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Abstract
Purpose Vascular inflammation and disturbed metabolism are observed in heart failure and type 2 diabetes mellitus. Glycolytic
enzyme hexokinase II (HKII) is upregulated by inflammation. We hypothesized that SGLT2 inhibitors Canagliflozin (Cana),
Empagliflozin (Empa) or Dapagliflozin (Dapa) reduces inflammation via HKII in endothelial cells, and that HKII-dependent
inflammation is determined by ERK1/2, NF-κB. and/or AMPK activity in lipopolysaccharide (LPS)-stimulated human coronary
artery endothelial cells (HCAECs).
Methods HCAECs were pre-incubated with 3 μM or 10 μM Cana, 1 μM, 3 μM or 10 μM Empa or 0.5 μM, 3 μM or 10 μM
Dapa (16 h) and subjected to 3 h LPS (1 μg/mL). HKII was silenced via siRNA transfection. Interleukin-6 (IL-6) release was
measured by ELISA. Protein levels of HK I and II, ERK1/2, AMPK and NF-κB were detected using infra-red western blot.
Results LPS increased IL-6 release and ERK1/2 phosphorylation; Cana prevented these pro-inflammatory responses (IL-6: pg/
ml, control 46 ± 2, LPS 280 ± 154 p < 0.01 vs. control, LPS + Cana 96 ± 40, p < 0.05 vs. LPS). Cana reduced HKII expression
(HKII/GAPDH, control 0.91 ± 0.16, Cana 0.71 ± 0.13 p < 0.05 vs. control, LPS 1.02 ± 0.25, LPS + Cana 0.82 ± 0.24 p < 0.05 vs.
LPS). Empa and Dapa were without effect on IL-6 release and HKII expression in the model used. Knockdown of HKII by 37%
resulted caused partial loss of Cana-mediated IL-6 reduction (pg/ml, control 35 ± 5, LPS 188 ± 115 p < 0.05 vs. control, LPS +
Cana 124 ± 75) and ERK1/2 activation by LPS. In LPS-stimulated HCAECs, Cana, but not Empa or Dapa, activated AMPK.
AMPK activator A769662 reduced IL-6 release.
Conclusion Cana conveys anti-inflammatory actions in LPS-treated HCAECs through 1) reductions in HKII and ERK1/2
phosphorylation and 2) AMPK activation. These data suggest a novel anti-inflammatory mechanism of Cana through HKII.
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Introduction

Chronic vascular inflammation is a common early signature in
patients with type 2 diabetes mellitus (T2DM) and is strongly
associated with an increased risk of cardiovascular disease
[1–3]. The metabolic profile of T2DM consists of hypergly-
cemia, which instigates a shift toward disturbed glucose utili-
zation leading to accumulation of glycolytic intermediates and
reactive oxygen species in endothelial cells [4]. Hexokinase
(HKII) is an early glycolytic enzyme that facilitates glucose
conversion to glucose-6-phosphate (G6P) leading to increased
metabolic flux through glycolysis. However, increased ex-
pression and activity of HKII and upregulated glycolysis are
observed in inflammatory conditions [5–8]. Blocking HKII
ameliorates inflammatory signaling in activated isolated
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human cells and in small animal models of inflammation [5, 6,
8–11]. Targeting enhanced glycolysis via HKII inhibitionmay
hence alleviate the inflammation that is involved in the vas-
cular pathology of T2DM.

The kidney-targeted sodium-glucose cotransporter 2
(SGLT2) inhibitors Canagliflozin (Cana), Empagliflozin
(Empa), and Dapagliflozin (Dapa) exhibited pronounced ben-
eficial effects on cardiovascular outcome in patients with and
without T2DM, including reductions in heart failure events,
hospital admissions, and chronic kidney disease [12–15].
Recent data suggest that direct, SGLT2 unrelated, cardiovas-
cular actions of SGLT2 inhibitors account, at least in part, for
the reported cardiovascular benefits [16–21]. Interestingly,
several of these studies suggest an anti-inflammatory mecha-
nism underlying the positive clinical outcomes of SGLT2 in-
hibitors [18, 22, 23]. Others report that glucose uptake is hin-
dered by SGLT2 inhibitors in a variety of cell types, including
endothelial cells [24–26].

At the site of the endothelium, inflammation is best char-
acterized by the release of pro-inflammatory cytokines and
enhanced expression of adhesion molecules. Both facilitate
leukocyte recruitment and translocation through the vascular
wall leading to endothelial dysfunction [27]. The presence of
leukocytes also promotes fibrosis and enables atherosclerotic
plaque formation in the coronary circulation. In cell and ani-
mal models of diabetes as well as in patients with T2DM,
elevated levels of circulating and endothelial inflammatory
markers, such as interleukin 6 (IL-6) and vascular cell adhe-
sion molecule 1, as well as markers of endothelial dysfunction
are generally observed [28–32].

Diabetes mellitus associates with changes in the gut
microbiome, increasing the leakiness of LPS through the gut
wall, thereby further inducing tissue inflammation [33]. LPS
can bind to the toll-like receptor 4 (TLR4) that is expressed on
endothelial cells. TLR4 binding simultaneously activates nuclear
factor-κB (NF-κB) and the mitogen-activated protein kinases
(MAPK), including extracellular regulated kinases 1 and 2
(ERK1/2) [34]. In macrophages, activation of TLR4 by LPS
shifts the cell metabolism to a glycolytic phenotype, with elevat-
ed glucose consumption, lactate production, and increased HKII
expression and activity [7]. Furthermore, a central regulator of
cellular metabolic pathways and an anti-inflammatory signaling
protein is the adenosine monophosphate (AMP)-activated kinase
(AMPK) [35, 36]. Previous studies have reported that SGLT2
inhibitors can activate AMPK, and that AMPK activation may
contribute to the anti-inflammatory mechanism of these drugs
[18, 19, 37]. Collectively, these findings suggest a strong asso-
ciation between cell metabolism and inflammation. Targeting
metabolic intermediates of glycolysis to attenuate inflammation
may be a key strategy to reduce early vascular abnormalities
occurring in diabetes-associated cardiovascular disorders.

An anti-inflammatory action of SGLT2 inhibitors has not
been previously linked to changes in endothelial glycolytic

enzymes, such as HKII. Therefore, in this present study, we
hypothesized that (1) SGLT2 inhibitors Cana, Empa, and
Dapa reduce LPS-stimulated inflammation in human cardiac
endothelial cells; (2) HKII is involved in the possible anti-
inflammatory effects of the SGLT2 inhibitors; and (3)
ERK1/2, NF-κB, and AMPK activity have a role in the HKII-
dependent anti-inflammatory actions of SGLT2 inhibitors.

Methods

Cell Culture and Experimental Procedure

HCAECs were purchased from Promocell (Heidelberg,
Germany) and grown in vascular basal cell medium with sup-
plements (ATCC, Manassas, VA, USA), containing 5-ng/ml
vascular endothelial growth factor, 5-ng/ml epidermal growth
factor, 5-ng/ml fibroblastic growth factor, 15-ng/ml insulin-
like growth factor 1, 10-mM L-glutamine, 0.75-U/ml heparin
sulfate, 1-μg/ml hydrocortisone, 50-μg/ml ascorbic acid, 1%
amphotericin B, 1% penicillin-streptomycin, and 10% FBS.
Cells were grown at 37 °C in a Heracell™ 150i CO2 incubator
(Thermo Fisher Scientific, Waltham, MA, USA). All experi-
ments were performed with cells from passage 5 to 8 when
they reached 80–90% confluency. At the start of each exper-
iment, cells were pre-incubated overnight (16 h) with vehicle
or different compounds, including SGLT2 inhibitors at con-
centrations 3- and 10-μM Cana, 1-, 3- and 10-μM Empa,
0.5-, 3- and 10-μM Dapa (all three from MedChem,
Sollentuna, Sweden), 1-μM TAK-242 to inhibit LPS-
induced TLR4 signaling, 50-μM PD-98059 to inhibit ERK
phosphorylation (Cambridge Bioscience, Cambridge, UK),
100-μM A7869662 to activate AMPK, or a combination of
two compounds, in serum-reduced (2% FBS) media. The next
day, HCAECs were subjected to 1-μg/mL LPS (Sigma
Aldrich, Saint Louis, MO, USA) with vehicle or intervention
for 3 h.

Transfection with Small Interfering RNA (siRNA) for
HKII

Knockdown of HKII in HCAECs was performed as previous-
ly described [38, 39]. In short, cells in 6-wells plates with
confluency between 50 and 80% were transfected with 20-
nM siRNA for HKII (Art# 4390824, ID# S6560, lot#
ASO2DUJU, Thermo Fisher Scientifics) or negative control
(AM4611, Ambion by Thermo Fischer Scientifics) for 24 h
using Lipofectamine RNAiMax (Invitrogen by Thermo
Fischer Scientifics, Waltham, MA, USA) and in antibiotic-
and antimycotic-free medium. Cells were passaged 24 h after
the start of transfection at a ratio of 1:2. Thereafter, the cells
were cultured in antibiotic- and antimycotic-free medium for
48 h before the media was collected for IL-6 levels
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determination and cells were lysed for western blotting. At
end experiment, a confluency of 80–90% was reached by
the cells.

Western Blot

Whole cell lysates were collected directly at the end of the
experiment. Briefly, cells were rinsed with ice-cold PBS and
collected in lysis buffer, made from RIPA buffer (150-mM
NaCl, 50-mM TrisHCl, 1% Nonidet P40, 0.25% sodium
deoxycholate, and 0.1% SDS), supplemented with 1-mM
phenylmethylsulfonyl fluoride, 2-mMNa3VO4, 1-mM dithio-
threitol, 1-mM sodium pyrophosphate, 50-μM sodium fluo-
ride, and a protease inhibitor mixture (17-μM leupeptin, 1-μM
aprotinin, and 12-μM pepstatin (all three from Sigma
Aldrich)). After centrifugation at 14000 g, 4 °C for 10 min,
the supernatant was collected and stored at − 80 °C until use.
Samples were sonicated on ice in repeated short cycles (5 s,
energy mode, 20 Joules, 70% amplitude, repeated for 4 times)
using the Low Power Ultrasonic Systems 2000 Lpt/LPe with
microtip (Branson, Danbury, CT, USA).

Western blotting was performed as described previous-
ly [40]. Sample protein contents, determined with the
Lowry method, were adjusted to the same concentration
for each blot. After overnight incubation with primary
antibodies against phospho-AMPK, AMPK, HKI, HKII,
phospho-ERK, ERK, and GLUT1 (1:1000, all from
CST, Danvers, MA, USA) and household protein
GAPDH (CST, 1:5000), membranes were washed with
phosphate-buffered saline (PBS) containing 0.1% tween
(Sigma) and incubated with the complementary secondary
antibody (IRdye, 1:5000, Li-Cor, Lincoln, NE, USA) for
1 h at room temperature before they were washed again.
The membranes were scanned with the Odyssey CLx op-
erator (Li-Cor) at auto-scan setting for dynamic range,
169-μm resolution and medium quality, and quantifica-
tion of the bands was performed with Image StudioTM

Software (Version 5.2, Li-Cor). For quantification of the
band signals, the signal from each band was normalized to
the signal from the largest band on the membrane accord-
ing to the manufacturer’s instructions, to reduce the
chances of technical variation. Whole membrane scans
used for the results sections are provided in the ESM
(Electronic Supplementary Materials).

Enzyme-Linked Immunosorbent Assay (ELISA)

The supernatant from each well was collected and spun at 250
g, 4 °C for 10 min. Levels of IL-6 were determined using
ELISA (R&D Systems, Minneapolis, MN, USA) according
to manufacturer’s instructions.

Hexokinase Activity

HK activity was measured photospectrometrically in cell ex-
tracts at 25 °C with glucose-6-phosphate dehydrogenase, glu-
cose, adenosine triphosphate, and nicotinamide adenine dinu-
cleotide (NAD+), in the presence of rotenone to inhibit mito-
chondrial respiration [41]. The rate of NADH formation from
NAD+ was determined over 180 s and used for the measure of
total HK activity. HK activity was corrected for total protein
concentration in each sample.

Sample Size Calculation and Statistical Analyses

Four experiments were needed to detect a physiologically rel-
evant difference of 25% between control and intervention,
given a standard deviation of 10%, a power of 80%, and an
α of 0.05. Data are presented as mean ± standard deviation
(SD). The distribution of the data was tested using the
Shapiro-Wilk test. Normal distributed data were tested by
one-way ANOVA with Bonferroni post hoc testing or by a
Student’s t test. Non-normally distributed data were tested
with Kruskal-Wallis and Mann-Whitney U test with
Bonferroni correction. In each experiment, we attempted to
avoid experimental bias by single-well use by pooling two
wells with cells. The number of experiments mentioned in
the figures refers to the number of technical replicates with
cells from two donors (PCS-100-020 from ATCC, LOT#
59885589 and C-12221 from PromoCel l , LOT#
425Z0191.1). Graphs were created in Graphpad Prism 8 and
statistical analysis was performed using IBM SPSS Statistics
25. The cut-off values for statistical significance were indicat-
ed in the figures by *, **, and *** for p < 0.05, p < 0.01, and p
< 0.001, respectively.

Results

Cana, but not Empa or Dapa, Attenuates IL-6 Release
in LPS-Induced HCAECs

Exposing HCAECs to 1-μg/mL LPS for 3 h significantly in-
creased IL-6 release. Cana (10 μM) almost completely
blocked LPS-induced IL-6 release (Fig. 1a), whereas Empa
(1μM, Fig. 1b) or Dapa (0.5μM, Fig. 1c) did not significantly
alter IL-6 levels in the cell media. In addition, HCAECs treat-
ed with 10-μM Empa or Dapa exhibited no change in LPS-
induced IL-6 release (ESM Fig. 1a–b). At a concentration of 3
μM, however, none of the SGLT2 inhibitors were able to
lower LPS-induced IL-6 release (ESM Fig. 1c–e). No changes
in IL-6 release were observed in healthy HCAECs exposed to
an SGLT2 inhibitor (Fig. 1a–c). TAK-242 was able to nullify
LPS-induced IL-6 release, confirming the involvement of
TLR4 in IL-6 production by LPS (Fig. 1d).

1085Cardiovasc Drugs Ther (2021) 35:1083–1094



Cana Reduces IL-6 Release by Lowering HKII
Expression

Increased glycolysis, and in particular elevated HKII expres-
sion, is a signature of an activated inflammatory condition
[5–11]. Incubating HCAECs for 19 h with 10-μM Cana re-
sulted in a reduced expression of HKII in non-stimulated and
LPS-stimulated HCAECs (Fig. 2a). In contrast, administration
of 1-μM Empa or 0.5-μM Dapa did not affect HKII expres-
sion in non-stimulated HCAECs (ESM Fig. 2). Furthermore,
the expression of HKI and the total HK activity were unaffect-
ed by Cana in non-stimulated HCAECs (Fig. 2b+c).

Using siRNA transfection, knockdown of HKII by 37 ±
9% was achieved (Fig. 3a), without affecting HKI expression
(Fig. 3b). Incubation with LPS caused augmented IL-6 release
in siRNA HKII-treated HCAECs; however, this time Cana
was unable to significantly reduce LPS-induced IL-6 release
(Fig. 3c), indicating the involvement of HKII in the attenuat-
ing effect of Cana on cytokine release.

Inhibition of LPS-Induced ERK Phosphorylation by
Cana Is Mediated by HKII

To further explore downstream effects of Cana on LPS-
induced IL-6 generation, we investigatedwhether Cana affect-
ed changes in the phosphorylation of ERK1/2 and NF-κB.
First, LPS caused augmented ERK1/2 phosphorylation and
Cana reduced LPS-induced ERK1/2 phosphorylation (Fig.

4a). While NF-κB phosphorylation was also increased with
LPS, Cana did not affect NF-κB phosphorylation (Fig. 4b).

To examine the possible involvement of HKII in LPS-
induced ERK1/2 phosphorylation, we investigated LPS ef-
fects on ERK1/2 in cells treated with siRNA for HKII.
Reducing HKII completely mitigated LPS activation of
ERK1/2 (Fig. 4c). As a consequence, Cana was without effect
on LPS-induced ERK1/2 phosphorylation. These data indi-
cate that decreasing HKII is upstream of ERK1/2 phosphory-
lation by Cana. Conversely, using PD-98059 to inhibit ERK1/
2 phosphorylation in HCAECs, we also observed reduced
HKII expression in HCAECs (Fig. 4d), indicating HKII re-
ductions also occur downstream of ERK1/2 phosphorylation.
These data suggest that reducing HKII expression blocks
LPS-induced ERK1/2 phosphorylation, and that reduced
ERK1/2 activity leads to lower HKII levels, irrespective of
LPS treatment. ERK 1/2 phosphorylation and HKII reduc-
tions are intrinsically intertwined.

Cana Induces AMPK Phosphorylation in Healthy and
LPS-Stimulated HCAECs

Previous studies have suggested the activation of AMPK as a
contributing factor to SGLT2 inhibitor’s anti-inflammatory
actions in various cell types [18, 19, 25], offering the possi-
bility that Cana’s reducing effect on IL-6 production can also
be mediated through AMPK activation. However, it is still
unknown whether HKII is involved in AMPK effects on in-
flammation. Therefore, we investigated whether Cana

a

c

b

d
- + - +

0

100

200

300

400

500

IL
-6

(p
g/
m
l)

***
* - LPS

+ LPS

Cana

- + - +
0

100

200

300

400

IL
-6

(p
g/
m
l)

p=0.054

p=0.09 - LPS

+ LPS

Dapa

- + - +
0

100

200

300

400

500

IL
-6

(p
g/
m
l)

- LPS

+ LPS

Empa

*
*

- + - +
0

100

200

300

IL
-6

(p
g/
m
l)

- LPS

+ LPS

TAK-242

***
*

Fig. 1 Cana, but not Empa or
Dapa, attenuates IL-6 release in
LPS-induced HCAECs. Cells
were pre-incubated for 16 h with
vehicle or an SGLT2 inhibitor
and subsequently stimulated by 1-
μg/mL LPS for 3 h with vehicle
or an SGLT2 inhibitor. IL-6 re-
lease into the cell media was de-
termined for Cana- (a, n = 4, 10
μM), Empa- (b, n = 6, 1 μM), and
Dapa- (c, n = 6, 0.5 μM) treated
HCAECs. TAK-242 (d, n = 3,
100 μM) served as a positive
control to validate the inhibition
of LPS-induced IL-6 release in
our model. Data are presented as
mean ± SD. *p < 0.05, **p <
0.01, tested by one-way ANOVA
with Bonferroni correction
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activated AMPK, if AMPK activation resulted in reduction of
IL-6 release, and if AMPK activation was dependent on HKII.
First, we show that Cana phosphorylated AMPK at Thr172 in
LPS-induced HCAECs (Fig. 5a). Second, activation of
AMPK by A769662 (ESM Fig. 3a) leads to inhibition of
LPS-induced IL-6 release (Fig. 5b). Furthermore, Cana ad-
ministration resulted in increased AMPK phosphorylation in
HKII knockdown HCAECs exposed to LPS (Fig. 5c), indi-
cating that HKII is not involved in activation of AMPK by
Cana. Empa and Dapa did not enhance AMPK phosphoryla-
tion in either non-stimulated or LPS-stimulated HCAECs
(ESM Fig. 3b and c).

Discussion

The main findings of the present study are that the SGLT2
inhibitor Canagliflozin alleviates the release of the pro-
inflammatory cytokine IL-6, lowers HKII expression, inhibits
ERK1/2 phosphorylation, and activates AMPK in LPS-

stimulated and/or non-stimulated HCAECs. The other two
SGLT2 inhibitors Empa and Dapa did not show a significant
reduction in IL-6 release, HKII expression, and AMPK activ-
ity in the model used. Reduced HKII expression seems to be
associated with Cana’s anti-inflammatory effect by mediating
LPS-induced IL-6 release and ERK1/2 phosphorylation, but
not AMPK activation. These data suggest that under
normoglycemic and inflammatory conditions, Cana exerts
an anti-inflammatory activity by lowering HKII. A graphic
summary of our findings is provided in Fig. 6.

Anti-inflammatory Actions of Cana

We observed that the SGLT2 inhibitor Cana, but not Empa or
Dapa, directly reduces the release of the pro-inflammatory
cytokine IL-6 by LPS-activated endothelial cells. Our data
correspond well with previous studies, showing that Cana
reduces IL-6 release in IL-1β-stimulated human endothelial
cells and in LPS-stimulated macrophages [18, 42]. However,
the effect of Cana on IL-6 release reduction was absent at a

HKI 102kDa

Control Cana

GAPDH 37kDa

a

c

b

- +
0.0

0.5

1.0

1.5

H
KI
/G

AP
D
H

Cana

- +
0.000

0.005

0.010

0.015

H
K
ac

tiv
ity

(m
U
/µ
g
pr
ot
ei
n)

Cana

- + - +
0.0

0.5

1.0

1.5

H
KI
I/G

AP
D
H

Cana

p=0.059** - LPS
+ LPS

102kDa

LPS LPS
+Cana

37kDa

HKII

Control Cana

GAPDH

Fig. 2 Cana reduces HKII, but
not HKI, expression. Cells were
exposed to vehicle or Cana (10
μM) for 16 h and subsequently
subjected to 3 h LPS (a, n = 12).
HKII and HKI levels (b, in non-
stimulated, n = 7) were
determined using infrared western
blot. Representative bands are
shown below each figure. Whole
membrane scans are shown in the
ESM. Total HK activity was
detected photospectrometrically
in whole cell lysate (c, n = 7–8).
Data are presented as mean ± SD.
*p < 0.05, tested by independent
sample t test
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lower concentration of 3 μM, suggesting that Cana may only
be effective in attenuating IL-6 release at the higher concen-
trations. While we observed no direct cell effect of Empa or
Dapa on LPS-induced IL-6 release, attenuated markers of en-
dothelial dysfunction, i.e., ROS and nitric oxide, have been
reported in activated endothelial cells exposed to Empa or
Dapa, but without change in the expression of adhesion mol-
ecules [22, 23]. In the present study, we cannot rule out that
Empa and Dapa do affect LPS-induced IL-6 release due to the
higher variations observed in the experiments using Empa or
Dapa. An explanation for the divergence between the effects
of Cana vs. Empa or Dapa on LPS-induced cytokine release
could be the different concentrations used. Cana was used at
10 μM, whereas Empa and Dapa were used at 1 μM and 0.5
μM, respectively, which are considered clinically relevant
concentrations. However, using Empa or Dapa at 10 μM did
also not cause reduced LPS-induced IL-6 release. Notably, the
half maximal inhibitory concentration (IC50) of Cana for
SGLT1 is estimated to be 710 nM, while Empa and Dapa have
an IC50 for SGLT1 of 8300 nM and 1400 nM, respectively
[43]. Thus in this context, SGLT1 and perhaps also other

SGLT isoforms might be inhibited by Cana with the concen-
trations used in the present study.

One hypothesis for the direct cellular effects of SGLT2
inhibitors is the off-target inhibition of the Na+/H+ ex-
changer 1 (NHE1). NHE1 activity is enhanced in endothe-
lial cells exposed to LPS [44]. Inhibition of NHE1 by a
variety of different NHE inhibitors reduced LPS-induced
apoptosis, cytokine production, and NF-κB activation [44,
45]. Cardiac NHE1 inhibition by SGLT2 inhibitors was
reported as a class effect, showing similar inhibitory po-
tentials for NHE1 by Cana, Empa, and Dapa [16].
Accordingly, NHE1 might have been activated by LPS
stimulation, and Cana might have inhibited NHE1. Yet,
since we observed different outcomes of Cana, Empa,
and Dapa on LPS-induced cytokine release, NHE1 inhibi-
tion could not account for the anti-inflammatory effects of
Cana in our model.

LPS induces inflammation after binding to TLR4 and acti-
vating downstream signaling events. These events lead to
NF-κB activation and its translocation to the cell nucleus to
stimulate production of pro-inflammatory molecules [27, 34,
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45]. Concomitantly, MAPK that are involved in inflammatory
processes, including ERK1 and ERK2, become activated [34].
In the present study, Cana inhibited LPS-induced ERK1/2
phosphorylation in HCAECs. Yet, since Cana does not affect
NF-κB activation, which is observed in the present study as
well as by other investigators [18], Cana may not act on the

classical LPS-pathway upstream of both ERK1/2 and NF-κB.
It is reported that Cana inhibits cell proliferation at clinically
relevant concentrations, including the concentration used in
the present study (10 μM) [18, 24, 46]. Cana’s anti-
proliferative effect could be explained by a reduction in
ERK1/2 activity, since ERK1/2 not only exerts pro-
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0.001, tested by one-way ANOVA with Bonferroni correction
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apoptotic and pro-inflammatory actions but also plays a role in
proliferation and survival pathways [47]. In summary, reduc-
tion of ERK1/2 activity by Cana is observed during LPS stim-
ulation, which may to some degree be related to the anti-
inflammatory actions of Cana, although more research is
needed to understand the role of ERK1/2 in the functional
effects of Cana.

Hexokinase as Target to Reduce Inflammation

Enhanced glycolysis is a central phenomenon in inflammation
induced by LPS. A recent study showed that inflammation
was associated with enhanced endothelial glycolysis and ac-
cumulation of glycolytic intermediates in human aortic endo-
thelial cells [48]. HKII is one of several rate-limiting enzymes
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Fig. 5 Cana induces AMPK phosphorylation, independent of HKII, in
LPS-stimulated HCAECs. Cells were pre-incubated for 16 h with vehicle
or Cana (10 μM) and subsequently stimulated by 1-μg/mL LPS for 3 h
with vehicle or Cana. Phosphorylation of AMPK at site threonine 172 by
Canawas determined in normal HCAECs (a, n = 7). Activation of AMPK

by A769662 inhibits LPS-induced IL-6 release (c, n = 5). In HKII knock-
down HCAECs, Cana still phosphorylated AMPK (c, n = 4).
Representative bands are shown below each figure. Whole membrane
scans are shown in the ESM. Data are presented as mean ± SD. *p <
0.05, tested by one-way ANOVA with Bonferroni correction
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of glycolysis. HKII has been previously reported to be upreg-
ulated during inflammatory processes. In primary astrocytes
exposed to hypoxia, HKII expression and activity were in-
creased [49]. LPS strongly induced HKII gene expression
after 24 h in human monocyte-dendritic cells [7]. In the pres-
ent study, knockdown of HKII caused partial loss of Cana-
mediated IL-6 reduction in HCAECs. Targeting hexokinase
and therefore inhibiting glycolytic overload was previously
proposed as a treatment strategy against inflammatory re-
sponses [8, 9]. We observed that Cana was able to reduce
HKII expression in healthy HCAECs and LPS-stimulated
HCAECs. We did not see an upregulation of HKII expression
by LPS in our model, but this is likely due to the short time
period that the HCAECs were exposed to LPS (3 h) as com-
pared with previous studies showing enhancedHKII after 12 h
or 24 h of LPS stimulation [6, 7]. To investigate whether
reduction of HKII expression was associated with the anti-
inflammatory effects of Cana, Cana effects were studied in
partial HKII knockdown cells. While IL-6 release was still
induced by LPS, Cana was unable to attenuate IL-6 release
under reduced HKII conditions. This may imply that reduced
LPS-induced IL-6 release by Cana is, at least partly, mediated
by HKII. Furthermore, silencing HKII abrogated LPS-
induced ERK1/2 phosphorylation, suggesting that HKII plays
an important role in the induction of ERK1/2 activation during
inflammation (or vice versa). Our data propose that Cana’s
effect on reduced ERK1/2 phosphorylation and IL-6 release
during inflammation is, at least partly, related to Cana’s effect
on reduced HKII expression.

AMPK Activation by Cana

Activation of AMPK by SGLT2 inhibitors have been previ-
ously reported [19, 25, 42]. We observed that Cana activated
AMPK phosphorylation in LPS-stimulated HCAECs.
Furthermore, AMPK activation by A769669 resulted in re-
duced LPS-induced IL-6 release. Cana was shown to reduce

inflammation in IL-1β stimulated human endothelial cells
[18], an effect that was at least partially associated with
AMPK activation. The same authors reported that activation
of AMPK by Cana was associated with inhibition of mito-
chondrial complex 1 inhibition in human kidney cells, mouse
hepatocytes, and fibroblasts [25]. In LPS-stimulated immune
cells, Cana at concentrations between 10 and 40 μM exhibited
anti-inflammatory effects, reduced glucose metabolism, and
promotes AMPK activation [42]. Cana’s inhibition of glucose
metabolism is in line with our observation that HKII is re-
duced by Cana. Cana was still able to induce AMPK phos-
phorylation in HKII knockdown HCAECs stimulated with
LPS, suggesting that Cana’s effect on AMPK is not mediated
by HKII. HK expression and AMPK activity have been report-
ed to be negatively related with each other in inflammatory
conditions and may both be effective targets to alleviate
inflammation-induced endothelial dysfunction [8, 9, 35]. Our
data show that Cana activates AMPK and that AMPK activa-
tion reduces LPS-induced cytokine release. Furthermore, re-
duced HKII expression by Cana is not responsible for the in-
creased AMPK phosphorylation; thus, it is likely that Cana
increased AMPK activity through a different pathway or that
Cana activates AMPK prior to Cana’s HKII lowering effect.

Empa and Dapa have primarily been related to direct
AMPK activation in cardiac cells [19, 37, 50]. In our experi-
ments, only Cana, not Empa and Dapa, induced AMPK phos-
phorylation in human cardiac endothelial cells (supplementary
data), which is also reported in another endothelial cell study
[18]. Activation of AMPK by SGLT2 inhibitors may possibly
depend on the cell type and species origin (human cardiac
endothelial cells vs. mouse cardiac fibroblasts and
cardiomyocytes).

Finally, Cana has been found to activate autophagy in non-
endothelial cell types [42]. The effects of Cana on autophagy
in endothelial cells have not been studied. Our observations
that Cana inhibits ERK1/2 and activates AMPK suggest that
Cana increases autophagy in endothelial cells.
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Fig. 6 Summary of Cana effects
in LPS-stimulated HCAECs.
Cana reduces IL-6 release, at least
in part, by lowering HKII and
blocking ERK1/2 activation.
Cana also activates AMPK, and
AMPK activation is associated
with reduced LPS-induced IL-6
release in HCAECs. Effects of
Cana are indicated by red marks
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Limitations and Conclusion

This study was only performed in non-diabetic HCAECs to
understand the anti-inflammatory actions of SGLT2 inhibitors.
We performed experiments in HCAECs that originate from two
donors; therefore, the generalization of the results might be
problematic and more experiments from different cell batches,
types, and donors are needed to further validate our results.
Nonetheless, the use of a single donor in human cell studies
seems to be commonplace (e.g., in Hela cells [51], A549 cells
[52], and HCAECs [53–56]). The effects of LPS on cellular
stress were only investigated at a single time point in the present
study. In our experiments, we assessed HKII expression in the
cell lysate. The cellular location of HKII is crucial for its detri-
mental or protective function and its effects on cell metabolism
[57]. Future studies should investigate the effect of Cana on the
cellular localization of HKII, i.e., whether Cana affects mito-
chondrial bound HKII as well as cytosolic HKII.

In conclusion, Canagliflozin’s direct anti-inflammatory ac-
tions in human cardiac endothelial cells are associated with
reduced hexokinase 2 expression.
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