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Abstract
Thrombin is a trypsin-like serine protease with multiple physiological functions. Its role in coagulation and thrombosis is well-
established. Nevertheless, thrombin also plays a major role in inflammation by activating protease-activated receptors. In
addition, thrombin is also involved in angiogenesis, fibrosis, and viral infections. Considering the pathogenesis of COVID-19
pandemic, thrombin inhibitors may exert multiple potential therapeutic benefits including antithrombotic, anti-inflammatory, and
antiviral activities. In this review, we describe the clinical features of COVID-19, the thrombin’s roles in various pathologies, and
the potential of argatroban in COVID-19 patients. Argatroban is a synthetic, small molecule, direct, competitive, and selective
inhibitor of thrombin. It is approved to parenterally prevent and/or treat heparin-induced thrombocytopenia in addition to other
thrombotic conditions. Argatroban also possesses anti-inflammatory and antiviral activities and has a well-established pharma-
cokinetics profile. It also appears to lack a significant risk of drug–drug interactions with therapeutics currently being evaluated
for COVID-19. Thus, argatroban presents a substantial promise in treating severe cases of COVID-19; however, this promise is
yet to be established in randomized, controlled clinical trials.
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Introduction

Coronavirus disease of 2019 (COVID-19) continues to evolve
as a deadly pandemic with more than 25 million people in-
fected worldwide and more than 840 thousand individuals
died because of the disease and/or its associated complications
[1]. COVID-19 is a viral infection caused by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2). The
pathogen is a single-stranded RNA virus which, upon infect-
ing the respiratory system, can cause pneumonia and acute
respiratory distress syndrome. The most common symptoms
at the illness onset appear to be fever, cough, fatigue, and

myalgia [2, 3]. Nevertheless, the disease is also associated
w i t h s eve r a l ex t r a - pu lmona ry man i f e s t a t i on s .
Gastrointestinal symptoms appear to be common and reported
in about 40% of patients in some studies [4, 5]. Neurological
manifestations such as headache, dizziness, and altered con-
sciousness have also been reported [6]. Some COVID-19 pa-
tients also reported skin and ocular symptoms [7, 8] as well as
taste or olfactory disorders [9].

Although the initial clinical cases from China involved
hospitalized patients with severe pneumonia, yet overall data
have suggested that ~ 80% of COVID-19 patients only expe-
rience a mild disease [10].Many reports indicated that patients
who require hospital admission initially appear stable, but
they rapidly deteriorate with severe hypoxia leading to severe
acute distress syndrome which requires ICU admission and
mechanical ventilation [2, 11]. Myocardial injury also appears
to be high among these patients [12]. The progression of ill-
ness in hospitalized patients has been attributed to excessive
systemic inflammatory response including the excessive re-
lease of pro-inflammatory cytokines, which may eventually
lead to multiorgan failure and death. Along these lines, the
progression of COVID-19 has been found to be associated
with a decrease in lymphocytes and an increase in neutrophils.
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A number of inflammatory markers are reported to signifi-
cantly increase during the severe stage of the illness including
C-reactive protein, ferritin, interleukin-6 (IL-6), interferon
gamma-induced protein-10 (IP-10), granulocyte-colony stim-
ulating factor (G-CSF), monocyte chemoattractant protein-1
(MCP-1), macrophage inflammatory protein-1α (MIP-1α),
and tissue necrosis factor-α (TNF-α) [2, 13–15].

Furthermore, several cardiovascular, hematologic, and
thrombotic complications have also been attributed to the
(in)direct effects of the viral disease [16–18]. Several studies
reported thrombotic complications in COVID-19 patients
with rates of venous thromboembolic events as high as 30%,
particularly in critically ill and mechanically ventilated pa-
tients [19–21]. Cardiovascular and thrombotic complications
include intravascular disseminated coagulopathy, pulmonary
embolism, stroke, acute limb ischemia, and acute coronary
syndromes [22–26]. In fact, the hypercoagulable state of these
patients was reflected by the elevated measured levels of D-
dimer and fibrinogen as well as the prolonged measured pro-
thrombin time [27]. Similar to the systemic inflammation, the
hypercoagulable state appears to be associated with poor clin-
ical outcomes [22–26].

Unfortunately, there are currently neither approved vac-
cines to protect people against the infection nor highly effec-
tive approved therapeutics to treat it. However, the evolving
understanding of the virus life cycle and the infection patho-
genicity is catalyzing the development of the urgently needed
vaccines and therapeutics. In this direction, several viral and
host proteins are being considered as drug targets to develop
anti-COVID-19 therapeutics. In this review, we put forward
thrombin, a trypsin-like serine protease belonging to the co-
agulation process, as a potential drug target to develop adjunct
therapeutics for COVID-19, particularly for the critically ill
patients. While the pivotal role of thrombin in coagulation and
thrombosis is well established, thrombin also has a document-
ed role in inflammation as well as a significant link to viral
infections.

Thrombin in Coagulation, Inflammation,
Angiogenesis, Fibrosis, and Viral Infections

Coagulation

Thrombin, also known as factor IIa, is a ~ 36 kD globular,
trypsin-like serine protease in the common coagulation path-
way. Thrombin is a pivotal protein in both hemostasis and
thrombosis. Thrombin initiates the formation of fibrin clots
and promotes platelet activation. It is enzymatically generated
from its precursor i.e., prothrombin by the action of factor Xa
of prothrombinase complex, which also includes phospho-
lipids, calcium, and factor Va. Physiologically, thrombin con-
verts fibrinogen to fibrin which ultimately leads to the

formation of blood clot. Thrombin also activates factor XIII
which subsequently cross-links fibrin so as to strengthen the
formed clot. Thrombin also contributes to the propagation of
the coagulation process by providing a positive feedback in
which it activates other factors including factors V, VIII, and
XI [28–33]. Thrombin can also activate platelets by binding to
platelet glycoprotein Ibα [34] and/or protease-activated recep-
tors (PARs) [35]. Thrombin is also reported to activate
thrombin-activatable fibrinolysis inhibitor and eventually
downregulates fibrinolysis [36]. Together, thrombin is a key
procoagulant protein and its excessive generation often leads
to arterial or venous thrombosis. Under certain conditions,
thrombin can exhibit an anticoagulant role by forming a com-
plex with thrombomodulin. The resulting complex activates
protein C which in turn cleaves factors Va and VIIIa resulting
in a feedback inhibition of the coagulation process [37].

Inflammation, Angiogenesis, and Fibrosis

Beyond coagulation, thrombin’s pro-inflammatory effects are
also well documented. Thrombin can initiate and amplify in-
flammation by activating PARs. PARs are G protein-coupled
receptors that are expressed in a variety of tissues and cells
including platelets, endothelial cells, leukocytes, and fibro-
blasts. These receptors can be activated by tissue factor: factor
VIIa complex, factor Xa, and/or thrombin. Particularly, PARs
(1, 3, and 4) modulate a variety of responses to thrombin
including thrombosis and inflammation [38–40].

Thrombin was shown to upregulate the expression of cy-
tokines, chemokines, and other proteins in different types of
cells. In human adipocytes, thrombin stimulated the secretion
of interleukin (IL)-1β, IL-6, TNF-α, MCP-1, and vascular
endothelial cell growth factor [41]. Likewise, thrombin in-
creased the release of macrophage migration inhibitory factor
in urothelial cell, which can mediate bladder inflammation
[42]. On endothelial cells, thrombin initiated the production
of a number of pro-inflammatory mediators including IL-6,
IL-8, transforming growth factor-β, MCP-1, platelet-derived
growth factor, intracellular adhesion molecule (ICAM)-1, and
P-selectin, mainly through the NF-κB (nuclear factor kappa-
light-chain-enhancer of activated B cells) pathway. Disrupting
this pathway was shown to inhibit the ability of thrombin to
induce the expression of adhesion molecules including
ICAM-1 and vascular cell adhesion molecule and to reduce
the thrombin-dependent adhesion of monocytes to endothelial
cells [43–45]. Macrophage migration inhibitory factor secre-
tion and ERK phosphorylation were implicated in thrombin
effect on endothelium’s NF-κB activation [46]. At high con-
centrations, thrombin also increased endothelial permeability
which is a feature of inflammation [47]. Thrombin has also
been shown to induce the expression of IL-6 and C-X-C motif
chemokine ligand-8 (aka IL-8) from human aortic smooth
muscle cells [48]. With monocytes or monocyte-derived
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macrophages, thrombin enhanced adhesiveness, increased the
production of IL-1, TNF-α, IL-6, MCP-1, and IL-10, and
downregulated IL-12 secretion [49, 50]. Earlier, it was also
shown that thrombin enhanced IL-1 and TNF-α induced poly-
morphonuclear leukocyte migration [51]. Likewise, thrombin
enhanced the production of MCP-1 and macrophage inflam-
matory protein-2 in cultured rat glomerular epithelial cells
[52]. Along these lines, thrombin inhibition was found to re-
duce the expression of brain inflammatory markers upon sys-
temic lipopolysaccharide treatment of mice. In this model,
inhibition of thrombin activity by a specific inhibitor reported
as NAPAP (mostly likely is dabigatran) immediately led to a
reduction in the expression of inflammatory markers of
TNF-α, C-X-C motif chemokine ligand-9 (CXL9), and C-C
motif chemokine ligand-1 (CCL1) and in the expression of the
coagulation markers of factor X and PAR-1 in the brain [53].

Furthermore, thrombin can also directly activate the com-
plement components C3 and C5 [54, 55] as well as modulate
innate immune responses by altering cytokine secretion and
receptor expression by antigen-presenting cells [56].
Thrombin was also found to promote angiogenesis and to
increase the expression of angiogenic growth factors includ-
ing fibroblast growth factor-2, platelet-derived growth factor,
and vascular endothelial growth factor in human adipose cells
and these effects were prevented by lepirudin, a direct throm-
bin inhibitor [41]. Thrombin-mediated regulation of platelet-
derived growth factor influenced the migration and prolifera-
tion of vascular smooth muscle cells leading to plaque forma-
tion [57]. Thrombin was also shown to regulate the expression
and release of platelet-derived growth factor activity from cul-
tured renal microvascular endothelial cells, and thus, was pro-
posed to in vivo stimulate mitogen to induce perivascular cell
proliferation [58]. Subsequently, thrombin was shown to reg-
ulate the expression of proangiogenic cytokines by activating
PAR-1 [59].

Importantly, thrombin was also shown to be involved in
several experimental animal models of diseases including
lipopolysaccharide-induced endotoxemia [39], glomerulone-
phritis [60], and lung fibrosis [61]. In the lung, thrombin me-
diated the expression of mucin and stimulated the expression
of tissue factor from nasal epithelial cells through PAR-1 ac-
tivation [62]. Recently, a study also showed that thrombin
activates IL-1α, a pro-inflammatory cytokine that mediates
innate immune responses and thrombopoiesis, following ec-
toderm injury in mice. Interestingly, thrombin-cleaved IL-1α
was identified in humans with sepsis-associated adult respira-
tory distress syndrome suggesting a strong link between
thrombin and inflammation [63]. Furthermore, idiopathic pul-
monary fibrosis produced in a vascular leak–dependent mouse
model was found to be highly dependent on thrombin activity
and its downstream signaling pathways. Inhibition of throm-
bin by dabigatran, and not by warfarin, significantly inhibited
PAR-1 activation, integrin αvβ6 induction, transforming

growth factor-β activation, and the development of pulmo-
nary fibrosis in this model [64].

Viral Infections

Considering microbial infections, thrombin has been reported
to be involved in the pathogenesis of several viruses by dif-
ferent mechanisms [65–75]. These viruses include hepatitis E
virus [66], respiratory syncytial virus [67], human
metapneumovirus [67, 71], influenza viruses [65, 72–74],
coxsackievirus B3 [65], herpes simplex virus [68], cytomeg-
alovirus [69], human immunodeficiency virus [70], and por-
cine circovirus-1 [75]. For example, thrombin has been impli-
cated in the replication of hepatitis E virus, nonenveloped
positive-sense and single-stranded RNA virus, by facilitating
pORF1 polyprotein processing [66]. Data also showed that
herpes simplex viruses-1 and -2 initiate thrombin production
to increase the susceptibility of cells to infection through a
mechanism involving PAR1-mediated cell modulation [68].
Thrombin was also found to increase influenza virus-induced
inflammation. In fact, influenza viruses could induce throm-
bin generation leading to platelet activation-mediated lung
inflammation [72–74]. Studies also linked thrombin to human
metapneumovirus and respiratory syncytial virus, two
enveloped, negative-sense, and single-stranded RNA viruses
that cause respiratory infections. In these studies, thrombin
was shown to increase the replication of these viruses and to
exacerbate the associated inflammation [67, 71].

Together, considering thrombin’s roles in thrombosis, in-
flammation, and viral infections (Fig. 1), it is plausible to
expect that inhibiting thrombin activity may eventually pro-
mote not only anticoagulant effect, but also anti-inflammatory
and antiviral effects. These effects provide a strong rationale
for the use of thrombin inhibitors in treating COVID-19
patients.

Current Thrombin Inhibitors

Current drugs that inhibit thrombin are classified into direct
and indirect inhibitors (Fig. 2). In one hand, the indirect inhib-
itors include unfractionated heparin (UFH) and low molecular
weight heparins (LMWHs) which activate the endogenous
serpin antithrombin to eventually inhibit thrombin in a
template- or bridging-based mechanism. UFH and LMWHs
also antithrombin-dependently inhibit factor Xa [76, 77].
Warfarin, a vitamin K antagonist, also affects thrombin indi-
rectly by inhibiting the hepatic biosynthesis of its precursor
prothrombin by targeting vitamin K epoxide reductase and
vitamin K quinone reductase [77]. In the other hand, hirudin,
dabigatran etexilate, and argatroban are direct inhibitors of
thrombin. Hirudin is a naturally occurring polypeptide isolat-
ed from the salivary glands of blood-sucking leeches of
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Hirudo medicinalis and possesses a blood anticoagulant prop-
erty. Hirudin inhibits thrombin by binding to its active site as
well as its allosteric exosite I, and thus, it is described as a
bivalent inhibitor. Hirudin-related drugs that are in clinical use
are lepirudin, desirudin, and bivalirudin [77, 78]. Dabigatran
and argatroban are small molecule, active site, and selective
inhibitors of thrombin [78].

Generally, all the above drugs are approved for clinical use
as prophylaxis or treatment of thrombotic conditions. Some of
them are used parenterally while the others are orally active.
UFH and LMWHs are heterogenous mixtures of sulfated gly-
cosaminoglycans that are clinically used via the parenteral
route of administration [79]. Lepirudin and desirudin are re-
combinant hirudins that were developed by recombinant tech-
nology in Saccharomyces cerevisiae [80]. Bivalirudin is an
engineered 20-amino acid, synthetic analogue of hirudin
[81]. All hirudin derivatives are also used parenterally.
Argatroban is a synthetic tetrahydroquinolinyl-sulfonyl-L-
arginyl-piperidine-carboxylic acid derivative that is also used

parenterally. Warfarin is orally active coumarin derivative,
whereas dabigatran etexilate is orally active, double prodrug
that is derivative of benzimidazole methylamine-benzamidine
[77–80].

In the ongoing pandemic, UFH and LMWHs appear to be
gaining a momentum in treating COVID-19 [82, 83]. They are
widely available and affordable anticoagulants with well-
known pharmacological profiles and approved antidote to ad-
dress potential bleeding events. However, a recent study has
documented evidence of heparin resistance in critically ill
COVID-19 patients [84]. In many cases, heparin resistance
can be attributed to antithrombin deficiency. In fact, another
recent study reported that antithrombin values were moderate-
ly, yet significantly lower in COVID-19 patients compared
with control group [85]. Thus, this review focuses on
argatroban which may serve as a potential alternative antico-
agulant in COVID-19 patients. In fact, argatroban demon-
strates anti-inflammatory and antiviral activities, in addition
to its established anticoagulant properties. Argatroban is also
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associated with a favorable drug–drug interaction profile con-
sidering treatments currently under evaluation in COVID-19
patients [86].

Potential Therapeutic Benefits of Argatroban
in COVID-19 Patients

Arga t roban i s a syn the t i c sma l l mo l ecu l e and
peptidomimetic inhibitor of thrombin with a Ki value of ~
39 nM. It is a reversible, parenterally used, highly selective,
and competitive inhibitor of thrombin. In contrast to hepa-
rins, it directly inhibits the physiological function of the free
as well as the clot-bound thrombin without the need for an-
tithrombin. It inhibits fibrin formation as well as the
thrombin-mediated activation of coagulation factors V,
VIII, and XIII. It also inhibits the activation of protein C
and platelet aggregation [79, 87]. Argatroban was first ap-
proved by the US FDA in 2000 as a prophylaxis or a treat-
ment of thrombosis in adults with heparin-induced thrombo-
cytopenia. It is also used as an anticoagulant for percutane-
ous coronary intervention in adults who have or are at risk of
developing heparin-induced thrombocytopenia [79, 87].
Similar indications are approved by the Canadian authorities.
However, argatroban has been approved for other thrombot-
ic conditions in Japan and Korea. It was first clinically used
in Japan for the treatment of peripheral arterial occlusive
disease in the early 1980s. It was then approved for the treat-
ment of arterial thrombosis, acute cerebral thrombosis, and
anticoagulation of antithrombin-deficient patients undergo-
ing hemodialysis. Argatroban is also approved in Korea for
use in chronic arterial occlusion and acute cerebral thrombo-
sis [88]. Given the high risk of coagulopathy in severe and
critically ill COVID-19 patients, the anticoagulant activity of
argatroban is of enormous benefit, particularly that
anticoagulation has been found to increase survival in these
patients [89, 90].

Given the established role of thrombin in inflammation,
angiogenesis, and fibrosis, thrombin inhibitors are likely to
protect against these pathologies. As mentioned before,
lepirudin was found to prevent thrombin-mediated angiogen-
esis and to prevent thrombin-mediated expression of angio-
genic growth factors [41]. Dabigatran reduced the expression
of inflammatorymarkers of TNF-α, CXL9, and CCL1 and the
expression of the coagulation markers of factor X and PAR-1
in mouse brain [53]. Dabigatran significantly inhibited PAR-1
activation, integrin αvβ6 induction, transforming growth
factor-β activation, and the development of pulmonary fibro-
sis in a vascular-leak mouse model [64]. Similar to lepirudin
[41] and dabigatran [53, 64], argatroban is likely to protect
against these pathologies. Furthermore, continuous infusion
of argatroban was also found to increase the plasma levels of
nitric oxide and nitrosyl hemoglobin in patients with

peripheral arterial obstructive disease, and thus, to improve
microcirculation compared with a placebo-treated group
[91]. Moreover, plasma samples collected from heparin-
induced thrombocytopenia patients indicated that treatment
with argatroban significantly decreased the circulatory levels
of inflammation markers including myeloperoxidase, CD40L,
and functional microparticles. Nitric oxide levels measured in
platelets were also increased with argatroban treatment [92].
Interestingly, none of the above effects was observed with
lepirudin or bivalirudin [92], suggesting a greater potential
benefit of argatroban.

In a diabetic cardiomyopathy rat model, argatroban treat-
ment reduced plasma levels of glucose and cholesterol, alle-
viated ventricular dysfunctions by improving systolic and di-
astolic functions, decreased cardiac fibrosis, and reduced ap-
optosis. In this model, argatroban significantly reduced the
expression of PAR-1 and PAR-4. Protein kinase B, glycogen
synthase kinase-3β, p-65 NF-ĸB phosphorylation,
transforming growth factor-β, cyclooxygenase-2, and
caspase-3 expression were also reduced significantly in rats
treated with argatroban, along with a substantial increase in
sarco/endoplasmic reticulum calcium—ATPase expression
suggesting a significant anti-fibrotic, anti-inflammatory, and
anti-apoptotic potential of argatroban [93]. Argatroban also
decreased the production of MCP-1 and macrophage inflam-
matory protein-2 in cultured rat glomerular epithelial cells
[52]. Thrombin inhibition by argatroban also decreased neu-
rodegeneration and cerebral edema following bilateral com-
mon carotid artery occlusion and reperfusion in male
Mongolian gerbils [94].

Literature has also reported on the antiviral activity of
argatroban. Human metapneumovirus, which belongs to the
family of Pneumoviridae, is non-segmented, negative-strand-
ed, enveloped RNA virus. It can cause upper and lower respi-
ratory diseases particularly among young children, older
adults, and people with compromised immune systems. In
mice studies, it was found that immediate injections of
argatroban after the virus challenge protected mice against
human metapneumovirus infection and substantially reduced
mortality, weight loss, viral load, and lung inflammation. In
particular, the results showed that there was no weight loss or
mortality in the infected mice that received immediate treat-
ment with argatroban post-infection followed by 4 days of
treatment. A significant decrease in lung viral titers was de-
tected on day 5 post-infection. Argatroban also significantly
reduced thrombin generation and leukocyte recruitment dur-
ing the infection. It also induced significant decreases in the
levels of G-CSF, interferon-γ, IL-3, IL-4, IL-6, IL-12 p70,
and MCP-1 in the bronchoalveolar lavage of the infected
mice, as compared with controls. It also decreased the virus-
induced lung tissue damage [71].

As far as COVID-19, argatrobanwas recently identified via
bioinformatics approach as a potential blocker of angiotensin
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converting enzyme-2 (ACE2), yet the finding was not exper-
imentally confirmed. ACE2 is the human cell receptor to
which the viral spike S protein binds [95]. A homology
modeling and virtual screening also identified argatroban as
a potential inhibitor of the viral 3-chymotrypsin-like protease
(also known as the main protease), a viral protease with an
essential role in processing the polyproteins that are translated
from the viral RNA [96]. Another computational work iden-
tified argatroban as a potential inhibitor of transmembrane
protease, serine-2 (TMPRSS2), a serine protease that facili-
tates the viral fusion and entry into the host cell [97].
Importantly, although promising, the above computational re-
sults remain to be theoretical in nature.

Pharmacokinetics, Toxicities, and Potential
Drug–Drug Interactions of Argatroban

Because argatroban is administered via IV infusion, it pro-
motes an immediate action. It has a volume of distribution
of 174 mL/kg and binds to plasma proteins including albumin
(~ 20%) andα1-acid glycoprotein (~ 34%). Its plasma half-life
is 39–51 min, which is extended to 181 min in patients with
hepatic impairment. The time to reach steady state peak is 1–
3 h. Its clearance rate in adults is about 5.1 mL/kg/min, which
is decreased to 1.9 mL/kg/min in patients with hepatic impair-
ment. The main route of argatroban metabolism is hydroxyl-
ation and aromatization of the tetrahydro-quinoline ring in the
liver. The formation of metabolites is catalyzed in vitro by
CYP450 3A4/5. Thus, the dosage of argatroban should be
decreased in patients with hepatic impairment. Argatroban is
excreted primarily in the feces, and thus, no dosage adjust-
ment is necessary in patients with renal dysfunction [78, 88,
98–100].

Argatroban was not genotoxic in a host of tests. Argatroban
also had no effect on fertility or reproductive function of male
and female rats at IV doses up to 27 mg/kg/day [78, 88,
98–100]. Argatroban’s adverse reactions are generally mild
and appear to resolve upon treatment discontinuation. In
heparin-induced thrombocytopenia patients, the most com-
mon adverse reactions were dyspnea, hypotension, fever,
and diarrhea. In percutaneous coronary intervention patients,
the most common adverse reactions were chest pain, hypoten-
sion, back pain, nausea, vomiting, and headache [98]. As with
all anticoagulants, bleeding is also a potential adverse effect of
argatroban. There is no specific antidote for argatroban. Given
its short-half life, management of bleeding is recommended
via the cessation of treatment and general hemostatic mea-
sures [100].

Considering drug–drug interactions, the concomitant use
of argatroban and warfarin was found to lead to prothrombin
time prolongation. If argatroban is to be initiated after cessa-
tion of heparin therapy, sufficient time should be allowed prior

to initiation of argatroban therapy. No drug–drug interactions
have been demonstrated between argatroban and concomi-
tantly administered aspirin, acetaminophen, digoxin, or
azithromycin. The safety and effectiveness of argatroban with
thrombolytic agents do not appear to have been established
[98]. Interestingly, there appear no potential interactions be-
tween argatroban and drugs being currently tested for
COVID-19 including lopinavir/ritonavir, remdesivir, ribavi-
rin, hydroxychloroquine, tocilizumab, sarilumab, methylpred-
nisolone, and anakinra [86].

Conclusion

The potential therapeutic benefits of argatroban as a treat-
ment for COVID-19 infection and/or its complications can
be attributed to its antithrombotic, anti-inflammatory, and
antiviral properties. These properties have been supported
by a large number of studies in cellular settings, animal
models, and humans. Owing to these properties, argatroban
could potentially assist in treating the coagulopathy, dampen
the excessive inflammation, and halting the viral replication,
particularly in severe and critically ill COVID-19 patients.
Encouraging aspects also include the worldwide availability
of the drug, its well-established pharmacokinetics and safety
profiles, and the apparent lack of drug–drug interactions with
potential anti-COVID-19 therapeutics under evaluation. In
this direction, successful anticoagulation with argatroban
was very recently reported in a small number of severely ill
COVID-19 patients (N = 10) with acute antithrombin defi-
ciency [101]. Nevertheless, the potential benefits of
argatroban in COVID-19 patients remain largely hypotheti-
cal and will have to be clinically established via large, ran-
domized, double-blinded, and controlled clinical trials.
Currently, argatroban is being studied in a phase 4 trial of
anticoagulation in critically ill patients with COVID-19
(NCT04406389).
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