Skip to main content

Advertisement

Log in

Impact of Lowering Low-Density Lipoprotein Cholesterol with Contemporary Lipid-Lowering Medicines on Cognitive Function: A Systematic Review and Meta-Analysis

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the potential association between the lowering of low-density lipoprotein cholesterol (LDL-C) with contemporary lipid-lowering medicines and cognitive function.

Methods

Randomized controlled trials (RCTs) in databases including PubMed, Embase, and the Web of Science and all databases in the Cochrane Library and ClinicalTrials.gov were collected from inception to January 1, 2020. The cognitive function of patients receiving proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, statins and ezetimibe was evaluated using meta-analysis.

Results

A total of 2910 studies were obtained from databases and other sources. Thirty-three studies were selected by screening, including 11 studies on alirocumab, 9 studies on evolocumab, 11 studies on statins and 2 studies on ezetimibe. In our study, a total of 128,691 patients with no cognitive impairment were divided into an intervention group (66,330 patients) and a control group (62,361 patients). The data were subjected to a random-effects model or a fixed-effects model for meta-analysis. The contemporary lipid-lowering medicines significantly reduced LDL-C in terms of both percentage (WMD: −45.06%, 95% CI −50.12% to −40.00%, P < 0.001) and absolute value (WMD: −64.01 mg/dL, 95% CI −72.25 to −55.78, P < 0.001). Compared with the control group, patients receiving treatment with contemporary lipid-lowering medicines did not show a significant difference in the rate of neurocognitive disorder (RR: 1.02, 95% CI 0.90 to 1.16, I2 = 0.0%, p = 0.696). Subgroup analysis was performed according to the intervention and LDL-C stratification. The result of this subgroup analysis was consistent with the main findings. Regarding global cognitive performance, no difference in major cognition was found among the pooled data (SMD: 0.02, 95% CI −0.01 to 0.04, P = 0.002), except for psychomotor speed (SMD: 0.09, 95% CI 0.02 to 0.16, P = 0.0024).

Conclusions

Contemporary lipid-lowering medicines were not associated with cognitive impairment in RCTs. A low LDL-C level did not influence the incidence of cognitive disorder or global cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silverman MG, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. J Am Med Assoc. 2016;316(12):1289–97.

    CAS  Google Scholar 

  2. Shepherd J, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. 1995. Atheroscler Suppl. 2004;5(3):91–7.

    CAS  PubMed  Google Scholar 

  3. Lloyd-Jones DM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk a report of the American College of Cardiology Task Force on Clinical Expert Consensus Decision Pathways. J Am Coll Cardiol. 2016;68(1):92–125.

    PubMed  Google Scholar 

  4. Law MR, Wald NJ, Rudnicka AR. Quantifying effects of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. Br Med J. 2003;326(7404):1423–7.

    CAS  Google Scholar 

  5. Giral P, Moulin P, Rosenbaum D. Efficacy and safety of more intensive lowering of LDL cholesterol. Lancet. 2011;377(9767):715.

    PubMed  Google Scholar 

  6. Sudhop T, et al. Changes in cholesterol absorption and cholesterol synthesis caused by ezetimibe and/or simvastatin in men. J Lipid Res. 2009;50(10):2117–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ballantyne CM, Blazing MA, King TR, Brady WE, Palmisano J. Efficacy and safety of ezetimibe co-administered with simvastatin compared with atorvastatin in adults with hypercholesterolemia. Am J Cardiol. 2004;93(12):1487–94.

    CAS  PubMed  Google Scholar 

  8. Benjannet S, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279(47):48865–75.

    CAS  PubMed  Google Scholar 

  9. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    CAS  PubMed  Google Scholar 

  10. Stein EA, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366(12):1108–18.

    CAS  PubMed  Google Scholar 

  11. Richardson K, et al. Statins and cognitive function. Ann Intern Med. 2013;159(10):688.

    PubMed  Google Scholar 

  12. Samaras K, et al. Effects of statins on memory, cognition, and brain volume in the elderly. J Am Coll Cardiol. 2019;74(21):2554–68.

    CAS  PubMed  Google Scholar 

  13. Giugliano RP, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377(7):633–43.

    CAS  PubMed  Google Scholar 

  14. Swiger KJ, Martin SS. PCSK9 inhibitors and neurocognitive adverse events: exploring the FDA directive and a proposal for N-of-1 trials. Drug Saf. 2015;38(6):519–26.

    CAS  PubMed  Google Scholar 

  15. Björkhem I, Meaney S, Fogelman AM. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24(5):806–15.

    PubMed  Google Scholar 

  16. Wahler JB, Swain MG, Carson R, Bergasa NV, Jones EA. Blood-brain barrier permeability is markedly decreased in cholestasis in the rat. Hepatology. 1993;17(6):1103–8.

    CAS  PubMed  Google Scholar 

  17. Joseph JA, Denisova N, Villalobos-Molina R, Erat S, Strain J. Oxidative stress and age-related neuronal deficits. Mol Chem Neuropathol. 1996;28(1–3):35–40.

    CAS  PubMed  Google Scholar 

  18. Khan SU, et al. Association of lowering low-density lipoprotein cholesterol with contemporary lipid-lowering therapies and risk of diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc. 2019;8(7):e011581.

    PubMed  PubMed Central  Google Scholar 

  19. Robinson JG, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.

    CAS  PubMed  Google Scholar 

  20. Kastelein JJP, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36(43):2996–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ginsberg HN, et al. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc Drugs Ther. 2016;30(5):473–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kereiakes DJ, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169(6):906–915.e13.

    PubMed  Google Scholar 

  23. El Shahawy M, et al. Efficacy and safety of Alirocumab versus ezetimibe over 2 years (from ODYSSEY COMBO II). Am J Cardiol. 2017;120(6):931–9.

    PubMed  Google Scholar 

  24. Moriarty PM, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9(6):758–69.

    PubMed  Google Scholar 

  25. Farnier M, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.

    CAS  PubMed  Google Scholar 

  26. Roth EM, et al. A phase III randomized trial evaluating alirocumab 300 mg every 4 weeks as monotherapy or add-on to statin: ODYSSEY CHOICE I. Atherosclerosis. 2016;254:254–62.

    CAS  PubMed  Google Scholar 

  27. Stroes E, et al. Efficacy and safety of alirocumab 150 mg every 4 weeks in patients with hypercholesterolemia not on statin therapy: the ODYSSEY CHOICE II Study. J Am Heart Assoc. 2016;5(9):e003421.

    PubMed  PubMed Central  Google Scholar 

  28. Schwartz GG, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107.

    CAS  PubMed  Google Scholar 

  29. Sabatine MS, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    CAS  PubMed  Google Scholar 

  30. Sabatine MS, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.

    CAS  PubMed  Google Scholar 

  31. Nicholls SJ, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. J Am Med Assoc. 2016;316(22):2373–84.

    CAS  Google Scholar 

  32. Robinson JG, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. J Am Med Assoc. 2014;311(18):1870–82.

    Google Scholar 

  33. Raal FJ, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331–40.

    CAS  PubMed  Google Scholar 

  34. Raal FJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–50.

    CAS  Google Scholar 

  35. Stroes E, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541–8.

    CAS  PubMed  Google Scholar 

  36. Nissen SE, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. J Am Med Assoc. 2016;315(15):1580–90.

    CAS  Google Scholar 

  37. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    CAS  PubMed  Google Scholar 

  38. Santanello NC, et al. Effect of pharmacologic lipid lowering on health-related quality of life in older persons: results from the Cholesterol Reduction in Seniors Program (CRISP) pilot study. J Am Geriatr Soc. 1997;45(1):8–14.

    CAS  PubMed  Google Scholar 

  39. Gibellato MG, Moore JL, Selby K, Bower EA. Effects of lovastatin on cognitive function and psychological well-being. Am J Med. 2000;108(7):538–46.

    Google Scholar 

  40. Muldoon MF, Ryan CM, Sereika SM, Flory JD, Manuck SB. Randomized trial of the effects of simvastatin on cognitive functioning in hypercholesterolemic adults. Am J Med. 2004;117(11):823–9.

    CAS  PubMed  Google Scholar 

  41. Shepherd J, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623–30.

    CAS  PubMed  Google Scholar 

  42. Cannon CP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    CAS  PubMed  Google Scholar 

  43. Eriksson M, Budinski D, Hounslow N. Long-term efficacy of pitavastatin versus simvastatin. Adv Ther. 2011;28(9):799–810.

    CAS  PubMed  Google Scholar 

  44. Farmer JA. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis (the SEAS trial). Curr Atheroscler Rep. 2009;11(2):82–3.

    PubMed  Google Scholar 

  45. Ogawa H, et al. Differences between rosuvastatin and atorvastatin in lipid-lowering action and effect on glucose metabolism in Japanese hypercholesterolemic patients with concurrent diabetes – lipid-lowering with highly potent statins in hyperlipidemia with type 2 diabetes patients (LISTEN) study. Circ J. 2014;78(10):2512–5.

    PubMed  Google Scholar 

  46. Carlsson CM, Gleason CE, Hess TM, Moreland KA. Effects of simvastatin on cerebrospinal fluid biomarkers and cognition in middle-aged adults at risk for Alzheimer’s disease. J Alzheimers Dis. 2008;13(2):187–97.

    CAS  PubMed  Google Scholar 

  47. Protection H, Collaborative S. Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20 536 people with cerebrovascular disease or other high-risk conditions. Lancet. 2004;363(9411):757–67.

    Google Scholar 

  48. Leiter LA, et al. Efficacy and safety of ezetimibe added on to atorvastatin (40 mg) compared with uptitration of atorvastatin (to 80 mg) in hypercholesterolemic patients at high risk of coronary heart disease. Am J Cardiol. 2008;102(11):1495–501.

    CAS  PubMed  Google Scholar 

  49. Tendolkar I, et al. One-year cholesterol lowering treatment reduces medial temporal lobe atrophy and memory decline in stroke-free elderly with atrial fibrillation: evidence from a parallel group randomized trial. Int J Geriatr Psychiatry. 2012;27(1):49–58.

    PubMed  Google Scholar 

  50. Harvey PD, et al. No evidence of neurocognitive adverse events associated with alirocumab treatment in 3340 patients from 14 randomized phase 2 and 3 controlled trials: a meta-analysis of individual patient data. Eur Heart J. 2018;39(5):374–81.

    CAS  PubMed  Google Scholar 

  51. Ott BR, et al. Do statins impair cognition? A systematic review and meta-analysis of randomized controlled trials. J Gen Intern Med. 2015;30(3):348–58.

    PubMed  PubMed Central  Google Scholar 

  52. Baris G, Mach F. Lipid management in ACS: should we go lower faster? Atherosclerosis. 2018;275:368–75.

    CAS  Google Scholar 

  53. Li C, et al. Efficiency and safety of proprotein convertase subtilisin/kexin 9 monoclonal antibody on hypercholesterolemia: a meta-analysis of 20 randomized controlled trials. J Am Heart Assoc. 2015;4(6):e001937.

    PubMed  PubMed Central  Google Scholar 

  54. Lipinski MJ, et al. The impact of proprotein convertase subtilisin-kexin type 9 serine protease inhibitors on lipid levels and outcomes in patients with primary hypercholesterolaemia: a network meta-analysis. Eur Heart J. 2016;37(6):536–45.

    CAS  PubMed  Google Scholar 

  55. Amieva H, Meillon C, Proust-Lima C, Dartigues JF. Is low psychomotor speed a marker of brain vulnerability in late life? Digit symbol substitution test in the prediction of Alzheimer, Parkinson, stroke, disability, and depression. Dement Geriatr Cogn Disord. 2019;47(4–6):297–305.

    PubMed  Google Scholar 

  56. Yandrapalli S, et al. Statins and the potential for higher diabetes mellitus risk. Expert Rev Clin Pharmacol. 2019;12(9):825–30.

    CAS  PubMed  Google Scholar 

  57. Palta P, Schneider ALC, Biessels GJ, Touradji P, Hill-Briggs F. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Int Neuropsychol Soc. 2014;20(3):278–91.

    PubMed  PubMed Central  Google Scholar 

  58. Forster MJ, Lal H. Estimating age-related changes in psychomotor function: influence of practice and of level of caloric intake in different genotypes. Neurobiol Aging. 1999;20(2):167–76.

    CAS  PubMed  Google Scholar 

  59. Seidah NG, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu M, et al. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J Lipid Res. 2010;51(9):2611–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. He NY, et al. Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol Sin. 2017;38(3):301–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Locatelli S, Lütjohann D, Schmidt HHJ, Otto C, Beisiegel U, Von Bergmann K. Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol. 2002;59(2):213–6.

    PubMed  Google Scholar 

  63. Zhang J, Muldoon MF, McKeown RE. Serum cholesterol concentrations are associated with visuomotor speed in men: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr. 2004;80(2):291–8.

    CAS  PubMed  Google Scholar 

  64. Nath R, Jeong YJ, Igarashi H, Proulx J, Aldwin CM, Spiro A. Cholesterol and depressive symptoms in older men across time. Heal Psychol Open. 2015;2(1):2055102915592089.

    Google Scholar 

  65. Kivipelto M, et al. Apolipoprotein E ε4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55.

    CAS  PubMed  Google Scholar 

  66. Gravina CF, Bertolami M, Rodrigues GHP. Dyslipidemia: evidence of efficacy of the pharmacological and non-pharmacological treatment in the elderly. J Geriatr Cardiol. 2012;9(2):83–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All authors contributed to the analysis of the data and to the writing of the report. All authors approved the final version of the manuscript. This work was supported by the Natural Science Foundation of Zhejiang Province, Grant No. LY16H020008.

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province, Grant No. LY16H020008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binquan Zhou.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Risk of bias graph (PNG 716 kb)

High-resolution image (TIF 37705 kb)

Figure S2

Funnel plot for publication bias assessment (PNG 77 kb)

High-resolution image (TIF 6137 kb)

Figure S3

Sensitivity analysis of random effects analysis (PNG 232 kb)

High-resolution image (EPS 9309 kb)

Figure S4

Sensitivity analysis of subjects aged ≥60 years (PNG 112 kb)

High-resolution image (EPS 7271 kb)

Figure S5

Sensitivity analysis of trials with total number of ≥ 500 and follow-up ≥1 year (PNG 99 kb)

High-resolution image (EPS 6950 kb)

Figure S6

Sensitivity analysis by the “leave-one-out” method (PNG 65 kb)

High-resolution image (EPS 1982 kb)

Figure S7

Sensitivity analysis of target trials except for ODYSSEY OUTCOMES (2018) (PNG 162 kb)

High-resolution image (EPS 8029 kb)

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, H., Wang, J., Shen, Z. et al. Impact of Lowering Low-Density Lipoprotein Cholesterol with Contemporary Lipid-Lowering Medicines on Cognitive Function: A Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther 35, 153–166 (2021). https://doi.org/10.1007/s10557-020-07045-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07045-2

Keywords

Navigation