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Abstract Heart failure is one of the common end stages of
cardiovascular diseases, the leading cause of death in
developed countries. Molecular mechanisms underlying
the development of heart failure remain elusive but there
is a consistent observation of chronic immune activation
and aberrant microRNA (miRNA) expression that is present
in failing hearts. This review will focus on the interplay
between the immune system and miRNAs as factors that
play a role during the development of heart failure. Several
studies have shown that heart failure patients can be
characterized by a sustained innate immune activation.
The role of inflammatory signaling is discussed and TLR4
signaling, IL-1β, TNFα and IL-6 expression appears to
coincide with the development of heart failure. Further-
more, we describe the implication of the renin angiotensin
aldosteron system in immunity and heart failure. In the past
decade microRNAs (miRNAs), small non-coding RNAs
that translationally repress protein synthesis by binding to
partially complementary sequences of mRNA, have come
to light as important regulators of several kinds of
cardiovascular diseases including cardiac hypertrophy and
heart failure. The involvement of differentially expressed
miRNAs in the inflammation that occurs during the
development of heart failure is still subject of investigation.
Here, we summarize and comment on the first studies in
this field and hypothesize on the putative involvement of
certain miRNAs in heart failure. MicroRNAs have been
shown to be critical regulators of cardiac function and
inflammation. Future research will have to point out if

dampening the immune response, and the miRNAs associated
with it, during the development of heart failure is a therapeuti-
cally plausible route to follow.

Key words Heart failure . microRNA . Inflammation .

Cardiac hypertrophy

Introduction

Cardiovascular diseases are the primary cause of human
morbidity in developed countries and mortality is quickly
increasing [1]. Heart failure is one of the common end
stages of cardiovascular diseases with a poor prognosis
highlighted by a 5 year mortality of approximately 70% [2].
Understanding the underlying molecular mechanisms that
predict and contribute to heart failure is therefore critical.

The adult human heart is an adaptive organ, able to
respond to increased demand of circulation or to injury by
significant remodeling and hypertrophic growth. Physio-
logical cardiac hypertrophy occurs following exercise and
pregnancy and is reversible after removal of the hypertro-
phic stimulus [3, 4]. Physiological cardiac hypertrophy
differs in its structural and molecular profile from patho-
logical cardiac hypertrophy and is characterized by normal
or enhanced cardiac function and increased expression of
adult isoforms of sarcomeric genes [5].

Pathological cardiac hypertrophy is an important prede-
cessor of heart failure that is observed as a consequence of
a plethora of cardiovascular diseases including hyperten-
sion, myocardial infarction, endocrine disorders and viral
myocarditis. Pathological cardiac hypertrophy is irreversible.
It may be initially adaptive in normalizing wall stress and
preserving contractile dysfunction, but can proceed to
decompensation and heart failure. The progression of hyper-
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trophy from an adaptive form to the pathophysiological state
occurs gradually over time and is characterized by cardiac
dysfunction, upregulation of fetal gene expression, impaired
myocardial vascularization, unfavorable changes in extracel-
lular matrix composition and fibrosis [5–9]. Molecular
mechanisms underlying the development of adaptive
remodeling into pathological cardiac hypertrophy remain
elusive to date, but there is a consistent observation of
chronic immune activation and aberrant microRNA (miRNA)
expression that is present in pathological hypertrophy [10–12].
Silencing of miRNAs might be therapeutically relevant and
efficient in vivo silencing in rodents and nonhuman primates
with chemically modified antisense nucleotides has been
proven successful in the treatment of cancer and hepatitis C
infection [13, 14]. This review will focus on the interplay
between the immune system and miRNAs as factors that play
a role during the development of heart failure.

Heart failure and the immune system

It has long been known that resident leukocytes are present
in the connective tissue of many organs including the heart
in a healthy situation, yet little is known about the role of
leukocytes in heart failure [15]. In the past decade, the role
of the immune system in heart failure has received a
considerable amount of attention and it is becoming
apparent that it is critical in heart failure development.
Devaux et al. investigated the presence of leukocyte subsets
in patients with end stage heart failure and found increased
amounts of T lymphocytes and macrophages compared to
healthy controls, suggesting that these cells may contribute
to the structural defects in the myocardium found in heart
failure patients [16]. Several studies have shown that heart
failure patients can be characterized by a sustained innate
immune activation [17]. Proinflammatory molecules,
named cytokines are involved in the development of
pathological cardiac hypertrophy [12]. Cytokines are a
family of low molecular weight, pharmacologically active
proteins that function as paracrine or autocrine mediators
which are secreted by various cell types including cardio-
myocytes and cells of the immune system. While short term
activation of proinflammatory cytokines in response to
cardiac damage might be cardioprotective, it may occur at
the cost of long-term deleterious effects. For example,
pretreatment of isolated rat hearts with a low dose of
LPS, inducing cytokine release from cardiomyocytes, prior
to induction of ischemia/reperfusion damage protected
against cardiac dysfunction [18]. However, long term
expression of cytokines may produce maladaptive effects
[19]. Angiotensin II (AngII), tumor necrosis factor α
(TNFα), toll-like receptor 4 (TLR4) and NF-κB are not
only markers of heart failure, but actively induce myocar-

dial dysfunction via the c-Jun N-terminal kinase (JNK)/p38
pathway, which promotes apoptosis and cardiac fibrosis
[20–22].

TLR4 is a key regulator of inflammation
in the myocardium

Recently the TLR4 pathway has emerged as an important
player in regulating cardiac hypertrophy via expression
levels of TNF-α, IL-1β and IL-6 in the heart after LPS
stimulation [23, 24]. TLR4 recognizes pathogen-associated
molecular patterns (PAMPs), such as lypopolysacharide
(LPS), that are expressed on infectious agents. Evidence
has emerged that TLR4 defective mice do not develop LV
dysfunction after LPS stimulation whereas wild type mice
developed marked defects in LV contraction and relaxation
[25]. Furthermore, mice deficient in TLR4 show reduced
infarct size and increased LV function after myocardial
infarction compared to wild type mice [26, 27]. Interestingly,
others have also observed a reduced infarct size, but did not
see an improved LV function in TLR4 deficient mice [28].

The role of TLR4 signaling in the depression of cardiac
function is still controversial. Tavener et al. reported that
the primary role of TLR4 mediated cardiac dysfunction can
be attributed to the immune system [29], while other reports
have shown that TLR4 mediated dysfunction is due to
cardiac expression of the protein [30–33].

In humans, reports have demonstrated that TLR4 expres-
sion in hearts of advanced heart failure patients is increased
[34]. The main pathway through which TLR signaling
induces cardiac inflammation ultimately leads to NF-κB
activation in immune cells and cardiomyocytes. NF-κB plays
a critical role in the expression of genes involved in cell
death, inflammatory responses and cell survival [35]. TLR4
signaling that leads to activation of NF-κB involves the
adaptor molecule myeloid differentiation factor-88 (MyD88),
kinase of IL-1 receptor-associated kinase-1 (IRAK-1), TNF-
receptor associated factor 6 (TRAF6), NF-κB-inducing
kinase, transforming growth factor (TGF)-β-activated kinase
1 (TAK1) and IκB kinase complexes [36].

Blockade of the downstream pathway of TLR4 by
cardiomyocyte specific inhibition of MyD88 reduced cardiac
hypertrophy, cardiomyocyte apoptosis and improved cardiac
function in rats, further elucidating the importance of TLR4/
NF-κB signaling in the development of cardiac dysfunction.
Furthermore, a potential role for MyD88/IL-1 signaling in the
link between innate sensing and stimulation of the adaptive
immune response during heart failure has been demonstrated
asMyD88 deficient mice were protected against autoimmune-
induced cardiomyocyte death [37].

Taken together, it appears that there is a critical role for
TLR4 in cytokine regulation in both humans and other

162 Cardiovasc Drugs Ther (2011) 25:161–170



mammals during the development of heart failure. TLR4
expression on hematopoietic cells and cardiac cells is
crucial in regulating the hypertrophic response in the heart
in response to hypertrophic stimuli. It appears that NF- κB
signaling in response to TLR4 stimulation is mediating
most of the hypertrophic effects.

NF-κB is the main effector molecule of inflammatory
signaling in the heart

NF-κB, the main downstream effector molecule of TLR4
signaling, is a nuclear transcription factor that increases the
expression of proinflammatory cytokines like TNF-α, IL-1,
IL-6 and IFNγ [38]. Short term NF-κB mediated upregula-
tion of proinflammatory mediators in the heart has beneficial
effects during viral infections as it causes increased
expression of cell-adhesion molecules and chemokines
which attract macrophages and NK cells that can prevent
viral replication in host cells, as well as upregulating nitric
oxide synthase which is directly toxic to replicating viruses.
On the long run however, persistent activation of proin-
flammatory cytokine expression appears to have detrimental
effects. In rats, myocardial infarct size was significantly
reduced after chemical NF-κB inhibition, suggesting a
detrimental role of NF-κB in challenged hearts [39]. In
humans, increased NF-κB activation has also been observed
in heart failure patients [40].

These results suggest that NF- κB is a crucial component in
the immune response that occurs during the development of
cardiac hypertrophy and heart failure. Despite the significant
beneficial effects of short term NF- κB upregulation in
response to pathological cardiac stimuli, the long term effects
of sustained NF- κB exaggerate cardiac damage, supposedly
through the upregulation of proinflammatory cytokines.

TNFα and IL-1β act synergistically to depress cardiac
function during inflammation

TNFα and IL-1β are proinflammatory cytokines produced
by macrophages, T cells and dendritic cells. Upon activa-
tion, these cells create a positive feedback loop, catalyzing
the activation of nearby T-cells that can in turn help to clear
the pathogenic substance that activated the original T cells
[41]. Besides being produced in immune cells, TNFα and
IL-1β are also synthesized by, among others, cardiomyo-
cytes in response to injury or stress [42, 43]. The expression
of these inflammatory mediators in response to cardiac
injury led to a series of investigations that elucidated their
role in the development of heart failure.

TNFα is able to induce, at physiologically relevant
levels, a significant amount of cell death in rat cardiomyo-

cytes in vitro [44]. Moreover, infusion of a pathologically
relevant amount of TNFα for 15 days in a rat model of
cardiac hypertrophy has shown that TNFα induces a
decrease in LV function, cardiac myocyte shortening, and
LV dilation [45]. Furthermore, marked LV remodeling in
mice overexpressing TNFα in a cardiomyocyte specific
manner has been demonstrated [46]. In humans, increased
levels of circulating TNFα, together with the soluble TNFα
receptors 1 and 2 serve as biomarkers for heart failure.
Phase I clinical trials have shown a short term dose
dependant improvement of LV structure and function after
3 months of treatment with Etanercept, a soluble TNF
antagonist [47]. Results of clinical trials have however been
disappointing, as two large independently performed trials
have been unable to confirm the beneficial effects of TNF
inhibition in the phase I trial [48, 49]. A possible
explanation for the inability of TNF antagonism to improve
cardiac function is that TNF antagonism may be too
specific and a more systemic approach in which multiple
proinflammatory cytokines are repressed simultaneously
might be a better approach.

The proinflammatory cytokine IL-1β has largely over-
lapping properties with TNFα. Together with TNFα, IL-1β
has been implicated in the pathogenesis of myocardial
dysfunction and cardiomyocyte death in ischemia-reperfusion
injury and chronic heart failure [43]. Most biological functions
of TNFα have also been observed for IL-1β [50, 51].
Moreover, TNFα and IL-1β have overlapping properties and
act synergistically as cultured rat cardiomyocytes showed
decreased contractile function after administration of these
cytokines [52].

The proinflammatory properties of TNFα and IL-1β
appear to be crucial in the inflammatory response occurring
during the development of heart failure induced through
various pathological stimuli. Simultaneous inhibition of
multiple proinflammatory cytokines could a therapeutically
interesting strategy to improve LV function in HF patients.

IL-6 has synergistic effects with other proinflammatory
cytokines and induces STAT3 signaling

As a target of the transcription factor NF-κB, IL-6 is one of
the major pro-inflammatory players in the cardiac environ-
ment. According to the cytokine hypothesis by Seta et al.,
heart failure progresses because proinflammatory cytokines
exaggerate hemodynamic abnormalities or because they
directly induce cardiac cell death [53]. Indeed, increased
IL-6 levels have been observed in patients with myocardial
dysfunction [54–56]. Moreover, increased plasma levels of
IL-6 have been associated with an increased risk of heart
failure [57, 58]. IL-6 is secreted by both cardiomyocytes and
cardiac fibroblasts in response to cardiac damage and acts
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synergistically with other cytokines such as IL-1β and
TNFα [57, 59].

IL-6 can exert its proinflammatory effect in two distinct
ways: via the membrane bound IL-6 receptor (IL-6R),
called the classical signaling pathway, and via the soluble
IL-6 receptor (sIL-6R), known as trans signaling [60]. Both
IL-6R and sIL-6R bind to gp130 to induce down-stream
signaling, but only gp130 and sIL-6R are essential for IL-6
signaling in the cardiomyocte to induce hypertrophy via
STAT3 and here, gp130 is the rate limiting protein.
Interestingly, IL-6 and gp130, but not sIL-6R, correlate
with a poor prognosis in HF [53, 60].

IL-6 signaling in the heart is synergistic with other
inflammatory cytokines, like IL-1β and TNF-α. Additionally,
IL-6 increases STAT3 expression, causing this cytokine to
provoke an additional hypertrophic signaling pathway. The
dual hypertrophic signaling pathways that IL-6 activates
makes it an interesting therapeutical target.

Renin angiotensin aldosteron system

The renin angiotensin aldosteron system (RAAS) is the
body’s hormonal system that regulates blood pressure and
water balance [61]. Many factors are known to underlie the
etiology of heart failure and the RAAS is one of the
systems known to be involved. In the RAAS, AngII and
aldosterone are important mediators of cardiac hypertrophy
[62]. The RAAS was suggested to be involved in the
immune reaction that coincides with heart failure by
Samsonov et al. who found a relationship between plasma
renin activity, angiotensin II, serum levels of angiotensin-
converting enzyme, aldosterone and markers of immune
activation in congestive heart failure in humans [63].

Besides the well described hemodynamic function of
AngII, it also has a well accepted direct role in the
development of cardiac remodeling, cardiac hypertrophy
and failure. The hypertrophic action of AngII on cardio-
myocytes was first suggested by the ability of angiotensin
converting enzyme (ACE) inhibitors to reduce the size of
hypertrophy in vitro in both neonatal [64] and adult
cardiomyocytes [65, 66]. Furthermore, rats treated with
ACE inhibitors display a significantly reduced left ventricular
(LV) hypertrophic response after hypertrophic stimulation by
transverse aortic banding (TAC) [67]. Besides induction of
hypertrophic growth in cultured cardiomyocytes, AngII also
causes cardiomyocytes to transcribe a fetal phenotype of
gene expression in rats including upregulation of factors such
as atrial natriuretic factor (ANF), α-skeletal actin (ACTA)
and β-myosin heavy chain (β-MHC) [68, 69]. Indirect proof
of AngII contributing to inflammation occurring during
cardiac damage comes from the study of Kvakan et al.,
which shows that injection of regulatory T cells (Treg)

ameliorated inflammation, reduced fibrosis and cardiac
damage after AngII infusion [70]. These combined observa-
tions suggest a role for AngII in pathological cardiac
hypertrophy that extends beyond its effect on blood pressure.
Angiotensin II type 1 receptors (AT1R) are expressed on
many cell types including immune cells. AngII is a peptide
hormone that, upon binding to AT1R, acts as a proinflam-
matory agent and induces the expression of NF-κB, resulting
in proinflammatory cytokine production and activation of the
immune system [71].

Aldosterone levels are elevated in humans with hyper-
trophic cardiomyopathy [72]. Furthermore, expression of
aldosterone is sufficient to cause an upregulation of
hypertrophic proteins by phosphorylation of protein kinase
D and activation of transforming growth factor-β1 by
upregulation of phophoinositide3-kinase in rat cardiomyo-
cytes [72]. It appears that AngII and aldosterone play
crucial roles in the activation of the immune system that
coincides with heart failure. Upregulation of either RAAS
protein is sufficient to initiate a hypertrophic response. It
will be interesting to see if there are therapeutically relevant
miRNA targets against the AT1R, aldosterone or one of
their downstream effector molecules that can attenuate the
hypertrophic response and the inflammation that occurs
during the development of heart failure.

Heart failure and microRNAs

In the past decade, miRNAs have come to light as
important regulators of several kinds of cardiovascular
diseases including atherosclerosis, cardiac arrhythmias,
hypertrophy and failure [73]. miRNAs are a recently
discovered class of highly conserved endogenous small
non-coding RNAs, ~22 nucleotides in length, that regulate
gene expression by binding to partially complementary
sequences of mRNA [74]. Binding of a miRNA to its
complementary mRNA causes mRNA degradation or
translational repression, effectively silencing the mRNA.
Originally it was assumed that miRNAs repressed protein
synthesis without much influence on mRNA levels [75,
76]. However, continued research unveiled that lowered
mRNA levels account for most of the decreased protein
production after miRNA interference [77]. miRNAs alter
the translation of 30% to 50% of all genes. Most miRNAs
are able to target multiple target mRNAs and most mRNAs
are targeted by multiple miRNAs, making research on the
function of miRNAs a complex endeavor.

In the heart, miRNA expression is crucial during
development as cardiac specific Dicer deletion, a crucial
protein in miRNA synthesis, leads to premature death in
mice [78]. In the adult heart miRNA expression remains
important to maintain proper pump function. Inducible
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cardiac specific knockout of the Dicer or DCGR8 gene,
both required for the synthesis of miRNA, in adult mice
caused a marked cardiomyocyte hypertrophy, fibrosis and
induction of fetal gene expression [78, 79]. Several
microarray studies have revealed signature pattern expres-
sion of specific miRNAs that are consistently aberrantly
expressed in heart failure patients. miR-1, -29, -30, -133 and
-150 are found to be downregulated in heart failure patients,
whereas miR-21, -23a, -125, -146, -195, -199 and -214 are
upregulated [9, 80–83]. Interestingly, most of the miRNAs
that are constitutively downregulated during HF, miR-1, -29,
-30 and -133, are also downregulated in cardiomyocyte
specific Dicer knockouts, suggesting a cardiomyocyte origin
of these miRNAs. Likewise, most of the upregulated miRNAs
that are upregulated during HF, miR-21,-23a,-125, and -146,
are also upregulated in cardiomyocyte specific Dicer knock-
outs. Interestingly, these cardiomyocyte miRNA-deficient
mice developed heart failure with supposedly consequent
influx of non-myocyte cells like leukocytes and fibroblasts as
contributors to the increased presence of these miRNAs.
Therefore, the cardiomyocyte specific Dicer knockout model
is highly relevant for the selection of non-myocyte miRNAs
with a role in HF.

The involvement of myocytic miRNAs in HF has been
subject of other reviews [80, 84]. The involvement of
differentially expressed miRNAs in the inflammation that
occurs during the development of heart failure is still subject
of investigation. Here, we summarize and comment on the
first studies in this field. The following sections will discuss
the potential roles of miR-155, miR-146a/b, -223,-21 and the
miR17~92 cluster.

miR-155 has a proinflammatory role in the immune
system and might be implicated in heart failure

miR-155 has an important role in the mammalian immune
system and is abundantly, though not exclusively, expressed in
T-cells, B-cells and monocytes [85, 86]. miR-155 −/− mice
are immunodeficient and show a bias towards an anti-
inflammatory TH2 cytokine production [87]. Recently, a first
in vivo study showed a pro-inflammatory role for miR-155,
where miR155 deficient mice were protected against
experimental autoimmune encephalomyelitis following de-
fective T-cell responses [88]. It thus appears that miR-155
provokes a proinflammatory response in immune cells.

In a cardiovascular setting, in human endothelial and
vascular smooth muscle cells, miR-155 is co-transcribed
with, and represses the expression of the angiotensin II type
1 receptor (AT1R) [89]. Moreover, a polymorphism in the
human AT1R is associated with cardiovascular disease,
possibly mediated through enhanced AT1R expression.
Indeed, the presence of this polymorphism interrupts base-

pairing of miR-155 with the AT1R binding site for miR-155,
derepressing AT1R expression and increasing AngII signaling
[89]. The AT-1R binding site for miR-155 is not conserved
among species. Still, in the absence of cardiomyocyte
derived miRNAs, miR-155 expression increases during HF
in mice, suggesting a role for non-cardiomyocyte derived
miR-155 production in heart failure [78]. Presumably, this
increased expression is due to immune activation during HF.

These results reveal a crucial role for miR-155 in the
immune system and unveil a possible role for miR-155
during HF. Further research on this miRNA could illustrate
interesting molecular interactions and a possible therapeutic
relevance of miR-155 treatment in HF.

miR-146a/b is expressed in monocytes
and cardiomyocytes and prevents pathological
signaling

miR-146a/b is abundantly expressed in the heart and is
upregulated upon activation of NF-κB, a transcription
factor known to be involved in the development of heart
failure [10, 39]. Indeed, miR-146 was found to be
upregulated in juvenile and adult mice with a cardiomyo-
cyte specific deficiency for the Dicer protein, suggesting a
non-cardiomyocyte origin of miR-146 [78]. Originally,
miR-146a/b was described in immune cells by Taganov et
al. who observed an NF-κB dependent upregulation of
miR-146 after LPS stimulation of monocytes [86]. The
increased expression of miR-146a/b in monocytes leads to
the repression of IRAK and TRAF6 proteins which are key
adaptor molecules downstream of Toll like and cytokine
receptor signaling. By inhibiting the expression of IRAK
and TRAF6, the expression of miR-146a/b creates an anti-
inflammatory feedback loop, inhibiting NF-κB induced
proinflammatory cytokine production [86]. In the heart, in
doxorubicin induced model of heart failure miR-146a/b was
found to be increased upon induction of cardiotoxicity and
inhibited ErbB-2 and -4 expression [90]. ErbB-2 and -4 are
receptors for the neuregulin-1 (NRG-1) protein, which is
essential for normal cardiac development and induces
hypertrophic growth in ventricular rat cardiomyocytes [91].

MiR-146a/b appears to be a key player in both immune cell
signaling and cardiomyocyte responses with its expression
being triggered by the activation of both cell types. In both
monocytes and cardiomyocytes, miR-146a/b expression is
dependent on NF-κB and in both cell types miR-146a/b
creates a negative feedback loop preventing pathological
signaling by inhibiting expression of pathological molecules
such as NF-κB and TNFα. It seems likely that there is a
relationship between the inflammatory and cardiac properties
of miR-146a/b, but no publications have currently confirmed
this statement to our knowledge.
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miR-223 cardioprotective and anti-inflammatory
properties

miR-223 regulates glucose metabolism in the heart by
increasing Glut4 expression in cardiomyocytes [92]. In
diabetes type II patients, Glut4 expression is decreased and
an increase of miR-223 is observed. Interestingly, it is also
known that pathological cardiac events such as MI and
cardiac ischemia increase the expression level of miR-223
in mice [93]. Furthermore, it is known that MI and cardiac
ischemia cause an upregulation of glucose uptake of the
heart in humans, raising the possibility that miR-223
induced glucose uptake via increased Glut4 expression
provides a cardioprotective mechanism during pathological
cardiac events.

In the immune system, miR-223 has a myeloid specific
expression pattern and its expression is dependent on
CCAAT/enhancer-binding protein (C/EBP) activity, a
known regulator of granulopoiesis [94]. miR-223 knockout
mice have an expanded granulocytic compartment [95].
Furthermore, the same study showed an increased produc-
tion, differentiation and activation of granulocytes in miR-
223 deficient mice, resulting in inflammation and exagger-
ated tissue destruction. Therefore, miR-223 was suggested

to act as a regulator of granulocyte production and the
inflammatory response.

In conclusion, miR-223 appears to have cardio-protective
and anti-inflammatory properties by enhancing glucose
metabolism and inhibiting granulocyte activation. It will be
interesting to see if future reports that investigate the effect of
miR-223 on the immune system in the development of heart
failure can confirm the anti-pathological properties that have
so far been reported.

miR-21 expression in fibroblasts might contribute
to prohypertrophic signaling in the heart

miR-21 expression is induced in several types of cancers
and is, together with miR-155, also important in monocyte
differentiation [96–99]. A cardiac role for miR-21 has been
attributed to its function in fibroblasts by Thum et al. [100].
Here, it was identified as a critical regulator of the
extracellular signal-regulated kinase-mitogen-activated pro-
tein kinase (ERK-MAPK) signaling pathway by inhibition
of the protein sprouty homologue 1 (SPRY1) [100, 101]. In
vivo silencing of miR-21 protected against pressure
overload-induced fibrosis and attenuated myocardial dys-

Fig. 1 A central role formiRNAs
and cytokines in heart failure.
Upon activation of stress signals
in cardiomyocytes, NF-κB
expression is increased which
results in the production of the
proinflammatory cytokines TNF!,
IL-1" and IL-6. These cytokines
have a plethora of roles in the
development of heart
failure, including induction of
apoptosis in myocytes, activation
and migration of immune cells
and activation of fibroblasts. In
these events, specific miRNAs
play an important role as depicted
in the individual cell types
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function. Recently however, Patrick et al. revealed that
miR-21 is not required for cardiac hypertrophy, fibrosis, or
loss of contractile function. Thus the role of miR-21 in
heart failure has not yet been unambiguously determined
but the observation that it has distinguished roles in both
the myocardium and the immune system makes it an
interesting target for future investigation.

Members of the miR-17~92 cluster are upregulated
during heart failure

The miR-17~92 cluster is a group of miRNAs that are
transcribed as a polycystronic cluster. Constitutive expression
of miR-17~92 causes inhibition of BIM and p21 proteins,
causing lymphoproliferative disorders and autoimmunity
[102]. The cluster regulates hematopoiesis and immune
function and has a role in cardiac development [103, 104].
Targeted inhibition of miR-17~92 causes postnatal lethality
in mice due to cardiac and pulmonary defects [104]. MiR-17
~92 has been reported to target connective tissue growth
factor (CTGF) which, in the heart, is associated with adverse
structural remodeling during heart failure [105–107].

Again, a miRNA with functions in the heart as well as
the immune system emerges. Future research may unravel
their interconnection during heart failure.

Conclusion

The last decade has seen a considerable amount of research on
miRNAs in heart failure and on inflammation in heart failure.
Both topics are to date not yet fully unraveled and the
interplay of miRNAs and inflammation has hardly been
touched in the field of cardiovascular research. Inflammation
is believed to be important in heart failure by the vast majority
of researchers today as animal models that inhibit the
inflammatory response show a marked decrease in cardiac
dysfunction after induction of a pathological stimulus.
miRNAs have been shown to be critical regulators of cardiac
function as alteration of miRNA expression has a drastic
influence on cardiac performance (Fig. 1). Future research
will have to point out if dampening the immune response,
and the miRNAs that are associated with it, during the
development of heart failure is a therapeutically plausible
route to follow.
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