Skip to main content
Log in

CD38: A Potential Therapeutic Target in Cardiovascular Disease

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Substantial research has demonstrated the association between cardiovascular disease and the dysregulation of intracellular calcium, ageing, reduction in nicotinamide adenine dinucleotide NAD+ content, and decrease in sirtuin activity. CD38, which comprises the soluble type, type II, and type III, is the main NADase in mammals. This molecule catalyses the production of cyclic adenosine diphosphate ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and adenosine diphosphate ribose (ADPR), which stimulate the release of Ca2+, accompanied by NAD+ consumption and decreased sirtuin activity. Therefore, the relationship between cardiovascular disease and CD38 has been attracting increased attention. In this review, we summarize the structure, regulation, function, targeted drug development, and current research on CD38 in the cardiac context. More importantly, we provide original views about the as yet elusive mechanisms of CD38 action in certain cardiovascular disease models. Based on our review, we predict that CD38 may serve as a novel therapeutic target in cardiovascular disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980;77:1588–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993;262:1056–9.

    CAS  PubMed  Google Scholar 

  3. Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995;270:30327–33.

    CAS  PubMed  Google Scholar 

  4. Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun. 2006;345:1386–92.

    CAS  PubMed  Google Scholar 

  5. Koguma T, Takasawa S, Tohgo A, Karasawa T, Furuya Y, Yonekura H, et al. Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase / cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochimica et Biophysica Acta (BBA) - Mole Cell Res. 1994;1223:160–2.

    CAS  Google Scholar 

  6. Mallone R, Ortolan E, Pinach S, Volante M, Zanone MM, Bruno G, et al. Anti-CD38 autoantibodies: characterisation in new-onset type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia. 2002;45:1667–77.

    CAS  PubMed  Google Scholar 

  7. Mizuguchi M, Otsuka N, Sato M, Ishii Y. Kon S-i, Yamada M, et al. neuronal localization of CD38 antigen in the human brain. Brain Res. 1995;697:235–40.

    CAS  PubMed  Google Scholar 

  8. Smyth LM, Breen LT, Yamboliev IA, Mutafova-Yambolieva VN. Novel localization of CD38 in perivascular sympathetic nerve terminals. Neuroscience. 2006;139:1467–77.

    CAS  PubMed  Google Scholar 

  9. Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A, et al. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem. 2001;78:646–57.

    CAS  PubMed  Google Scholar 

  10. Lee S, Paudel O, Jiang Y, Yang XR, Sham JS. CD38 mediates angiotensin II-induced intracellular Ca(2+) release in rat pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol. 2015;52:332–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, et al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 2017;21:1492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Manna A, Aulakh S, Jani P, Ahmed S, Akhtar S, Coignet M, et al. Targeting CD38 enhances the Antileukemic activity of Ibrutinib in chronic lymphocytic Leukemia. Clin Cancer Res. 2019;25:3974–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011;118:3470–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hogan KA, Chini CCS, Chini EN. The multi-faceted Ecto-enzyme CD38: roles in immunomodulation, Cancer, aging, and metabolic diseases. Front Immunol. 2019;10:1187.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23:1127–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schultz MB, Sinclair DA. Why NAD(+) declines during aging: It's destroyed. Cell Metab. 2016;23:965–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tarrago MG, Chini CCS, Kanamori KS, Warner GM, Caride A, de Oliveira GC, et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD(+) decline. Cell Metab. 2018;27:1081–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155:1624–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang LF, Huang CC, Xiao YF, Guan XH, Wang XN, Cao Q, et al. CD38 deficiency protects heart from high fat diet-induced oxidative stress via activating Sirt3/FOXO3 pathway. Cell Physiol Biochem. 2018;48:2350–63.

    CAS  PubMed  Google Scholar 

  20. Barbosa MT, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P, et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007;21:3629–39.

    CAS  PubMed  Google Scholar 

  21. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392:2052–90.

    PubMed  PubMed Central  Google Scholar 

  22. Lefranc C, Friederich-Persson M, Braud L, Palacios-Ramirez R, Karlsson S, Boujardine N, et al. MR (mineralocorticoid receptor) induces adipose tissue senescence and mitochondrial dysfunction leading to vascular dysfunction in obesity. Hypertension. 2019;73:458–68.

    CAS  PubMed  Google Scholar 

  23. Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res. 2014;114:368–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Abdellatif M. Sirtuins and pyridine nucleotides. Circ Res. 2012;111:642–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu J, Zeng Z, Zhang W, Deng Z, Wan Y, Zhang Y, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res. 2019;53:139–49.

    CAS  PubMed  Google Scholar 

  26. DG J. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol 1990;144:2811–2815.

  27. Zhao YJ, Lam CM, Lee HC. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal. 2012;5:ra67.

    PubMed  Google Scholar 

  28. Haffner CD, Becherer JD, Boros EE, Cadilla R, Carpenter T, Cowan D, et al. Discovery, synthesis, and biological evaluation of Thiazoloquin(az)Olin(on)es as potent CD38 inhibitors. J Med Chem. 2015;58:3548–71.

    CAS  PubMed  Google Scholar 

  29. Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994;15:95–7.

    CAS  PubMed  Google Scholar 

  30. Ohta Y, Kitanaka A, Mihara K, Imataki O, Ohnishi H, Tanaka T, et al. Expression of CD38 with intracellular enzymatic activity: a possible explanation for the insulin release induced by intracellular cADPR. Mol Cell Biochem. 2011;352:293–9.

    CAS  PubMed  Google Scholar 

  31. Liu J, Zhao YJ, Li WH, Hou YN, Li T, Zhao ZY, et al. Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels. Proc Natl Acad Sci U S A. 2017;114(31):8283–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fumaro A, Horenstein AL, Calosso L, Morra M, Tarocco RP, Franco L, et al. Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int Immunol. 1996;8:1643–50.

    Google Scholar 

  33. Mallone R, Ferrua S, Morra M, Zocchi E, Mehta K, Notarangelo LD, et al. Characterization of a CD38-like 78-kilodalton soluble protein released from B cell lines derived from patients with X-linked agammaglobulinemia. J Clin Invest. 1998;101:2821–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zielinska W, Barata H, Chini EN. Metabolism of cyclic ADP-ribose: zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid. Life Sci. 2004;74:1781–90.

    CAS  PubMed  Google Scholar 

  35. Li T, Li SL, Fang C, Hou YN, Zhang Q, Du X, et al. Nanobody-based dual epitopes protein identification (DepID) assay for measuring soluble CD38 in plasma of multiple myeloma patients. Anal Chim Acta. 2018;1029:65–71.

    CAS  PubMed  Google Scholar 

  36. Antonio DF, Elena Z, Lucrezia G, Franco. Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann N Y Acad Sci. 2004;1028:176–91.

  37. Zocchi E, Usai C, Guida L, Franco L, Bruzzone S, Passalacqua M, et al. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J. 1999;13:273–83.

    CAS  PubMed  Google Scholar 

  38. Han MK, Kim SJ, Park YR, Shin YM, Park HJ, Park KJ, et al. Antidiabetic effect of a prodrug of cysteine, L-2-oxothiazolidine-4-carboxylic acid, through CD38 dimerization and internalization. J Biol Chem. 2002;277:5315–21.

    CAS  PubMed  Google Scholar 

  39. Bruzzone S, Franco L, Guida L, Zocchi E, Contini P, Bisso A, et al. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem. 2001;276:48300–8.

    CAS  PubMed  Google Scholar 

  40. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A, et al. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem. 2001;276:21642–8.

    CAS  PubMed  Google Scholar 

  41. Fang C, Li T, Li Y, Xu GJ, Deng QW, Chen YJ, et al. CD38 produces nicotinic acid adenosine dinucleotide phosphate in the lysosome. J Biol Chem. 2018;293:8151–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Park DR, Nam TS, Kim YW, Bae YS, Kim UH. Oxidative activation of type III CD38 by NADPH oxidase-derived hydrogen peroxide in Ca(2+) signaling. FASEB J. 2019;33:3404–19.

    CAS  PubMed  Google Scholar 

  43. Lee HC, Zhao YJ. Resolving the topological enigma in Ca(2+) signaling by cyclic ADP-ribose and NAADP. J Biol Chem. 2019;294:19831–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Katz F, Povey S, Parkar M, Schneider C, Sutherland R, Stanley K, et al. Chromosome assignment of monoclonal antibody-defined determinants on human leukemic cells. Eur J Immunol. 1983;13:1008–13.

    CAS  PubMed  Google Scholar 

  45. Ferrero E, Malavasi F. Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide+−converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase. J Immunol. 1997;159:3858–65.

    CAS  PubMed  Google Scholar 

  46. Tirumurugaan KG, Kang BN, Panettieri RA, Foster DN, Walseth TF, Kannan MS. Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-alpha and dexamethasone. Respir Res. 2008;9:26.

    PubMed  PubMed Central  Google Scholar 

  47. Kishimoto H, Hoshino S, Ohori M, Kontani K, Nishina H, Suzawa M, et al. Molecular mechanism of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron. J Biol Chem. 1998;273:15429–34.

    CAS  PubMed  Google Scholar 

  48. Sun L, Iqbal J, Zaidi S, Zhu LL, Zhang X, Peng Y, et al. Structure and functional regulation of the CD38 promoter. Biochem Biophys Res Commun. 2006;341:804–9.

    CAS  PubMed  Google Scholar 

  49. Matalonga J, Glaria E, Bresque M, Escande C, Carbo JM, Kiefer K, et al. The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism. Cell Rep. 2017;18:1241–55.

    CAS  PubMed  Google Scholar 

  50. Song EK, Lee YR, Kim YR, Yeom JH, Yoo CH, Kim HK, et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARgamma in adipocytes. Cell Rep. 2012;2:1607–19.

    CAS  PubMed  Google Scholar 

  51. Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: potential therapeutic targets. Pharmacol Ther. 2017;172:116–26.

    CAS  PubMed  Google Scholar 

  52. Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 2009;15:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88:841–86.

    CAS  PubMed  Google Scholar 

  54. Deaglio S, Vaisitti T, Aydin S, Ferrero E, Malavasi F. In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood. 2006;108:1135–44.

    CAS  PubMed  Google Scholar 

  55. Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, et al. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993;196:1459–65.

    CAS  PubMed  Google Scholar 

  56. Schuber FLund F. Structure and enzymology of ADP-ribosyl Cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med. 2004;4:249–61.

    Google Scholar 

  57. Vu CQ, Lu PJ, Chen CS, Jacobson MK. 2'-Phospho-cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. J Biol Chem. 1996;271:4747–54.

    PubMed  Google Scholar 

  58. Sieck GC, White TA, Thompson MA, Pabelick CM, Wylam ME, Prakash YS. Regulation of store-operated Ca2+ entry by CD38 in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2008;294:L378–85.

    CAS  PubMed  Google Scholar 

  59. Lukyanenko V, Gyorke I, Wiesner TF, Gyorke S. Potentiation of Ca2+ release by cADP-ribose in the heart is mediated by enhanced SR Ca2+ uptake into the sarcoplasmic reticulum. Circ Res. 2001;89:614–22.

    CAS  PubMed  Google Scholar 

  60. Fliegert R, Gasser A, Guse AH. Regulation of calcium signalling by adenine-based second messengers. Biochem Soc Trans. 2007;35:109–14.

    CAS  PubMed  Google Scholar 

  61. Lee HC. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997;77:1133–64.

    CAS  PubMed  Google Scholar 

  62. Galione A. NAADP Receptors. Cold Spring Harb Perspect Biol. 2019;11(11):a035071.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu P, Liu Z, Yu X, Ye P, Liu H, Xue X, et al. Direct gating of the TRPM2 channel by cADPR via specific interactions with the ADPR binding pocket. Cell Rep. 2019;27:3684–95.

    CAS  PubMed  Google Scholar 

  64. Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, Luckhoff A. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J. 2006;398:225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gasser AGuse A. Determination of intracellular concentrations of the TRPM2 agonist ADP-ribose by reversed-phase HPLC. J Chromatogr B. 2005;821:181–7.

    Google Scholar 

  66. Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG. Increased vascular contractility in hypertension results from impaired endothelial calcium Signaling. Hypertension. 2019;74:1200–14.

    CAS  PubMed  Google Scholar 

  67. Chopra N, Yang T, Asghari P, Moore ED, Huke S, Akin B, et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci U S A. 2009;106:7636–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Anzawa R, Seki S, Nagoshi T, Taniguchi I, Feuvray D, Yoshimura M. The role of Na+/H+ exchanger in Ca2+ overload and ischemic myocardial damage in hearts from type 2 diabetic db/db mice. Cardiovasc Diabetol. 2012;11:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fauconnier J, Roberge S, Saint N, Lacampagne A. Type 2 ryanodine receptor: a novel therapeutic target in myocardial ischemia/reperfusion. Pharmacol Ther. 2013;138:323–32.

    CAS  PubMed  Google Scholar 

  70. Kumar S, Wang G, Liu W, Ding W, Dong M, Zheng N, et al. Hypoxia-induced Mitogenic factor promotes cardiac hypertrophy via calcium-dependent and hypoxia-inducible factor-1alpha mechanisms. Hypertension. 2018;72:331–42.

    CAS  PubMed  Google Scholar 

  71. Chen J, Sysol JR, Singla S, Zhao S, Yamamura A, Valdez-Jasso D, et al. Nicotinamide Phosphoribosyltransferase promotes pulmonary vascular Remodeling and is a therapeutic target in pulmonary arterial hypertension. Circulation. 2017;135:1532–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee HC. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem. 2005;280:33693–6.

    CAS  PubMed  Google Scholar 

  73. Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, et al. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem. 2013;288:25938–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62:1084–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hattori T, Kaji M, Ishii H, Jureepon R, Takarada-Iemata M, Minh Ta H, et al. CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously. Glia. 2017;65:974–89.

    PubMed  Google Scholar 

  76. Bertero EMaack C. Calcium Signaling and reactive oxygen species in mitochondria. Circ Res. 2018;122:1460–78.

    Google Scholar 

  77. Nagarajan N, Oka S, Sadoshima J. Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med. 2017;109:125–31.

    CAS  PubMed  Google Scholar 

  78. Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD(+) metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol. 2018;314:H839–52.

    CAS  PubMed  Google Scholar 

  79. Yang D, Qiao J, Wang G, Lan Y, Li G, Guo X, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Res. 2018;46:3906–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28:711–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.

    CAS  PubMed  Google Scholar 

  82. Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl). 2014;92:347–57.

    CAS  Google Scholar 

  83. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17:855–68.

    CAS  PubMed  Google Scholar 

  85. Denu JM. Vitamin B3 and sirtuin function. Trends Biochem Sci. 2005;30:479–83.

    CAS  PubMed  Google Scholar 

  86. Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, et al. Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood. 1998;92:1324–33.

    CAS  PubMed  Google Scholar 

  87. Partidá-Sánchez S, Rivero-Nava, Guixi S, Lund FE, CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. 2007;590:171–83.

  88. Fedele G, Di Girolamo M, Recine U, Palazzo R, Urbani F, Horenstein AL, et al. CD38 ligation in peripheral blood mononuclear cells of myeloma patients induces release of protumorigenic IL-6 and impaired secretion of IFNgamm cytokines and proliferation. Mediat Inflamm. 2013;2013:564687.

    Google Scholar 

  89. Lund FE. Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med. 2006;12:328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Partida-Sánchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, Lund FE. Regulation of dendritic cell trafficking by the ADP-Ribosyl Cyclase CD38. Immunity. 2004;20:279–91.

    PubMed  Google Scholar 

  91. Cesano A, Visonneau S, Deaglio S, Malavasi F. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. J Immunol. 1998;160:1106–15.

    CAS  PubMed  Google Scholar 

  92. Wang Z, Hu W, Lu C, Ma Z, Jiang S, Gu C, et al. Targeting NLRP3 (nucleotide-binding domain, Leucine-rich-containing family, Pyrin domain-Containing-3) Inflammasome in cardiovascular disorders. Arterioscler Thromb Vasc Biol. 2018;38:2765–79.

    CAS  PubMed  Google Scholar 

  93. Takahashi J, Kagaya Y, Kato I, Ohta J, Isoyama S, Miura M, et al. Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochem Biophys Res Commun. 2003;312:434–40.

    CAS  PubMed  Google Scholar 

  94. Gan L, Jiang W, Xiao YF, Deng L, Gu LD, Guo ZY, et al. Disruption of CD38 gene enhances cardiac functions by elevating serum testosterone in the male null mice. Life Sci. 2011;89:491–7.

    CAS  PubMed  Google Scholar 

  95. Woodward M. Rationale and tutorial for analysing and reporting sex differences in cardiovascular associations. Heart. 2019;105(22):1701–8.

    PubMed  Google Scholar 

  96. Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: contributions to sex differences in cardiovascular disease. Pharmacol Ther. 2019;203:107387.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dogan S, Deshpande DA, White TA, Walseth TF, Kannan MS. Regulation of CD 38 expression and function by steroid hormones in myometrium. Mol Cell Endocrinol. 2006;246:101–6.

    CAS  PubMed  Google Scholar 

  98. Liu Y, Guo Y, Huang W, Deng KY, Qian Y, Xin HB. 17beta-Estradiol Promotes Apoptosis in Airway Smooth Muscle Cells Through CD38/SIRT1/p53 Pathway. Front Endocrinol (Lausanne). 2018;9:770.

    Google Scholar 

  99. Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ, et al. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;295:H77–88.

    CAS  PubMed  Google Scholar 

  100. Gul R, Park DR, Shawl AI, Im SY, Nam TS, Lee SH, et al. Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) mediate Ca2+ Signaling in cardiac hypertrophy induced by beta-adrenergic stimulation. PLoS One. 2016;11:e0149125.

    PubMed  PubMed Central  Google Scholar 

  101. Lin WK, Bolton EL, Cortopassi WA, Wang Y, O'Brien F, Maciejewska M, et al. Synthesis of the Ca(2+)-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: role in beta-adrenoceptor signaling. J Biol Chem. 2017;292:13243–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xie GH, Rah SY, Kim SJ, Nam TS, Ha KC, Chae SW, et al. ADP-ribosyl cyclase couples to cyclic AMP signaling in the cardiomyocytes. Biochem Biophys Res Commun. 2005;330:1290–8.

    CAS  PubMed  Google Scholar 

  103. Kotlikoff MI, Kannan MS, Solway J, Deng KY, Deshpande DA, Dowell M, et al. Methodologic advancements in the study of airway smooth muscle. J Allergy Clin Immunol. 2004;114:S18–31.

    CAS  PubMed  Google Scholar 

  104. Reyes LA, Boslett J, Varadharaj S, De Pascali F, Hemann C, Druhan LJ, et al. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proc Natl Acad Sci U S A. 2015;112:11648–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boslett J, Hemann C, Zhao YJ, Lee HC, Zweier JL. Luteolinidin protects the Postischemic heart through CD38 inhibition with preservation of NAD(P)(H). J Pharmacol Exp Ther. 2017;361:99–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Boslett J, Reddy N, Alzarie YA, Zweier JL. Inhibition of CD38 with the Thiazoloquin(az)Olin(on)e 78c protects the heart against Postischemic injury. J Pharmacol Exp Ther. 2019;369:55–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Boslett J, Hemann C, Christofi FL, Zweier JL. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion. Am J Physiol Cell Physiol. 2018;314:C297–309.

    PubMed  Google Scholar 

  108. Boslett J, Helal M, Chini E, Zweier JL. Genetic deletion of CD38 confers post-ischemic myocardial protection through preserved pyridine nucleotides. J Mol Cell Cardiol. 2018;118:81–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Guan XH, Liu XH, Hong X, Zhao N, Xiao YF, Wang LF, et al. CD38 deficiency protects the heart from ischemia/reperfusion injury through activating SIRT1/FOXOs-mediated Antioxidative stress pathway. Oxidative Med Cell Longev. 2016;2016:7410257.

    Google Scholar 

  110. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61:481–97.

    CAS  PubMed  Google Scholar 

  111. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19:1273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, Koch-Nolte F, et al. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS One. 2011;6:e19046.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu M, Li XX, Wang L, Wang M, Zhang Y, Li PL. Contribution of Nrf2 to Atherogenic phenotype switching of coronary arterial smooth muscle cells lacking CD38 gene. Cell Physiol Biochem. 2015;37:432–44.

    CAS  PubMed  Google Scholar 

  114. Xu X, Yuan X, Li N, Dewey WL, Li PL, Zhang F. Lysosomal cholesterol accumulation in macrophages leading to coronary atherosclerosis in CD38(−/−) mice. J Cell Mol Med. 2016;20:1001–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, et al. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res. 2014;102:68–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bao JX, Zhang QF, Wang M, Xia M, Boini KM, Gulbins E, et al. Implication of CD38 gene in autophagic degradation of collagen I in mouse coronary arterial myocytes. Front Biosci (Landmark Ed). 2017;22:558–69.

    CAS  Google Scholar 

  117. Zhu YN, Fan WJ, Zhang C, Guo F, Li W, Wang YF, et al. Role of autophagy in advanced atherosclerosis (review). Mol Med Rep. 2017;15:2903–8.

    CAS  PubMed  Google Scholar 

  118. Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J. 2008;410:525–34.

    CAS  PubMed  Google Scholar 

  119. Sergin IRazani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab. 2014;25:225–34.

    Google Scholar 

  120. Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, et al. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 2018;276:98–108.

    CAS  PubMed  Google Scholar 

  121. Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis. 2016;109:708–15.

    PubMed  Google Scholar 

  122. Li J, Wang S, Bai J, Yang XL, Zhang YL, Che YL, et al. Novel role for the Immunoproteasome subunit PSMB10 in angiotensin II-induced atrial fibrillation in mice. Hypertension. 2018;71:866–76.

    CAS  PubMed  Google Scholar 

  123. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114:1483–99.

    CAS  PubMed  Google Scholar 

  124. Andrade J, Khairy P, Dobrev D, Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res. 2014;114:1453–68.

    CAS  PubMed  Google Scholar 

  125. Zhang D, Hu X, Li J, Liu J, Baks-Te Bulte L, Wiersma M, et al. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD(+) depletion in experimental atrial fibrillation. Nat Commun. 2019;10:1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilson HL, Dipp M, Thomas JM, Lad C, Galione A, Evans AM. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. A primary role for cyclic ADP-ribose in hypoxic pulmonary vasoconstriction. J Biol Chem. 2001;276:11180–8.

    CAS  PubMed  Google Scholar 

  127. Zhuang W, Lian G, Huang B, Du A, Xiao G, Gong J, et al. Pulmonary arterial hypertension induced by a novel method: Twice-intraperitoneal injection of monocrotaline. Exp Biol Med (Maywood). 2018;243:995–1003.

    CAS  PubMed Central  Google Scholar 

  128. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, et al. Sirt3 impairment and SOD2 Hyperacetylation in vascular oxidative stress and hypertension. Circ Res. 2017;121:564–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9:1286.

    PubMed  PubMed Central  Google Scholar 

  130. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with Daratumumab Monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19.

    CAS  PubMed  Google Scholar 

  131. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017;23:4290–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29.

    PubMed  Google Scholar 

  133. Roepcke S, Plock N, Yuan J, Fedyk ER, Lahu G, Zhao L, et al. Pharmacokinetics and pharmacodynamics of the cytolytic anti-CD38 human monoclonal antibody TAK-079 in monkey - model assisted preparation for the first in human trial. Pharmacol Res Perspect. 2018;6:e00402.

    PubMed  PubMed Central  Google Scholar 

  134. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. M-S HM. O M, L H, NJ O, chemistry SFJTJob. Slow-binding inhibition of NAD+ glycohydrolase by arabino analogues of beta-NAD. J Biol Chem. 1992;267:9606–11.

    Google Scholar 

  136. Zhang S, Xue X, Zhang L, Zhang L, Liu Z. Comparative analysis of Pharmacophore features and quantitative structure-activity relationships for CD38 covalent and non-covalent inhibitors. Chem Biol Drug Des. 2015;86:1411–24.

    CAS  PubMed  Google Scholar 

  137. Shrimp JH, Hu J, Dong M, Wang BS, MacDonald R, Jiang H, et al. Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe. J Am Chem Soc. 2014;136:5656–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schiavoni I, Scagnolari C, Horenstein AL, Leone P, Pierangeli A, Malavasi F, et al. CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells. Immunology. 2018;154:122–31.

    CAS  PubMed  Google Scholar 

  139. Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62:1084–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H. Flavonoids as inhibitors of human CD38. Bioorg Med Chem Lett. 2011;21:3939–42.

    CAS  PubMed  Google Scholar 

  141. Blacher E, Ben Baruch B, Levy A, Geva N, Green KD, Garneau-Tsodikova S, et al. Inhibition of glioma progression by a newly discovered CD38 inhibitor. Int J Cancer. 2015;136:1422–33.

    CAS  PubMed  Google Scholar 

  142. Shu B, Feng Y, Gui Y, Lu Q, Wei W, Xue X, et al. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-kappaB signaling suppression. Cell Signal. 2018;42:249–58.

    CAS  PubMed  Google Scholar 

  143. Becherer JD, Boros EE, Carpenter TY, Cowan DJ, Deaton DN, Haffner CD, et al. Discovery of 4-Amino-8-quinoline Carboxamides as novel, Submicromolar inhibitors of NAD-Hydrolyzing enzyme CD38. J Med Chem. 2015;58:7021–56.

    CAS  PubMed  Google Scholar 

  144. Yang L, Li T, Li S, Wu Y, Shi X, Jin H, et al. Rational design and identification of small-molecule allosteric inhibitors of CD38. Chembiochem. 2019;20:2485–93.

    CAS  PubMed  Google Scholar 

  145. Sanchez M, Romero M, Gomez-Guzman M, Tamargo J, Perez-Vizcaino F, Duarte J. Cardiovascular effects of flavonoids. Curr Med Chem. 2019;26:6991–7034.

    CAS  PubMed  Google Scholar 

  146. Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: focus on K(+) channels. Pharmacol Res. 2020;152:104625.

    CAS  PubMed  Google Scholar 

  147. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr. 2008;88:1018–25.

    CAS  PubMed  Google Scholar 

  148. Dower JI, Geleijnse JM, Gijsbers L, Schalkwijk C, Kromhout D, Hollman PC. Supplementation of the pure flavonoids Epicatechin and Quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled. Crossover Trial J Nutr. 2015;145:1459–63.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Natural Science Foundation of China (No. 81770337), Hunan Provincial Clinical Medical Technology Innovation Guide Project (No. 2018SK50413), and Hunan Provincial Natural Science Youth Foundation of China (No. 2019JJ50881).

Disclosures: none. The authors accept responsibility for the payment of the article publication charge.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbin Xiao or Qiming Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Liu, N., Zeng, Y. et al. CD38: A Potential Therapeutic Target in Cardiovascular Disease. Cardiovasc Drugs Ther 35, 815–828 (2021). https://doi.org/10.1007/s10557-020-07007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07007-8

Keywords

Navigation