Skip to main content

Advertisement

Log in

Cilostazol: a Review of Basic Mechanisms and Clinical Uses

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Primarily used in the treatment of intermittent claudication, cilostazol is a 2-oxyquinolone derivative that works through the inhibition of phosphodiesterase III and related increases in cyclic adenosine monophosphate (cAMP) levels. However, cilostazol has been implicated in a number of other basic pathways including the inhibition of adenosine reuptake, the inhibition of multidrug resistance protein 4, among others. It has been observed to exhibit antiplatelet, antiproliferative, vasodilatory, and ischemic-reperfusion protective properties. As such, cilostazol has been investigated for clinical use in a variety of settings including intermittent claudication, as an adjunctive for reduction of restenosis after coronary and peripheral endovascular interventions, and in the prevention of secondary stroke, although its widespread implementation for indications other than intermittent claudication has been limited by relatively modest effect sizes and lack of studies in western populations. In this review, we highlight the pleiotropic effects of cilostazol and the evidence for its clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

N/A. Review article of published studies without primary data used for original research. All published articles accessed through searching PubMed database, using institutional access.

Code Availability

N/A

References

  1. Pearce L, Ghosh J, Counsell A, Serracino-Inglott F. Cilostazol and peripheral arterial disease. Expert Opin Pharmacother. 2008;9(15):2683–90.

    Article  CAS  PubMed  Google Scholar 

  2. Noé L, Peeters K, Izzi B, Van Geet C, Freson K. Regulators of platelet cAMP levels: clinical and therapeutic implications. Curr Med Chem. 2010;17(26):2897–905.

    Article  PubMed  Google Scholar 

  3. Gerhard-Herman M, Gornik HL, Barrett C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;69(11):1465–508.

    Article  PubMed  Google Scholar 

  4. Colman RW. Platelet cyclic adenosine monophosphate phosphodiesterases: targets for regulating platelet-related thrombosis. Semin Thromb Hemost. 2004;30(4):451–60.

    Article  CAS  PubMed  Google Scholar 

  5. Elam NA, Heckman J, Crouse JR, et al. Effect of the novel antiplatelet agent cilostazol on plasma lipoproteins in patients with intermittent claudication. Arterioscler Thromb Vasc Biol. 1998;18(12):1942–7.

    Article  CAS  PubMed  Google Scholar 

  6. Chancharoenthana W, Leelahavanichkul A, Taratummarat S, Wongphom J, Tiranathanagul K, Eiam-Ong S. Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease. PLoS One. 2017;12(12):e0187872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lee S, Park S, Kim Y, Yun SC, Park DW, Lee CW, et al. A randomized, double-blind, multicenter comparison study of triple antiplatelet therapy with dual antiplatelet therapy to reduce restenosis after drug-eluting stent implantation in long coronary lesions: Results from the DECLARE-LONG II (drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with long coronary lesions) trial. J Am Coll Cardiol. 2011;57(11):1264–70.

    Article  CAS  PubMed  Google Scholar 

  8. Ipema J, Roozendaal NC, Bax WA, de Borst GJ, de Vries J, Ünlü Ç. Medical adjunctive therapy for patients with chronic limb-threatening ischemia: a systematic review. J Cardiovasc Surg. 2019;60(6):642–51.

    Google Scholar 

  9. Dawson DL, Cutler BS, Hiatt WR, Hobson RW II, Martin JD, Bortey EB, et al. A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am J Med. 2000;109(7):523–30.

    Article  CAS  PubMed  Google Scholar 

  10. Heo SH, Heo SH, Lee JS, et al. Effects of cilostazol against the progression of carotid IMT in symptomatic ischemic stroke patients. J Neurol. 2013;260(1):122–30.

    Article  CAS  PubMed  Google Scholar 

  11. Planchon SM. Abrogating the induction of type 2 diabetes mellitus secondary to statin therapy: Editorial to: “PTEN upregulation may explain the development of insulin resistance and type 2 diabetes with high dose statins” by Y. birnbaum et al. Cardiovasc Drugs Ther. 2014;28(5):393–4.

    Article  PubMed  Google Scholar 

  12. Bedenis R, Stewart M, Cleanthis M, Robless P, Mikhailidis DP, Stansby G. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014;2014(10):CD003748.

    PubMed Central  Google Scholar 

  13. Kim JS, Kwon SU, Uchiyama S. Cilostazol research in Asia: can it be applied to european and american patients? International journal of stroke. Int J Stroke. 2015;10(1):1–9.

    PubMed  Google Scholar 

  14. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors: anti-platelet therapy. Br J Clin Pharmacol. 2011;72(4):634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol. 1999;83(5):3–12.

    Article  Google Scholar 

  16. Liu Y, Cone J, Le SN, et al. Cilostazol and dipyridamole synergistically inhibit human platelet aggregation. J Cardiovasc Pharmacol. 2004;44(2):266–73.

    Article  CAS  PubMed  Google Scholar 

  17. Yun S, Sim E, Goh R, Park J, Han J. Platelet activation: the mechanisms and potential biomarkers. BioMed research international. Biomed Res Int. 2016;2016:9060143–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Paul S, Feoktistov I, Hollister AS, Robertson D, Biaggioni I. Adenosine inhibits the rise in intracellular calcium and platelet aggregation produced by thrombin: evidence that both effects are coupled to adenylate cyclase. Mol Pharmacol. 1990;37(6):870–5.

    CAS  PubMed  Google Scholar 

  19. Yan R, Yan R, Li S, Li S, Dai K, Dai K. The critical roles of cyclic AMP/cyclic AMP-dependent protein kinase in platelet physiology. Front Biol China. 2009;4(1):7–14.

    Article  Google Scholar 

  20. Sudo T, Ito H, Kimura Y. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets. 2003;14(6):381–90.

    Article  CAS  PubMed  Google Scholar 

  21. Kariyazono H, Nakamura K, Shinkawa T, Yamaguchi T, Sakata R, Yamada K. Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol. Thromb Res. 2001;101(6):445–53.

    Article  CAS  PubMed  Google Scholar 

  22. Sun B, Le SN, Lin S, et al. New mechanism of action for cilostazol: interplay between adenosine and cilostazol in inhibiting platelet activation. J Cardiovasc Pharmacol. 2002;40(4):577–85.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Shakur Y, Yoshitake M, Kambayashi J. Cilostazol (pletal®): a dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc Drug Rev. 2001;19(4):369–86.

    Article  CAS  PubMed  Google Scholar 

  24. Guarino ML, Massimi I, Alemanno L, Conti L, Angiolillo DJ, Pulcinelli FM. MRP4 over-expression has a role on both reducing nitric oxide-dependent antiplatelet effect and enhancing ADP induced platelet activation. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-020-02214-4.

  25. Cheepala SB, Pitre A, Fukuda Y, Takenaka K, Zhang Y, Wang Y, et al. The ABCC4 membrane transporter modulates platelet aggregation. Blood. 2015;126(20):2307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borgognone A, Pulcinelli FM. Reduction of cAMP and cGMP inhibitory effects in human platelets by MRP4-mediated transport. Thromb Haemost. 2012;108(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  27. Massimi I, Lotti LV, Temperilli F, Mancone M, Sardella G, Calcagno S, et al. Enhanced platelet MRP4 expression and correlation with platelet function in patients under chronic aspirin treatment. Thromb Haemost. 2016;115(6):1100–10.

    Article  Google Scholar 

  28. Angiolillo DJ, et al. Am J Cardiol. 2009;103(3):27A–34A.

    Article  CAS  PubMed  Google Scholar 

  29. Alemanno L, Massimi I, Klaus V, Guarino M, Maltese T, Frati L, et al. Impact of multidrug resistance protein-4 inhibitors on modulating platelet function and high on-aspirin treatment platelet reactivity. Thromb Haemost. 2018;118(3):490–501.

    Article  PubMed  Google Scholar 

  30. Angiolillo DJ. Antiplatelet therapy in type 2 diabetes mellitus. Current opinion in endocrinology, diabetes, and obesity. Curr Opin Endocrinol Diabetes Obes. 2007;14(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  31. Angiolillo DJ, Capranzano P, Goto S, Aslam M, Desai B, Charlton RK, et al. A randomized study assessing the impact of cilostazol on platelet function profiles in patients with diabetes mellitus and coronary artery disease on dual antiplatelet therapy: results of the OPTIMUS-2 study. Eur Heart J. 2008;29(18):2202–11.

    Article  CAS  PubMed  Google Scholar 

  32. Capranzano P, Ferreiro JL, Ueno M, Capodanno D, Dharmashankar K, Darlington A, et al. Pharmacodynamic effects of adjunctive cilostazol therapy in patients with coronary artery disease on dual antiplatelet therapy: impact of high on-treatment platelet reactivity and diabetes mellitus status. Catheter Cardiovasc Interv. 2013;81(1):42–9.

    Article  PubMed  Google Scholar 

  33. Jeong Y, Hwang J, Kim I, et al. Adding cilostazol to dual antiplatelet therapy achieves greater platelet inhibition than high maintenance dose clopidogrel in patients with acute myocardial infarction: Results of the adjunctive cilostazol versus high maintenance dose clopidogrel in patients with AMI (ACCEL-AMI) study. Circulation. Cardiovascular interventions. Circ Cardiovasc Interv. 2010;3(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  34. Tajima H, Izumi T, Miyachi S, et al. Association between CYP2C19 genotype and the additional effect of cilostazol to clopidogrel resistance in neuroendovascular therapy. Nagoya J Med Sci. 2018;80(2):207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xue Y, Wang Z, Wu H, Li X, Chen J, Lv Q. Cilostazol increases adenosine plasma concentration in patients with acute coronary syndrome. J Clin Pharm Ther. 2020;46(2):328–332. https://doi.org/10.1111/jcpt.13284.

  36. Ohnuki Y, Ohnuki Y, Kohara S, Shimizu M, Takizawa S. Dual therapy with aspirin and cilostazol may improve platelet aggregation in noncardioembolic stroke patients: a pilot study. Intern Med. 2017;56(11):1307–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Onoda K, Ohashi K, Hashimoto A, Okuda M, Shimono T, Nishikawa M, et al. Inhibition of platelet aggregation by combined therapy with aspirin and cilostazol after off-pump coronary artery bypass surgery. Ann Thorac Cardiovasc Surg. 2008;14(4):230–7.

    PubMed  Google Scholar 

  38. Adelstein RS, Conti MA, Hathaway DR, Klee CB. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978;253(23):8347–50.

    Article  CAS  PubMed  Google Scholar 

  39. Nishioka K, Nishida M, Ariyoshi M, Jian Z, Saiki S, Hirano M, et al. Cilostazol suppresses angiotensin II–Induced vasoconstriction via protein kinase A–mediated phosphorylation of the transient receptor potential canonical 6 channel. Arterioscler Thromb Vasc Biol. 2011;31(10):2278–86.

    Article  CAS  PubMed  Google Scholar 

  40. Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, et al. The cardioprotective effect of a statin and cilostazol combination: relationship to akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther. 2007;21(5):321–30.

    Article  CAS  PubMed  Google Scholar 

  41. Wu S, Liu S, Huang M. Cilostazol, an inhibitor of type 3 phosphodiesterase, stimulates large-conductance, calcium-activated potassium channels in pituitary GH3 cells and pheochromocytoma PC12 cells. Endocrinology. 2004;145(3):1175–84.

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka T, Ishikawa T, Hagiwara M, Onoda K, Itoh H, Hidaka H. Effects of cilostazol, a selective cAMP phosphodiesterase inhibitor on the contraction of vascular smooth muscle. Pharmacology. 1988;36(5):313–20.

    Article  CAS  PubMed  Google Scholar 

  43. Malliaris SD, Munabi NCO, Akelina Y, Ascherman JA. Topical cilostazol inhibits neointimal hyperplasia in a rat interposition vein graft model. Plast Reconstr Surg. 2014;134(6):895e–901e.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi S, Oida K, Fujiwara R, Maeda H, Hayashi S, Takai H, et al. Effect of cilostazol, a cyclic AMP phosphodiesterase inhibitor, on the proliferation of rat aortic smooth muscle cells in culture. J Cardiovasc Pharmacol. 1992;20(6):900–6.

    Article  CAS  PubMed  Google Scholar 

  45. Hattori Y, Suzuki K, Tomizawa A, Hirama N, Okayasu T, Hattori S, et al. Cilostazol inhibits cytokine-induced nuclear factor-κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Cardiovasc Res. 2009;81(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kim M, Park K, Lee K, et al. Cilostazol inhibits vascular smooth muscle cell growth by downregulation of the transcription factor E2F. Hypertension. 2005;45(4):552–6.

    Article  CAS  PubMed  Google Scholar 

  47. Omi H, Okayama N, Shimizu M, Fukutomi T, Nakamura A, Imaeda K, et al. Cilostazol inhibits high glucose-mediated endothelial-neutrophil adhesion by decreasing adhesion molecule expression via NO production. Microvasc Res. 2004;68(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  48. Takigawa T, Tsurushima H, Suzuki K, Tsuruta W, Nakamura K, Matsumura A. Cilostazol suppression of arterial intimal hyperplasia is associated with decreased expression of sialyl lewis X homing receptors on mononuclear cells and E-selectin in endothelial cells. J Vasc Surg. 2012;55(2):506–16.

    Article  PubMed  Google Scholar 

  49. Fujinaga K, Onoda K, Yamamoto K, Imanaka-Yoshida K, Takao M, Shimono T, et al. Locally applied cilostazol suppresses neointimal hyperplasia by inhibiting tenascin-c synthesis and smooth muscle cell proliferation in free artery grafts. J Thorac Cardiovasc Surg. 2004;128(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  50. Chen W, Chen Y, Lin K, Hsuan Ting C, Yeh Y. Cilostazol promotes vascular smooth muscles cell differentiation through the cAMP response element-binding protein-dependent pathway. Arterioscler Thromb Vasc Biol. 2011;31(9):2106–13.

    Article  CAS  PubMed  Google Scholar 

  51. Ito H, Uehara K, Matsumoto Y, et al. Cilostazol inhibits accumulation of triglyceride in aorta and platelet aggregation in cholesterol-fed rabbits. PLoS One. 2012;7(6):e39374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Motta NAV, Brito FCF. Cilostazol exerts antiplatelet and anti-inflammatory effects through AMPK activation and NF-kB inhibition on hypercholesterolemic rats. Fundam Clin Pharmacol. 2016;30(4):327–37.

    Article  PubMed  CAS  Google Scholar 

  53. Tani T, Uehara K, Sudo T, Marukawa K, Yasuda Y, Kimura Y. Cilostazol, a selective type III phosphodiesterase inhibitor, decreases triglyceride and increases HDL cholesterol levels by increasing lipoprotein lipase activity in rats. Atherosclerosis. 2000;152(2):299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Rizzo M, Corrado E, Patti AM, Rini GB, Mikhailidis DP. Cilostazol and atherogenic dyslipidemia: a clinically relevant effect? Expert Opin Pharmacother. 2011;12(4):647–55.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura N, Hamazaki T, Johkaji H, Minami S, Yamazaki K, Satoh A, et al. Effects of cilostazol on serum lipid concentrations and plasma fatty acid composition in type 2 diabetic patients with peripheral vascular disease. Clin Exp Med. 2003;2(4):180–4.

    Article  CAS  PubMed  Google Scholar 

  56. Toyota T, Oikawa S, Abe R, Sano R, Suzuki N, Hisamichi S, et al. Effect of cilostazol on lipid, uric acid and glucose metabolism in patients with impaired glucose tolerance or type 2 diabetes mellitus: a double-blind, placebo-controlled study. Clin Drug Investig. 2001;21(5):325–35.

    Article  CAS  Google Scholar 

  57. Bai Y, Muqier, Murakami H, et al. Cilostazol protects the heart against ischaemia reperfusion injury in a rabbit model of myocardial infarction: focus on adenosine, nitric oxide and mitochondrial ATP-sensitive potassium channels. Clin Exp Pharmacol Physiol. 2011;38(10):658–65.

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother. 2017;94:995–1001.

    Article  CAS  PubMed  Google Scholar 

  59. Gendy AM, Amin MM, Al-Mokaddem A, Abd Ellah MF. Cilostazol mitigates mesenteric ischemia/reperfusion-induced lung lesion: contribution of PPAR-γ, NF-κB, and STAT3 crosstalk. Life Sci. 2021;266:118882.

    Article  CAS  PubMed  Google Scholar 

  60. Fujii T, Obara H, Matsubara K, Fujimura N, Yagi H, Hibi T, et al. Oral administration of cilostazol improves survival rate after rat liver ischemia/reperfusion injury. J Surg Res. 2017;213:207–14.

    Article  CAS  PubMed  Google Scholar 

  61. Birnbaum GD, Birnbaum I, Ye Y, Birnbaum Y. Statin-induced cardioprotection against ischemia-reperfusion injury: Potential drug-drug interactions. lesson to be learnt by translating results from animal models to the clinical settings. Cardiovasc Drugs Ther. 2015;29(5):461–7.

    Article  CAS  PubMed  Google Scholar 

  62. Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, et al. The central role of adenosine in statin-induced ERK1/2, akt, and eNOS phosphorylation. Am J Physiol Heart Circ Physiol. 2007;293(3):1918–28.

    Article  CAS  Google Scholar 

  63. Honda F, Imai H, Ishikawa M, Kubota C, Shimizu T, Fukunaga M, et al. Cilostazol attenuates gray and white matter damage in a rodent model of focal cerebral ischemia. Stroke. 2006;37(1):223–8.

    Article  CAS  PubMed  Google Scholar 

  64. Senbokuya N, Kinouchi H, Kanemaru K, Ohashi Y, Fukamachi A, Yagi S, et al. Effects of cilostazol on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a multicenter prospective, randomized, open-label blinded end point trial: Clinical article. J Neurosurg. 2013;118(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  65. Takagi T, Hara H. Protective effects of cilostazol against hemorrhagic stroke: current and future perspectives. Journal of pharmacological sciences. J Pharmacol Sci. 2016;131(3):155–61.

    Article  CAS  PubMed  Google Scholar 

  66. Lee JH, Park SY, Shin HK, Kim CD, Lee WS, Hong KW. Protective effects of cilostazol against transient focal cerebral ischemia and chronic cerebral hypoperfusion injury. CNS neuroscience & therapeutics. CNS Neurosci Ther. 2008;14(2):143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim J, Woo J, Shin Y. Cilostazol protects endothelial cells against lipopolysaccharide-induced apoptosis through ERK1/2- and P38 MAPK-dependent pathways. Korean J Intern Med. 2009;24(2):113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watanabe T, Zhang N, Liu M, Tanaka R, Mizuno Y, Urabe T. Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke. 2006;37(6):1539–45.

    Article  CAS  PubMed  Google Scholar 

  69. Takagi T, Imai T, Mishiro K, Ishisaka M, Tsujimoto M, Ito H, et al. Cilostazol ameliorates collagenase-induced cerebral hemorrhage by protecting the blood–brain barrier. J Cereb Blood Flow Metab. 2016;37(1):123–39.

    Article  Google Scholar 

  70. Torii H, Kubota H, Ishihara H, Suzuki M. Cilostazol inhibits the redistribution of the actin cytoskeleton and junctional proteins on the blood–brain barrier under hypoxia/reoxygenation. Pharmacol Res. 2007;55(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  71. Beebe HG, Dawson DL, Cutler BS, Herd JA, Strandness DE, Bortey EB, et al. A new pharmacological treatment for intermittent claudication:: results of a randomized, multicenter trial. Arch Intern Med. 1999;159(17):2041–50.

    Article  CAS  PubMed  Google Scholar 

  72. Strandness DE, Dalman RL, Panian S, et al. Effect of cilostazol in patients with intermittent claudication: a randomized, double-blind, placebo-controlled study. Vascular and endovascular surgery. Vasc Endovasc Surg. 2002;36(2):83–91.

    Article  Google Scholar 

  73. Soga Y, Yokoi H, Kawasaki T, et al. Efficacy of cilostazol after endovascular therapy for femoropopliteal artery disease in patients with intermittent claudication. J Am Coll Cardiol. 2009;53(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  74. Iida O, Yokoi H, Soga Y. Cilostazol reduces angiographic restenosis after endovascular therapy for femoropopliteal lesions in the sufficient treatment of peripheral intervention by cilostazol study. J Vasc Surg. 2013;58(5):1423.

    Article  Google Scholar 

  75. Soga Y, Takahara M, Iida O, Yamauchi Y, Hirano K, Fukunaga M, et al. Efficacy of CilostAzol for below-the-knee artery disease after balloon AnGioplasty in patiEnts with severe limb ischemia (CABBAGE trial). Ann Vasc Surg. 2017;45:22–8.

    Article  PubMed  Google Scholar 

  76. Douglas JS, Holmes DR, Murrah N, et al. Coronary stent restenosis in patients treated with cilostazol. Circulation. 2005;112(18):2826–32.

    Article  CAS  PubMed  Google Scholar 

  77. Park KW, Kang S, Park JJ, et al. Adjunctive cilostazol versus double-dose clopidogrel after drug-eluting stent implantation: the HOST-ASSURE randomized trial (harmonizing optimal strategy for treatment of coronary artery stenosis-safety & effectiveness of drug-eluting stents & anti-platelet regimen). JACC.Cardiovascular interventions. JACC Cardiovasc Interv. 2013;6(9):932–42.

    Article  PubMed  Google Scholar 

  78. Lee CH, Lee J, Park G, et al. Comparison of 1-year outcomes of triple (Aspirin + Clopidogrel + Cilostazol) versus dual antiplatelet therapy (Aspirin + Clopidogrel + Placebo) after implantation of second-generation drug-eluting stents into one or more coronary arteries: from the DECREASE-PCI trial. Am J Cardiol. 2018;121(4):423–9.

    Article  CAS  PubMed  Google Scholar 

  79. Shinohara Y, Katayama Y, Uchiyama S, Yamaguchi T, Handa S, Matsuoka K, et al. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet neurology. Lancet Neurol. 2010;9(10):959–68.

    Article  CAS  PubMed  Google Scholar 

  80. Toyoda K, Uchiyama S, Yamaguchi T, Easton JD, Kimura K, Hoshino H, et al. Dual antiplatelet therapy using cilostazol for secondary prevention in patients with high-risk ischaemic stroke in japan: a multicentre, open-label, randomised controlled trial. Lancet neurology. Lancet Neurol. 2019;18(6):539–48.

    Article  CAS  PubMed  Google Scholar 

  81. Kim BJ, Lee E, Kwon SU, et al. Prevention of cardiovascular events in asian patients with ischaemic stroke at high risk of cerebral haemorrhage (PICASSO): a multicentre, randomised controlled trial. Lancet neurology. Lancet Neurol. 2018;17(6):509–18.

    Article  PubMed  Google Scholar 

  82. Aboyans V, Ricco JB, Bartelink MEL, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816. https://doi.org/10.1093/eurheartj/ehx095.

  83. Abola MTB, Golledge J, Miyata T, Rha SW, Yan BP, Dy TC, et al. Asia-pacific consensus statement on the management of peripheral artery disease: a report from the asian pacific society of atherosclerosis and vascular disease asia-pacific peripheral artery disease consensus statement project committee. J Atheroscler Thromb. 2020;27(8):809–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1):S1–S109.e33.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2014;45(7):2160–236.

    Article  PubMed  Google Scholar 

  86. Review of evidences and updates of the Korean clinical practice guidelines for stroke in 2013. J Korean Neurol Assoc. 2013;31(3):143-157. http://jkna.org/journal/view.php?number=6078. Accessed 2/5/2021.

  87. Ishihara H, Suzuki M. Japanese guidelines for the management of stroke 2015: overview of the chapter on subarachnoid hemorrhage. Nihon Rinsho. 2016;74(4):677–80.

    PubMed  Google Scholar 

  88. Fonseca V, Rendell M, Cariski AT, Hittel N, Zhang P. Cilostazol treatment of claudication in diabetic patients.(key global literature)(author abstract). Diabetes Care. 2003;26(10):2972.

    Google Scholar 

  89. Olin JW, White CJ, Armstrong EJ, Kadian-Dodov D, Hiatt WR. Peripheral artery disease: evolving role of exercise, medical therapy, and endovascular options. J Am Coll Cardiol. 2016;67(11):1338–57.

    Article  PubMed  Google Scholar 

  90. Iida O, Nanto S, Uematsu M, Morozumi T, Kitakaze M, Nagata S. Cilostazol reduces restenosis after endovascular therapy in patients with femoropopliteal lesions. J Vasc Surg. 2008;48(1):144–9.

    Article  PubMed  Google Scholar 

  91. Megaly M, Abraham B, Saad M, et al. Outcomes with cilostazol after endovascular therapy of peripheral artery disease. Vasc Med. 2019;24(4):1358863X1983832-323.

    Article  Google Scholar 

  92. Soga Y, Iida O, Kawasaki D, Hirano K, Yamaoka T, Suzuki K. Impact of cilostazol on angiographic restenosis after balloon angioplasty for infrapopliteal artery disease in patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2012;44(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  93. Soga Y, Hamasaki T, Edahiro R, Iida O, Inoue N, Suzuki K, et al. Sustained effectiveness of cilostazol after endovascular treatment of femoropopliteal lesions: midterm follow-up from the sufficient treatment of peripheral intervention by cilostazol (STOP-IC) study. J Endovasc Ther. 2018;25(3):306–12.

    Article  PubMed  Google Scholar 

  94. Lee S, Park S, Kim Y, et al. Drug-eluting stenting followed by cilostazol treatment reduces late restenosis in patients with diabetes mellitus the DECLARE-DIABETES trial (A randomized comparison of triple antiplatelet therapy with dual antiplatelet therapy after drug-eluting stent implantation in diabetic patients). J Am Coll Cardiol. 2008;51(12):1181–7.

    Article  CAS  PubMed  Google Scholar 

  95. Neel JD, Kruse RL, Dombrovskiy VY, Vogel TR. Cilostazol and freedom from amputation after lower extremity revascularization. J Vasc Surg. 2015;61(4):960–4.

    Article  PubMed  Google Scholar 

  96. Miura T, Miyashita Y, Soga Y, Hozawa K, Doijiri T, Ikeda U, et al. Drug-eluting versus bare-metal stent implantation with or without cilostazol in the treatment of the superficial femoral artery: the DEBATE in SFA study. Circ Cardiovasc Interv. 2018;11(8):e006564.

    Article  CAS  PubMed  Google Scholar 

  97. Zen K, Takahara M, Iida O, Soga Y, Kawasaki D, Nanto S, et al. Drug-eluting stenting for femoropopliteal lesions, followed by cilostazol treatment, reduces stent restenosis in patients with symptomatic peripheral artery disease. J Vasc Surg. 2016;65(3):720–5.

    Article  Google Scholar 

  98. Bonaca MP, Bauersachs RM, Anand SS, Debus ES, Nehler MR, Patel MR, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382(21):1994–2004.

    Article  CAS  PubMed  Google Scholar 

  99. Tsuchikane E, Fukuhara A, Kobayashi T, Kirino M, Yamasaki K, Kobayashi T, et al. Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation. 1999;100(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  100. Min P, Jung J, Ko Y, Choi D, Jang Y, Shim W. Effect of cilostazol on in-stent neointimal hyperplasia after coronary artery stenting: a quantative coronary angiography and volumetric intravascular ultrasound study. Circ J. 2007;71(11):1685–90.

    Article  CAS  PubMed  Google Scholar 

  101. Friedland SN, Eisenberg MJ, Shimony A. Meta-analysis of randomized controlled trials on effect of cilostazol on restenosis rates and outcomes after percutaneous coronary intervention. Am J Cardiol. 2012;109(10):1397–404.

    Article  CAS  PubMed  Google Scholar 

  102. Lee T, Lin Y, Liou C, Lee J, Peng T, Liu C. Comparison of long-term efficacy and safety between cilostazol and clopidogrel in chronic ischemic stroke: a nationwide cohort study. Ther Adv Chronic Dis. 2020;11:204062232093641–2040622320936418.

    Article  Google Scholar 

  103. Noma K, Higashi Y. Cilostazol for treatment of cerebral infarction. Expert Opin Pharmacother. 2018;19(15):1719–26.

    Article  CAS  PubMed  Google Scholar 

  104. Uchiyama S, Sakai N, Toi S, Ezura M, Okada Y, Takagi M, et al. Final results of cilostazol-aspirin therapy against recurrent stroke with intracranial artery stenosis (CATHARSIS). Cerebrovascular diseases extra. Cerebrovasc Dis Extra. 2015;5(1):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim BJ, Kwon SU, Park J, et al. Cilostazol versus aspirin in ischemic stroke patients with high-risk cerebral hemorrhage: Subgroup analysis of the PICASSO trial. Stroke. 2020;51(3):931–7.

    Article  PubMed  Google Scholar 

  106. McHutchison C, Blair GW, Appleton JP, et al. Cilostazol for secondary prevention of stroke and cognitive decline: systematic review and meta-analysis. Stroke (1970). 2020;51(8):2374–85.

    Article  CAS  Google Scholar 

  107. Galyfos G, Sianou A. Cilostazol for secondary prevention of stroke: should the guidelines perhaps be extended? Vasc Spec Int. 2017;33(3):89–92.

    Article  Google Scholar 

  108. Gröschel K, Riecker A, Schulz J, Ernemann U, Kastrup A. Systematic review of early recurrent stenosis after carotid angioplasty and stenting. Stroke. 2005;36(2):367–73.

    Article  PubMed  Google Scholar 

  109. Galyfos G, Geropapas G, Sigala F, Aggeli K, Sianou A, Filis K. Meta-analysis of studies evaluating the effect of cilostazol on major outcomes after carotid stenting. J Endovasc Ther. 2016;23(1):186–95.

    Article  PubMed  Google Scholar 

  110. Pletal. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/020863s021lbl.pdf. Accessed 2/5/2021.

  111. Hiatt WR, Money SR, Brass EP. Long-term safety of cilostazol in patients with peripheral artery disease: the CASTLE study (cilostazol: a study in long-term effects). J Vasc Surg. 2008;47(2):330–336.e2.

    Article  PubMed  Google Scholar 

  112. Goto S. Cilostazol: Potential mechanism of action for antithrombotic effects accompanied by a low rate of bleeding. Atheroscler Suppl. 2005;6(4):3–11.

    Article  CAS  PubMed  Google Scholar 

  113. Castellsague J, Perez-Gutthann S, Calingaert B, Bui C, Varas-Lorenzo C, Arana A, et al. Characterization of new users of cilostazol in the UK, spain, sweden, and germany: characterization of new users of cilostazol. Pharmacoepidemiol Drug Saf. 2017;26(6):615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. European medicines agency recommends restricting use of cilostazol-containing medicines. European Medicines Agency. 2013. https://www.ema.europa.eu/en/documents/press-release/european-medicines-agency-recommends-restricting-use-cilostazol-containing-medicines_en.pdf.

  115. Sibbing D, Aradi D, Alexopoulos D, et al. Updated expert consensus statement on platelet function and genetic testing for guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention. JACC Cardiovasc Interv. 2019;12(16):1521–37.

    Article  PubMed  Google Scholar 

  116. Kaikita K, Yoshimura H, Ishii M, Kudoh T, Yamada Y, Yamamoto E, et al. Tailored adjunctive cilostazol therapy based on CYP2C19 genotyping in patients with acute myocardial infarction ― the CALDERA-GENE study. Circ J. 2018;82(6):1517–25.

    Article  CAS  PubMed  Google Scholar 

  117. Tang Y, Wang W, Yang M, et al. Randomized comparisons of double-dose clopidogrel or adjunctive cilostazol versus standard dual antiplatelet in patients with high posttreatment platelet reactivity: Results of the CREATIVE trial. Circulation. 2018;137(21):2231–45.

    Article  CAS  PubMed  Google Scholar 

  118. Strisciuglio T, Franco D, Di Gioia G, et al. Impact of genetic polymorphisms on platelet function and response to anti platelet drugs. Cardiovasc Diagn Ther. 2018;8(5):610–20.

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.Y.K. performed the primary literature review, wrote the first draft of the manuscript, made subsequent revisions, and created the cilostazol mechanism of action figure. M.K. performed the primary literature search, wrote sections of the first draft, and made subsequent revisions. M.O. performed the primary literature search, wrote sections of the first draft, and made subsequent revisions. D.A. provided expert feedback and made revisions. Y.B. was responsible for the primary conception of the review topic, provided expert feedback, made edits, and provided supervision.

Corresponding author

Correspondence to Yochai Birnbaum.

Ethics declarations

Competing Interests

D.J.A. declares that he has received consulting fees or honoraria from Abbott, Amgen, Aralez, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, Daiichi-Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, PhaseBio, PLx Pharma, Pfizer, Sanofi, and The Medicines Company and has received payments for participation in review activities from CeloNova and St. Jude Medical, outside the present work. D.J.A. also declares that his institution has received research grants from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi-Sankyo, Eisai, Eli Lilly, Gilead, Janssen, Matsutani Chemical Industry Co., Merck, Novartis, Osprey Medical, Renal Guard Solutions, and Scott R. MacKenzie Foundation. Y.B declares that he has received research grants from AstraZeneca

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherallah, R.Y., Khawaja, M., Olson, M. et al. Cilostazol: a Review of Basic Mechanisms and Clinical Uses. Cardiovasc Drugs Ther 36, 777–792 (2022). https://doi.org/10.1007/s10557-021-07187-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07187-x

Keywords

Navigation