk women: a meta-analysis. JAMA. 2016;316:2126–34.

    Article  CAS  PubMed  Google Scholar 

  141. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–646.

    PubMed  PubMed Central  Google Scholar 

  142. Piepoli MF, Abreu A, Albus C, et al. Update on cardiovascular prevention in clinical practice: a position paper of the European Association of Preventive Cardiology of the European Society of Cardiology. Eur J Prev Cardiol. 2020;27:181–205.

    Article  PubMed  Google Scholar 

  143. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

    Article  PubMed  Google Scholar 

  144. Pearson GJ, Thompson SG, Anderson T et al. 2021 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2021;S0828-282X:00165-3.

  145. Sever PS, Dahlöf B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003;361:1149–58.

    Article  CAS  PubMed  Google Scholar 

  146. Nakamura H, Arakawa K, Itakura H, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006;368:1155–63.

    Article  CAS  PubMed  Google Scholar 

  147. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335:1001–9.

    Article  CAS  PubMed  Google Scholar 

  148. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  CAS  PubMed  Google Scholar 

  149. Amarenco P, Bogousslavsky J, Callahan A 3rd, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355:549–59.

    Article  CAS  PubMed  Google Scholar 

  150. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360:1623–30.

    Article  CAS  PubMed  Google Scholar 

  151. Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003;361:2005–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radmila Lyubarova.

Ethics declarations

Competing Interests

Dr. Sidhu reports Scientific Advisory Board service Astra Zeneca in 2019 & Sanofi-Regeneron in 2019. Dr. Gianos reports Educational Grant from Astra Zeneca (diabetes initiative), site principal investigator for HERITAGE and HORISON trials from Novartis, and VESALIUS trial from Amgen; non-promotional speaker honorarium from Kaneka (lipid-lowering medications).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, K.A., Kaur, G., Gianos, E. et al. Challenges in Optimizing Lipid Management in Women. Cardiovasc Drugs Ther 36, 1197–1220 (2022). https://doi.org/10.1007/s10557-021-07273-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07273-0

Keywords

Navigation