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Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a complex aetiology and high mortality. Functional and
structural changes in the small pulmonary arteries lead to elevated pulmonary arterial pressure, resulting in right heart failure. The
pathobiology of PAH is not fully understood, and novel treatment targets in PAH are desperately needed. The renin-angiotensin
system is critical for maintaining homeostasis of the cardiovascular system. The system consists of the angiotensin converting
enzyme (ACE)-angiotensin (Ang) II-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang-(1–7)-Mas receptor axis. The
former, the ACE-Ang II-AT1R axis, is involved in vasoconstrictive and hypertensive actions along with cardiac and vascular
remodelling. The latter, the ACE2-Ang-(1–7)-Mas axis, generally mediates counterbalancing effects against those mediated by
the ACE-Ang II-AT1R axis. Based on established functions, the ACE2-Ang-(1–7)-Mas axis may represent a novel target for the
treatment of PAH. This review focuses on recent advances in pulmonary circulation science and the role of the ACE2-Ang-(1–7)-
Mas axis in PAH.
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ACE angiotensin converting enzyme
ACE2 angiotensin converting enzyme 2

Ang-(1–7) angiotensin-(1–7)
Ang II angiotensin II
AT1R angiotensin II type 1 receptor
BMPR-II bone morphogenetic protein receptor II
cGMP 3′,5′-cyclic guanosine monophosphate
ECs endothelial cells
eNOS endothelial nitric oxide synthase
ET-1 endothelin-1
EYA3 eyes absent 3
IL-6 interleukin-6
IL-8 interleukin-8
MCT monocrotaline
NMDAR N-methyl-D-aspartate receptor
NO nitric oxide
PAH pulmonary arterial hypertension
PASMCs pulmonary artery smooth muscle cells
PH pulmonary hypertension
PKG protein kinase G
RAS renin-angiotensin system
ROS reactive oxygen species
sGC soluble guanylate cyclase
SOD2 superoxide dismutase 2
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Pulmonary Arterial Hypertension (PAH)
Introduction

PAH is a chronic disorder characterized by a progressive ele-
vation in pulmonary vascular resistance, ultimately leading to
right heart failure and death. PAH is defined as a pulmonary
artery wedge pressure ≤ 15 mmHg, pulmonary vascular resis-
tance >3 Wood units and an increase in mean pulmonary
arterial pressure ≥ 20 mmHg at rest [1, 2]. PAH is classified
as group 1 pulmonary hypertension (PH) and has different
forms [1]. These different aetiologies share common patho-
logical features in PAH. Hallmark pathophysiologic changes
of PAH include enhanced sustained vasoconstriction, obstruc-
tive vascular remodelling, in situ thrombosis and inflamma-
tion. Pharmacological agents currently approved for the treat-
ment of PAH range from endothelin receptor antagonists, sol-
uble guanylate cyclase stimulators, nitric oxide donors and
phosphodiesterase inhibitors to prostacyclin analogues and
prostacyclin receptor agonists. Although these treatments aug-
ment pulmonary vasodilation and improve symptoms, they do
not significantly reverse vascular remodelling [3, 4]. This gap
emphasizes the need to better understand the molecular mech-
anisms involved in the pathophysiology of PAH and the ur-
gency to identify novel therapeutic strategies.

Pathophysiology of PAH

Endothelial Dysfunction and Pulmonary
Vasoconstriction

The role of sustained vasoconstriction in the pathogenesis of
PAH is well established. Endothelial dysfunctions are charac-
terized by both reduced secretion of potent vasodilators, such
as nitric oxide (NO) and prostacyclin, along with increased
production of vasoconstrictors, such as endothelin-1 (ET-1),
thromboxane and serotonin [4–7].

Vasodilatory effects of NO are mediated by soluble
guanyla te cyc lase (sGC)/3 ′ ,5 ′ -cyc l ic guanos ine
monophosphate (cGMP) [8]. Research in patients [9] and an-
imal experiments [10] have confirmed that NO deficiency is
involved in the pathogenesis of PAH. Endothelial RhoA/Rho
kinase signalling is responsible for the inhibition of both en-
dothelial NO synthase (eNOS) expression and its activity in
cultured endothelial cells (ECs) [11].

Prostacyclin stimulates the formation of cyclic adenosine
monophosphate after binding to its receptors on smooth mus-
cle cells (SMCs), leading to SMC relaxation. A deficiency of
prostacyclin and an excess of thromboxane are found in pa-
tients with PAH and are associated with abnormal vasocon-
striction [12].

ET-1 causes pulmonary artery SMC (PASMC) contraction
by activating the Gq-protein-inositol triphosphate-Ca2+

pathway after binding to two receptors, ETA and ETB, on
SMCs [4].

Pulmonary Vascular Remodelling

Pulmonary vascular remodelling is manifested by the thicken-
ing of all three layers of the blood vessel wall—the intima, the
media and the adventitia. Hypertrophy of the media and
hyperproliferation of ECs and SMCs significantly drive the
thickening of the vessels [13].

In PAH, dysfunction of ECs is manifested by increased
secretion of vasoconstrictors, reduced secretion of vasodila-
tors, increased proliferative capacity, a pro-inflammatory
landscape and a smooth muscle-like mesenchymal phenotype
transition [14]. Plexiform lesions are pathognomonic for PAH
and are characterized by dysregulated proliferation and re-
duced apoptosis of ECs, leading to vascular obliteration. In
fact, additional studies indicate that hypoxia-inducible factor-
1α and hypoxia-inducible factor-1β are highly expressed in
ECs derived from plexiform lesions during hypoxia and may
contribute to the overproduction of mitogenic factors and their
receptors, such as vascular endothelial growth factor [15, 16].
More recently, increased hypoxia-inducible factor-2α has also
been reported to contribute to severe PAH by causing
endothelial-to-mesenchymal transition [17].

Several lines of evidence suggest that increased activities
of platelet-derived growth factor, epidermal growth factor,
fibroblast growth factor and c-kit-receptor signalling path-
ways contribute to the excessive proliferation and migration
of SMCs and ECs [18–21].

In addition to the role of ECs in promoting proliferation,
ECs in PAH secrete increased levels of procoagulant factors
and antifibrinolytic mediators. Failure of the thrombus in situ
in the pulmonary circulation to dissolve over long periods is
thought to contribute to vascular remodelling and fibrosis and
eventually to increase pulmonary artery resistance [22].

Under pathological conditions, PASMCs can undergo phe-
notypic changes, including proliferation, migration and secre-
tion, in response to bioactive agents [23]. Hyperplasia of
PASMCs in the media layer of the pulmonary artery also leads
to muscularization of previously non-muscularized arteries
and an increase in the degree of muscularization of already
muscularized pulmonary arteries [24]. Numerous studies have
investigated the molecular mechanisms underlying the
hyperproliferative phenotype of PASMCs. Imbalance be-
tween vasodilators and vasoconstrictors not only contributes
to increased vasoconstriction, as mentioned before but also
leads to PASMC proliferation. Prostacyclin inhibits PASMC
proliferation and decreases platelet aggregation [25]. ET-1
may contribute to the abnormal proliferation of PASMCs in
PAH by stimulating the mitogen-activated protein kinase fam-
ily signalling pathway after binding to its receptors [26].
Recently, epigenetic factors were suggested to play a role in

364 Cardiovasc Drugs Ther (2022) 36:363–370



PAH. Several studies have shown evidence to support the role
of microRNAs in the hyperproliferation of PASMCs. The
expression of microRNA-21 was increased in human
PASMCs exposed to hypoxia. Inhibition of microRNA-21
reduced hypoxia-induced cell proliferation and migration
[27]. In contrast, the expression of microRNA-204 was de-
creased in human PAH and in rats with hypoxia- and mono-
crotaline (MCT)-induced PAH. Treatment with synthetic
microRNA-204 in animals with PAH ameliorated pulmonary
haemodynamics and vascular remodelling [28]. The DNA
damage/poly(ADP-ribose) polymerase-1 signalling pathway
may further mediate the role of microRNA-204 [29]. More
recently, several studies have reported that ZIP12 [30], the
glutamate-N-methyl-D-aspartate receptor (NMDAR) axis
[31] and the Eyes Absent 3 (EYA3) tyrosine phosphatase
may underlie hyperplasia of PASMCs [32]. Despite signifi-
cant progress, the mechanisms underlying vascular remodel-
ling in PAH remain unclear.

Inflammation in PAH

A significant number of studies have highlighted the contri-
bution of inflammatory responses to the development and
progression of PAH [33]. A study reported that patients with
PAH have increased inflammatory cytokines and lipid perox-
idation with decreased antioxidant capacity [34].
Experimental PAH models show that inflammation precedes
pulmonary vascular remodelling and PAH, and furthermore,
suppression of the immune response prevents PAH develop-
ment [35]. Additional animal work has revealed that high
mobility group box 1 protein induces the release of pro-
inflammatory cytokines, the maturation of dendritic cells and
the proliferation as well as aggregation of PASMCs, all lead-
ing to the formation of PAH [36]. Previous studies have re-
vealed that germline mutations in bone morphogenetic protein
receptor II (BMPR-II) in the pulmonary endothelium contrib-
ute to enhanced vasoconstriction and vascular remodelling
[37, 38]. In fact, reductions of BMPR-II also lead to the ele-
vated secretion of pro-inflammatory cytokines, increased vas-
cular permeability and increased infiltration of leukocytes in
response to inflammatory stimuli. These data suggest that
BMPR-II may contribute to endothelial barrier function and
act as an anti-inflammatory molecule; its loss may be a key
mechanism responsible for the initiation of PAH [39].

In view of the above pathogenesis, the currently approved
specific drugs for PAH target the NO pathway, prostacyclin
pathway and endothelin pathway (Table 1) to restore
endothelial-dependent vasodilation function [28]. While there
have been many studies that have evaluated a myriad of mo-
lecular targets to restore endothelial-dependent vasodilation,
the prognosis for PAH remains poor. The field has an urgent
need to develop new therapeutic targets to reverse the progres-
sive narrowing of the pulmonary vasculature, perivascular

inflammation and pathological cardiac remodelling with the
goal of improving patient outcomes.

The Role of the ACE2-Ang-(1–7)-Mas Axis
in PAH

ACE2-Ang-(1–7)-Mas Axis

The renin-angiotensin system (RAS) plays an important role
in maintaining cardiovascular homeostasis and the balance of
water and electrolytes in mammals. Classically, renin secreted
by juxtaglomerular cells catalyses angiotensinogen to Ang I,
which is then cleaved by ACE into Ang II. It is believed that
AT1R mediates most functions of Ang II in the system.
Systemic RAS functions include regulating blood pressure,
excreting sodium and diuresis, and regulating blood volume
[40]. In addition to the endocrine RAS, all components of the
RAS have been found in tissues such as the heart, blood ves-
sels and kidneys. Local functions of RAS span regulating
local vascular-bed blood flow, controlling stimulation re-
sponses locally, and participating in cell proliferation, differ-
entiation and apoptosis [41]. More importantly, it is docu-
mented that the system consists of two antagonistic (i.e.
against each other) and coordinated axes, the ACE-Ang II-
AT1R axis and the ACE2-Ang-(1–7)-Mas axis [42, 43].

The ACE2 protein was found by cloning technology and is
a widely distributed enzyme found in the heart, lungs, kid-
neys, intestines, uterus and testis, among other tissues [44].
The ACE2 enzyme is a specific monocarboxypeptidase that
differs from ACE in substrate specificity and function. ACE2
can hydrolyze one amino acid residue to transform Ang I into
Ang-(1–9), which is further degraded to Ang-(1–7) under the
action of ACE. ACE2 can also directly hydrolyze the eighth
phenylalanine of Ang II to produce Ang-(1–7). Because
ACE2 has the ability to hydrolyze Ang II at 400 times that
of Ang I, Ang-(1–7) is considered its main by-product [45,

Table 1 Summary of specific drugs approved for pulmonary arterial
hypertension

Category Drugs

Guanylate cyclase stimulators Riociguat

Phosphodiesterase type 5 inhibitors Sildenafil
Tadalafil
Vardenafil

Prostacyclin analogues Epoprostenol
Iloprost
Treprostinil

Prostacyclin receptor agonists Selexipag

Endothelin receptor antagonists Ambrisentan
Bosentan
Macitentan
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46]. Ang-(1–7) is an active heptapeptide composed of aspartic
acid, arginine, valine, tyrosine, isoleucine, histidine and pro-
line, which is mainly distributed in blood vessels, the heart,
kidneys and ovaries, among other organs. Mas is a specific G
protein-coupled receptor encoded by theMas proto-oncogene,
and Ang-(1–7) is its endogenous ligand [47].

The ACE2-Ang-(1–7)-Mas axis has complex biological
effects. It can promote the release of prostaglandin and NO
by ECs through an Akt-dependent signalling pathway after
Mas receptor binding, resulting in vasodilation as well as an-
ti-proliferative, anti-inflammatory and anti-thrombotic effects
[46, 48–51]. Our recent study on spontaneous hypertensive
rats has also shown that Ang-(1–7)-Mas relaxes isolated pul-
monary arteries through the NO-cGMP-protein kinase G
(PKG) pathway [52]. Studies on hypertensive rats with throm-
bosis have found that decreased ACE2 activity is involved in
increased thrombus formation in hypertensive rats [53], and
treatment with Ang-(1–7) exerts an anti-thrombotic action by
inducing the release of NO and prostacyclin from ECs [54]. In
addition, it can elicit protective effects on infarcted hearts [55].
These data together suggest that the ACE2-Ang-(1–7)-Mas
axis can negatively regulate blood pressure, inhibit myocardi-
al remodelling, decrease the production of inflammatory fac-
tors and resist adverse effects of the ACE-Ang II-AT1R axis,
which are all functions that may benefit PAH. In the following
section, we will review recent research progress on the ACE2-
Ang-(1–7)-Mas axis in PAH.

Beneficial Role of the ACE2-Ang-(1–7)-Mas Axis in
PAH

The ACE2-Ang-(1–7)-Mas Axis Improves
Endothelial-Dependent Vasodilation

A number of studies have consistently reported an imbalance
of ACE-Ang II-AT1R axis and the ACE2-Ang-(1–7)-Mas ax-
is in PAH. Several clinical studies confirmed reduced levels of
ACE2 [56] or the activity of ACE2 [57] in serum in PAH.
Furthermore, enhancement of ACE2 activity decreases the
Ang II/Ang-(1–7) ratio and ameliorates abnormal pulmonary
haemodynamics by reducing reactive oxygen species (ROS)
via superoxide dismutase 2 (SOD2) and inhibiting inflamma-
tion in patients with PAH [57]. A recent clinical study report-
ed that ACE2 activity and the concentration of Ang-(1–7) are
reduced, while Ang II levels are increased in patients with
PAH [58]. Studies on animal models with PAH suggest that
reduced activity of the ACE2-Ang-(1–7)-Mas axis may be
attributed to an unstable ACE2, which is due to decreased
phosphorylation of Ser680 by AMP-activated protein kinase
[59]. Inhibition of the ACE-Ang II-AT1R axis and stimulation
of the ACE2-Ang-(1–7)-Mas axis have been shown to de-
crease pulmonary arterial pressure and to improve vascular
remodelling by increasing the production of NO [60].

A study on rat models of MCT-induced PAH found that
microvesicles derived from mesenchymal stem cells improve
haemodynamics, inflammation scores, and pulmonary vascu-
lar and cardiac remodelling by upregulating the ACE2-
Ang-(1–7)-Mas axis and downregulating the ACE-Ang-II-
AT1R axis [61]. A further study showed that ACE2 activation
ameliorates PAH by inducing phosphorylation of eNOS, lead-
ing to increased release of NO [62]. The above results support
that the ACE2-Ang-(1–7)-Mas axis exerts beneficial effects
on PAH by potentially improving endothelial function. A
schematic diagram of the proposed mechanisms of the
ACE2-Ang-(1–7)-Mas axis in ECs and PASMCs in PAH is
shown in Fig. 1.

ACE2-Ang-(1–7)-Mas Axis Inhibits Vascular and Cardiac
Remodelling

The ACE-Ang II-AT1R axis also promotes vascular and car-
diac remodelling. A previous study in a hypoxia-induced rat
model of PH found that ACE activity is significantly increased
in the right ventricle [63]. Furthermore, Ang II-induced cardi-
ac fibroblast proliferation and collagen deposition through
protein kinase Cδ, and β II-dependent inactivation of p38
may be an underlying mechanism of right ventricular fibrosis
in PAH [64]. ACE-Ang II-AT1R axis-induced vascular and
cardiac remodelling may involve multiple processes, includ-
ing stimulating cardiomyocyte hypertrophy and fibrocyte pro-
liferation, increasing the release of catecholamine from sym-
pathetic nerve endings and secretion of endothelin. Other
studies have shown that Ang II can lead to pathological re-
modelling characterized by calcium signalling dysfunction,
overexpression of primitive genes, inactivation of glycogen
synthetase kinase-3 β and aggregation of activated nuclear
transcription factors in T cells, resulting in cardiac hypertro-
phy. Ang-(1–7), in contrast, prevents Ang II-mediated patho-
logical remodelling via the NO/cGMP signalling pathway
[65].

Ang-(1–7) also inhibits platelet-derived growth factor- and
Ang II-mediated proliferation of PASMCs. Ang-(1–7) also ex-
hibits anti-angiogenic features and improves endothelial function
after stent implantation [66]. Administration of Ang-(1–7) into
wild-type mice reduces neointimal area and PASMC prolifera-
tion by reducing oxidative stress and the inflammatory response.
However, the effect was less obvious in Mas-deficient mice than
in wild-type mice [67]. In addition, recent animal work in PH
models found that activation of ACE2 improves pulmonary ar-
terial remodelling mediated by the Hippo signalling pathway-
induced apoptosis [68], while a Mas inhibitor blocks the protec-
tive effects of ACE2 on pulmonary arteries. In other animal
work, an adeno-associated virus vector containing both a Tie2
promoter and hypoxia response elements was designed to target
the Ang-(1–7) gene [called HTSFcAng(1–7)]. The expression
and release of Ang-(1–7) in HTSFcAng(1–7)-transfected ECs
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were increased under both normoxic and hypoxic conditions,
resulting in reduced hypoxia-induced proliferation of pulmonary
arterial PASMCs with increased relaxation of pulmonary artery
rings. In rats with hypoxia-induced PH, HTSFcAng(1–7) re-
lieved pulmonary haemodynamics and pulmonary arterial re-
modelling [69]. In addition, treatment of MCT-induced PH rats
with orally delivered ACE2 and Ang-(1–7) bioencapsulated
within plant cells ameliorated right ventricular and pulmonary
artery remodelling and attenuated total pulmonary resistance.

These beneficial effects of ACE2 and Ang-(1–7) in rodents in-
volved alterations in Mas receptors, AT1 receptors, IL-1β and
TGF-β1 [70] (in Fig. 1).

The pathophysiologicmechanisms of right ventricular remod-
elling and dysfunction include calcium overload [71], oxidative
stress injury and cardiomyocyte apoptosis [72, 73]. Ang-(1–7)
supplementation can slow down the development of right ven-
tricular dysfunction and improve the maximum rate of right ven-
tricular pressure rise during the isovolumic systolic period [74,

Fig. 1 A schematic diagram of the main mechanisms of the ACE2-Ang-(1–7)-Mas axis in ECs and PASMCs in PAH

Fig. 2 The general effects of the
ACE2-Ang-(1–7)-Mas axis on
vascular remodelling of the
pulmonary artery in PAH
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75]. Evidence was reported that Ang-(1–7) has protective effects
on rat neonatal cardiomyocytes with hypoxia exposure in vitro,
which is related to decreased tumour necrosis factor-α and inter-
leukin (IL)-6 gene expression as well as increases in ACE2,
bradykinin B2 receptor and IL-10 gene expression [76].
Overexpression of Ang-(1–7) can also improve cardiac function
and alleviate left ventricular remodelling after myocardial infarc-
tion [76]. Further studies indicate that the beneficial effect of
Ang-(1–7) on myocardial remodelling mediated by Ang II is
related to the upregulation of the activity of dual-specificity
phosphatase-1-mediated inhibition of the activity of mitogen-
activated protein kinases [77].

The effects of the ACE2-Ang-(1–7)-Mas axis on vascular
remodelling in PAH are shown in Fig. 2. Given that the cur-
rently approved treatments for PAH have little effect on im-
proving cardiac function, the ACE2-Ang-(1–7)-Mas axis may
hold significant promise.

The ACE2-Ang-(1–7)-Mas Axis Inhibits the Inflammatory
Response

It has been reported that MCT increases the expression of
inflammatory factors, such as IL-6 and IL-1β [78, 79].
Another study revealed that tumour necrosis factor α contrib-
utes to MCT-induced PH by suppressing pyruvate dehydro-
genase [80]. The above studies suggest that overproduction of
inflammatory factors is involved in the development of MCT-
induced PH. In contrast, Ang-(1–7) overexpression reduces
the expression of IL-1β, IL-6, tumour necrosis factor-α and
other pro-inflammatory factors involved in inflammation and
increases the production of IL-10, an anti-inflammatory factor
[75]. These data indicate that Ang-(1–7) can also improve
PAH by inhibiting the pulmonary vascular inflammatory
response.

Conclusion

PAH can be considered a chronic progressive disease with a
complex aetiology and high morbidity and mortality. The
ACE2-Ang-(1–7)-Mas axis represents a novel therapeutic
pathway in PAH. Ang-(1–7) and ACE2 overexpression have
both shown protective effects in PAH and right heart dysfunc-
tion. Therefore, further studies on the mechanisms of the
ACE2-Ang-(1–7)-Mas axis can provide new potential drug
targets in PAH.
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