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Nicorandil Ameliorates Doxorubicin-Induced Cardiotoxicity in Rats,
as Evaluated by 7 T Cardiovascular Magnetic Resonance Imaging
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Abstract
Purpose Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mech-
anism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the
cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and
elucidated the anti-inflammatory properties of nicorandil in rat models.
Methods Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the
DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups
underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks.
Additionally, blood samples and hearts were collected to examine inflammation and histopathology.
Results According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation
compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular
ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and
nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations.
Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response.
Interestingly, similar protective results were obtained using the KATP channel opener diazoxide.
Conclusion Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher
cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents
T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.
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Introduction

Doxorubicin is a highly effective and frequently used chemo-
therapeutic agent [1]. However, cardiotoxicity and subsequent
heart failure are fatal side effects of doxorubicin, limiting its
clinical use. Depending on the cumulative dose, the incidence
of doxorubicin-induced cardiotoxicity (DIC) is approximately
11–18% [2, 3]. However, to date, no effective treatment is
available to counteract the progressive harmful action of
doxorubicin and improve the prognosis of patients with DIC.

Nicorandil is an ATP-sensitive potassium channel (KATP)
opener [4] that has attracted keen interest because of its
cardioprotective effect and because it improves left ventricular
remodelling in rats with ischaemic heart failure [5]. Nicorandil
alleviates apoptosis in diabetic cardiomyopathy through the
PI3K/Akt pathway and combats DOX-induced nephrotoxicity
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by altering the TLR4/P38 MAPK/NF-κB signalling pathway
[6, 7]. In a study of patients undergoing percutaneous coro-
nary intervention, nicorandil suppressed the production of in-
flammatory cytokines such as interleukins (IL-1β and IL-8)
and tumour necrosis factor-alpha (TNF-α) [8]. To date, the
few studies investigating the effect of nicorandil on DIC have
shown protective effects. However, neither cardiac magnetic
resonance (CMR) studies nor inflammatory responses of
nicorandil against DIC have been reported.

The early detection and treatment of cardiotoxicity are crit-
ical to recover cardiac function and reduce the incidence of
associated adverse cardiac events [9, 10]. The current methods
to identify the early stages of DIC are limited. The current
clinical diagnostic standard is left ventricular ejection fraction
(LVEF) measurement [3, 11]. However, LVEF values are
usually within the normal range when irreversible myocardi-
um damage occurs [12, 13]. The lack of a validated early
damage marker limits the development of preventive strate-
gies and drug therapy. Both preclinical and clinical studies
have suggested the potential for CMR multiparametric analy-
sis to detect acute DIC [14–16], and CMR allows accurate
characterization of myocardial tissue [13, 17, 18]. Thus,
CMR is suitable to detect myocardial oedema and strain,
which are present at different stages of DIC [18–21].
Accordingly, this study aimed to perform early and continu-
ous monitoring of the therapeutic effects of nicorandil on DIC
in rats by CMR and identify early myocardial changes. We
also investigated inflammatory activities and pathological
correlations.

Materials and Methods

Study Design

The use of animals in this study was reviewed and approved
by the Institutional Ethics and Animal Care Committee of
West China Hospital, Sichuan University. The study design
is summarized in Fig. 1. Forty-five male Sprague-Dawley
(SD) rats (175 g±) were randomized to five groups: (1) Dox
group: 15 received four weekly doxorubicin injections (doxo-
rubicin; D8740; Solarbio, Beijing, China) (to obtain a cumu-
lative dose of 16 mg/kg, i.p.); (2) Dox + Nic group: ten rats
received nicorandil (nicorandil; M0102A; Meilun, Dalian,
China) (3 mg/kg/day, i.g.) and doxorubicin as in the Dox
group for four weeks. The dose of nicorandil used was select-
ed from a previous study [22]; (3) Dox + DZ group: ten rats
received diazoxide (10 mg/kg/day, i.g.) and doxorubicin as in
the Dox group for four weeks. The dose of diazoxide used was
selected from previous studies [23–25]; (4) Nic group: five
rats received nicorandil (3 mg/kg/day, i.g.) for four weeks;
(5) Control group: five rats served as controls. All groups were

followed until week 6, after which the rats were euthanized via
intravenous injection of pentobarbital sodium.

Cardiac Magnetic Resonance Imaging

All rats were imaged weekly using a 7.0-T small animal pre-
clinical system (BioSpec 70/30; Bruker, Ettlingen, Germany).
The magnetic resonance imaging system was equipped with a
dedicated rat cardiac coil. The preparation work before scan-
ning and specific operating procedures were performed as
previously described [26]. The CMR protocol included a car-
diac fast low-angle shot (FLASH) cine sequence to provide
high-quality 2,4-chamber long-axis and short-axis stack views
of the left ventricle (LV), a T2 mapping sequence, and late
gadolinium enhancement (LGE) sequences. The imaging pa-
rameters of the cardiac FLASH cine sequence of the LV were
as follows: flip angle (FA), 15°; field of view (FOV), 50 ×
50 mm; repetition time/echo time (TR/TE), 8/3 ms; slice gap,
1.5 mm; slice thickness, 1.5 mm; matrix size, 256 × 256; read
resolution, 0.26 × 0.26 mm/pixel; number of slices, 6–8. For
T2mapping based on the cardiac FLASH cine sequence using
the same location as the cine images, the scanning parameters
were as follows: repetition time/echo time (TR/TE), 1500/
30 ms; number of slices, 6–8; slice gap, 1.5 mm; slice thick-
ness, 1.5 mm; MTX, 192 × 192; field of view (FOV), 50 ×
50 mm. The LGE images were acquired 6–8 min after a tail
vein inject ion of 0.25 mmol/kg of dimeglumine
gadopentetate. The imaging parameters were the same as the
steady precession (FISP) technique, and the scanning param-
eters were as follows: FV, 25°; TR/TE, 8/3 ms. The scanning
parameters for the fast imaging using the steady precession
(FISP) technique were TR/TE, 5.2 ms/1.8 ms; flip angle, 25°;
slice gap, 1.5 mm; slice thickness, 1.5 mm; matrix size, 256 ×
256; read resolution, 0.26 × 0.26 mm/pixel; number of slices:
6–8.

Image Analysis

For the analysis, the image was reconstructed in 2,4-chamber
long-axis and short-axis views with a slice thickness of
1.5 mm using cardiac image analysis software (cvi 42;
Calgary, Alberta, Canada). The cardiac function parameters,
including the left ventricular myocardial mass (LVM), left
ventricular end-systolic volume (LVESV), left ventricular
end-diastolic volume (LVEDV) and LVEF, were calculated
using semiautomated endocardial and epicardial contour trac-
ing based on a short-axis cine stack. The left ventricular global
peak longitudinal strain (GLS), left ventricular global peak
radial strain (GRS) and left ventricular global peak circumfer-
ential strain (GCS) were semiautomatically tracked based on
2- and 4-chamber long-axis cine images and short-axis cine
images. The specific operation was also manually drawn on
the short axis and long axis of the cardiac cavity. T2 mapping
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values were automatically generated by drawing the endocar-
dium and epicardium border. LGE was analysed by visual
determination with no visible artefact [27].

Plasma Biochemistry

Blood samples were collected into 3-ml heparinized tubes and
then were centrifuged at 3000 rpm for 15 min to obtain plas-
ma. The plasma levels of creatine kinase isoenzyme (CK-
MB), creatine kinase (CK), lactate dehydrogenase (LDH), in-
terleukins IL-1β and IL-18, and tumour necrosis factor-alpha
(TNF-α) were detected using chemical kits (Sigma, Aldrich,
Milan, Italy) according to the manufacturer’s instructions.

Histopathology

Rats were euthanized via pentobarbital sodium injection after
CMR at 6 weeks. Each heart was extracted immediately and
fixed in a 4% paraformaldehyde solution. After fixation for
48 h, the heart was serially sectioned along the short-axis
plane. Haematoxylin and eosin (H&E) staining was used to
pathologically assess cardiac tissue.Masson’s trichrome stain-
ing was used to visualize the development of cardiac tissue
fibrosis, which was subsequently examined by a pathologist
(H.S. P.) blinded to the MR results.

TUNEL Staining

Card iac apoptos i s was de tec ted us ing te rmina l
deoxynucleotidyl transferase-mediated dUTP nick-end label-
ling (TUNEL) and counterstainedusing 4′,6-diamidino-2-
phenylindole (DAPI). The percent apoptosis was calculated
by dividing the number of TUNEL-positive cells by the total
number of cardiac cells viewed in the section.

Immunohistochemical (IHC) Staining

Paraffin-embedded cardiac tissue sections were routinely pre-
pared and then deparaffinized. Next, the sections were incu-
bated with anti-NLRP3 antibody (1:100 dilution; AdipoGen;
San Diego, USA) at 4 °C for 15 h. Subsequently, the sections
were incubated with secondary antibody at 37 °C for 30 min.
The proteins were stained with 3,30-diaminobenzidine (DAB)
for 1 min and counterstained with haematoxylin. Finally, the
stained sections were photographed under a microscope.

Statistical Analysis

The variables are expressed as means ± SD or medians as
appropriate. The normality of the data distribution was
assessed using the Shapiro–Wilk test, and the homogeneity
of variance was assessed using Levene’s test. One-way
ANOVA with the LSD post hoc test was used for multiple

Fig. 1 Study design
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groups, and two-way repeated measures ANOVA with
Bonferroni correction was used to analyse the changes in the
imaging variables across time. Differences were considered
statistically significant at p < 0.05. All the data were analysed
using SPSS Statistics version 27.0 (IBM), and graphics were
created using GraphPad Prism software 8.0 (GraphPad
Software, La Jolla, USA).

Results

Nicorandil Prevents Doxorubicin-Induced Body
Weight and Mortality Rate

The body weights of the rats in all groups increased steadily
over the 6 weeks of the experiment. However, compared with
those in the control group, the body weights of the rats in the
Dox group were reduced at each time point. Coadministration
of doxorubicin with nicorandil or diazoxide prevented the
effect of doxorubicin on body weight (Fig. 2). At 6 weeks,
in the Dox group (n = 15), 40% (7/15) of the doxorubicin-

treated animals died during the experiment. However, in the
control group (n = 5), the Dox + Nic group (n = 10), and the
Dox + DZ group (n = 10), no rats died, with a survival rate of
100% (Table 1).

Nicorandil Attenuates Doxorubicin-Induced Cardiac
Injury

The heart size was reduced in the Dox group compared with
that in the control group, but the heart size in the Dox + Nic
group was larger than that in the Dox group (Fig. 3A).
Additionally, compared with that in the control group, H&E
staining of heart sections in the Dox group revealed myocar-
dial injury with cardiomyocyte vacuolization and myofibril
loss, which were reduced in the Dox + Nic group (Fig. 3B).
The plasma levels of CK, CK-MB, and LDH, which are
markers of cardiac injury, were measured. The plasma CK,
CK-MB, and LDH levels in the Dox group were significantly
increased compared with those in the control group; by con-
trast, the levels in the Dox + Nic group were significantly
lower than those in the Dox group (Fig. 3C). LGE images
showed no visible intensive foci in the control group or Dox
+ Nic group, whereas typical inflammatory/necrotic lesions
were observed in the Dox group (Fig. 3D). These results sug-
gest that nicorandil exerts cardioprotective effects against
DIC. Interestingly, diazoxide showed the same protective ef-
fect as nicorandil against DIC.

Nicorandil Prevents Doxorubicin-Induced Cardiac
Dysfunction

Representative CMR images are shown in Fig. 4A, and week-
ly CMR examinations revealed that compared with that in the
control group, the LVEF in the Dox group remained un-
changed until week 3. Subsequently, the LVEF progressively
deteriorated until the end of the study, and the LVEF in the
first three weeks was significantly higher than that at weeks 4
to 6 (Supplemental table; Fig. 4B). The LVEF was

Fig. 2 Body weight of the rats in the control, Nic, Dox, Dox + Nic, and
Dox + DZ groups at different time points. The data are expressed as
means ± SD

Table 1 Body weight, heart
weight and survival rate of rats in
the five groups at week 6

Group Mortality
(%)

FN HW (g) Initial BW
(g)

Final BW (g) HW/BW ratio
(×10−3)

Control 0 5 1.3 ± 0.06 174.5 ± 4.07 401.5 ± 9.99 3.24
Nic 0 5 1.32 ± 0.07 174 ± 3.32 402.29 ± 10.26 3.28
Dox 47 8 1.02 ± 0.15*** 174.4 ± 3.96 303.63 ± 3.78*** 3.36
Dox+

Nic
0 10 1.06 ± 0.05*** 172.3 ± 3.54 332 ± 5.7***### 3.19

Dox+
DZ

0 10 1.07 ± 0.03*** 173.7 ± 2.18 334.67 ± 10.34***### 3.2

*** p < 0.001 compared with the control; ### p < 0.001 compared with the Dox group. FN, final number; HW,
heart weight; BW, body weight;
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significantly lower in the Dox group than in the Dox + Nic or
Dox + DZ group at weeks 4 to 6 (all p < 0.05) (Supplemental
Table; Fig. 4B). Similarly, compared with the control group,
the LVM and LVEDV in the Dox group were significantly
decreased at weeks 4, 5 and 6 (all p < 0.05) but were signif-
icantly increased in the Dox + Nic and Dox + DZ group (Fig.
4C, D). Moreover, no significant difference was found in the
LVESV among the five groups at any timepoints (Fig. 4E).

Nicorandil Reduces Myocardial Oedema Associated
with DIC

Representative T2 images are shown in Fig. 5A, and
weekly CMR examinations revealed that T2 values were
significantly elevated in doxorubicin-treated rats after
their second dose and tended to decrease after their third
dose. The T2 values in week 2 were significantly higher

Fig. 3 Effect of nicorandil on doxorubicin-induced cardiac injury. (A)
Representative gross images of the whole heart. (B) Representative im-
ages of HE staining in the left ventricles (LV) of the five groups (×400)
(n = 5–8). (C) CK, CK-MB, and LDH levels in the five groups measured

by ELISA (n = 5–8). (D) Late gadolinium enhancement (LGE) images
(red arrow, hyperintense). The data are expressed as means ± SD. ***p <
0.001 versus control. ###p < 0.001 versus Dox
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than those in the other weeks (all p < 0.001) (Fig. 5B)
(Supplemental Table), which demonstrates that myocardi-
al oedema peaked at week 2 after doxorubicin treatment.
Additionally, the increase in T2 relaxation time was

significantly lower in the Dox + Nic and Dox + DZ
groups than in the Dox group at week 2 (all p < 0.001),
while no significant difference was found at the other time
points (Fig. 5B; Supplemental Table).

Fig. 4 Nicorandil treatment improves cardiac function. (A)
Representative diastolic and systolic CMR images of the left ventricles
from five groups at week 6 (n = 5–8) (red arrow, pericardial effusion). (B)
Progression of the LVEF during the protocol (n = 5–8). (C–E)
Progression of the LVM (C), LVEDV (D) and LVESV (E) during the

protocol (n = 5–8). The data are expressed as means ± SD. LVEF, left
ventricular ejection fraction; LVM, left ventricular mass; LVEDV, left
ventricular end-diastolic volume; LVESV, left ventricular end-systolic
volume
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Nicorandil Prevents Cardiac Strain in DIC

CMR tissue tracking images are shown in Fig. 6A. CMR
examinations revealed that LV GRS, GCS and GLS were
significantly decreased in the Dox group at 6 weeks compared
with that in the control group (all p < 0.001). Nicorandil or
diazoxide treatment increased these values (all p < 0.001)
(Fig. 6B). The strain time curves in a cardiac cycle showed
that strain was reduced in the Dox groups and that this effect
was significantly suppressed in the Dox + Nic and Dox + DZ
groups (Fig. 6C).

Nicorandil Attenuates Apoptosis and Fibrosis during
DIC

Masson’s trichrome staining results showed that the degree of
myocardial fibrosis was significantly increased in the Dox
group compared with that in the control group and was clearly
reduced by nicorandil or diazoxide treatment (Fig. 7A). The

median LV collagen volume fractions (CVFs) in the Dox
group were significantly higher than those in the control
group, and treatment with either nicorandil or diazoxide
abolished this effect (Fig. 7C). The number of TUNEL-
positive apoptotic cells was significantly larger in the cardiac
tissue of the Dox group rats than in that of control group rats,
and cell apoptosis was prevented by nicorandil or diazoxide
treatment (Fig. 7B, D).

Nicorandil Attenuates the Doxorubicin-Mediated
Inflammatory Response

We next examined the effects of nicorandil on the inflamma-
tory response induced by doxorubicin in rats. IHC staining
showed that compared with that in the control group, the pro-
tein expression of NLRP3 was markedly increased in the Dox
group, but nicorandil inhibited this expression (Fig. 8A).
Additionally, ELISA showed that the plasma levels of IL-
1β, IL-18 and TNF-αwere markedly higher in the Dox group

Fig. 5 Nicorandil treatment reduces myocardial oedema. (A) Representative images of T2 mapping in the five groups at week 2 (n = 5–8) (red arrow,
hyperintense). (B) Progression of T2 mapping during the protocol (n = 5–8). The data are expressed as means ± SD
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than in the control group and that upregulation was remark-
ably attenuated by nicorandil (Fig. 8B). Furthermore, similar
results were obtained in the Dox + DZ group.

Discussion

In the present study, we demonstrated the cardioprotective
effect of nicorandil in a rat model of DIC. Serial
multiparametric CMR evaluation showed that nicorandil sig-
nificantly attenuated cardiac dysfunction, global strain reduc-
tion and markers of myocardial injury associated with DIC.
Hearts from the Dox + Nic group showed significantly less
myocardial fibrosis and cardiomyocyte apoptosis and a signif-
icantly reduced inflammatory response. Furthermore,

doxorubicin caused significant T2 prolongation after admin-
istration: at subclinical DIC stages (before overt cardiac dys-
function), the increase in the T2 relaxation time was signifi-
cantly smaller in the Dox + Nic group. These findings dem-
onstrate the beneficial effects of nicorandil in a DIC rat model
regarding CMR.

Doxorubicin, a DNA topoisomerase II inhibitor, has been
used clinically for more than 50 years and remains the first-
line therapy for many cancer types [28]. Approximately 32%
of all breast cancer patients, 60% of elderly lymphoma pa-
tients and most soft tissue sarcoma patients receive doxorubi-
cin during their oncological treatment [29]. DIC is a frequent
cardiotoxic side effect of doxorubicin. Depending on the cu-
mulative dose of doxorubicin, the incidence of severe DIC,
defined as a reduction in LVEF >10%, resulted in overt

Fig. 6 Nicorandil treatment improves cardiac strain. (A) Representative
short-axis strain and 2,4-chamber long-axis strain images. (B) GLS, GRS
and GCS at 6 weeks (n = 5–8) (C) Representative strain time curves of
the five groups at 6 weeks. GLS, global peak longitudinal strain; GRS,

global peak radial strain; GCS, global peak circumferential strain; LV, left
ventricle. The data are expressed as means ± SD. ***p < 0.001 versus
control. ##p < 0.01, ###p < 0.001 versus Dox
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systolic heart failure that can be as high as 30% [30]. Severe
DIC represents a considerable clinical challenge and a heavy
burden on individuals and society.

The current clinical approach for DIC includes the early
detection of LVEF and use of nonspecific heart failure (HF)
therapies such as beta-blocker inhibitors [11, 31]. However,
these changes reflect an advanced stage of myocardial dam-
age. Almost 90% of patients developing doxorubicin-
mediated LVEF deterioration never fully recover complete
cardiac function evenwith these therapies. Nicorandil, the first
nitrate compound and ATP-dependent potassium (K+ATP)
channel opener applied clinically as a new vasodilator treat-
ment [32, 33], has multiple cardiovascular benefits for multi-
ple heart diseases and improved cardiac function [34–36].
Nicorandil suppresses the inflammatory cytokines IL-1β,
IL-1, IL-6, IL-10, IL-18, IL-19 and TNF-α in acute coronary
syndrome patients [37]. Su et al. further clarified that
nicorandil effectively inhibits myocardial inflammation and
ame l i o r a t e s myoca r d i a l i n j u r y a f t e r co r ona r y

microembolization by inhibiting TLR4/MyD88/NF-κB sig-
nalling [38]. However, nicorandil is rarely tested in the context
of DIC. Mari et al. [39] revealed in the HL-1 cardiomyocyte
cell line derived from mouse atria that the mitochondrion was
the target organel le of nicorandi l and protected
cardiomyocytes from doxorubicin-induced reactive oxygen
species (ROS). Importantly, Ihab et al. [40] published the first
in vivo evidence of the cardioprotection afforded by
nicorandil in a rat model of DIC. Supporting the in vitro data,
their results showed that cardiomyocytes subjected to
nicorandil are protected against DIC. In a subsequent study,
Lamiaa et al. [41] found that nicorandil is associated with
improved haemodynamic perturbations, mitochondrial dys-
function and ultrastructural changes. Additionally, previous
work has indicated that doxorubicin causes direct vascular
injury, resulting in increased vascular tone and augmented
arterial stiffness, which can predict DIC [42], but nicorandil
protects vessels from severe doxorubicin toxicity by increas-
ing NO availability, which reverses most of the cardiotoxicity
caused by doxorubicin [40]. In our study, for the first time, we
verified the protective effect of nicorandil on DIC from the
perspective of cardiac function, myocardial strain and myo-
cardial oedema through CMR methods. Notably, we found
that LVEDV decreased and LVESV showed no significant
change in the doxorubicin group compared with others, sim-
ilar to a prior study [26]; however, a prior study reported a
constant LVEDV and increase in LVESV in a cohort of can-
cer patients treated with doxorubicin [43]. Additionally,

�Fig. 7 Effects of nicorandil on myocardial fibrosis and apoptosis. (A)
Representative Masson’s trichrome staining images illustrating
myocardial interstitial fibrosis at 6 weeks (×400) (n = 5–8). (B) Cell
apoptosis as determined by the TUNEL assay (n = 5): apoptotic cells
stained green; nuclei stained blue with DAPI. (C) Quantification of the
relative fibrotic area by Masson’s trichrome staining (n = 5–8). (D) The
apoptosis rate was determined by the TUNEL assay (n = 5). The data are
expressed as means ± SD. ***p < 0.001 versus control. ###p < 0.001
versus Dox

Fig. 8 Nicorandil treatment attenuates the inflammatory response. (A)
NLRP3 expression in the five groups as visualized by IHC (×400) (n =
5). (B) IL-1β, IL-18 and TNF-α levels in the five groups as measured by

ELISA (n = 5). The data are expressed as means ± SD. ***p < 0.001
versus control. ###p < 0.001 versus Dox
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another animal study reported that both LVEDV and LVESV
were significantly increased postchemotherapy [44]. The dif-
ferences in results may be attributed to the changes in body
weight, subject species, sample size, dosing factor or treat-
ment regimens.

Although accumulating evidence indicates that iron metab-
olism, calcium disorders, topoisomerase inhibition, sarcomere
disruption, mitochondrial damage, oxidative stress, and apo-
ptosis underlie the toxicity of doxorubicin [45–47], most stud-
ies support the view that inflammation plays a key role in the
pathogenesis of DIC. Doxorubicin has been shown to upreg-
ulate several inflammatory factors, such as IL-1β, IL-6, IL-8,
IL-10, IL-17 and TNF-α [8, 48]. Doxorubicin therapy also
increases NLRP3 inflammasome expression, promoting car-
diac damage. Additionally, target ing the NLRP3
inflammasome can alleviate DIC [49, 50]. Here, we discov-
ered that doxorubicin upregulates the expression of NLRP3,
IL-1β, IL-18, and TNF-α and that nicorandil treatment re-
duces the expression of these inflammatory factors.

Our study provides the first demonstration that nicorandil
protects the heart against DIC in a rat animal model based on
CMR. In our model, doxorubicin has a clear cardiocytotoxic
effect, and we can detect differences in cardiac function and
cardiac strain between animals receiving nicorandil or no
treatment. We also found differences in T2 mapping values
implicated in DIC [19]. At the end of the study protocol, we
found that nicorandil-treated animals had significantly less
fibrosis (collagen fraction), apoptosis and inflammation than
animals that received no pretreatment.

T2 mapping is an accurate technique to detect and quantify
myocardial oedema [51]. We have previously used T2 map-
ping to characterize the oedematous reaction of porcine [19,
51, 52] and human [53] myocardium to ischaemia/reperfu-
sion. T2 relaxation time prolongation correlates with an in-
creased myocardial fluid content [51]. Our analysis demon-
strates that the T2 relaxation times were increased in rats treat-
ed with doxorubicin at 2 weeks but returned to near baseline
levels at other weeks, which might be responsible for the
timing of imaging. DIC is a dynamic process and comprises
several phases, and different pathological stages may have
different imaging findings. Previous studies have reported that
myocardial oedema precedes fibrosis inDIC and is in flux [18,
54, 55], likely explaining why T2 only observed anomalies at
week 2. In our study, T2 mapping abnormalities provided the
earliest marker of subtle myocardial damage, with prolonga-
tion of T2 relaxation times occurring before LVEF abnormal-
ities were detected. These findings demonstrate that T2
relaxation-time prolongation identifies intracardiomyocyte
oedema as the earliest DIC event and that early treatment with
nicorandil significantly reduces myocardial oedema in the ear-
ly stages of DIC.

In conclusion, our study supports previous findings [40,
41] on the efficacy of nicorandil against DIC. Importantly,

our study is the first to demonstrate the protective effect of
nicorandil against DIC with serial CMR evaluations, and this
cardioprotective effect is accompanied by a reduction in in-
flammation levels. Additionally, we obtained similar results
with the KATP channel opener diazoxide. Our results further
demonstrate that T2 relaxation time increases at an early dis-
ease stage and that early administration of nicorandil is effec-
tive in reducing myocardial oedema and subsequent myocar-
dial dysfunction, indicating that nicorandil is a promising
cardio-oncological drug to prevent DIC in clinical
applications.

Study Limitations

One potential limitation of the present study is the intraperito-
neal doxorubicin administration route, in contrast to the intra-
venous route used in cancer patients. A further limitation in
this study is the use of healthy rats, which are free of the
comorbidities that are common in cancer patients who devel-
op DIC, many of whom are elderly individuals. Additionally,
this study only comprised a few animals, which may limit the
statistical power of the heart weight to body weight ratios.
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