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Abstract
Introduction The secretory phospholipase A2 (sPLA2)
family provides a seemingly endless array of potential
biological functions that is only beginning to be appreciat-
ed. In humans, this family comprises 9 different members
that vary in their tissue distribution, hydrolytic activity, and
phospholipid substrate specificity. Through their lipase
activity, these enzymes trigger various cell-signaling events
to regulate cellular functions, directly kill bacteria, or modu-
late inflammatory responses. In addition, some sPLA2’s are
high affinity ligands for cellular receptors.
Objective This review merely scratches the surface of some
of the actions of sPLA2s in innate immunity, inflammation,
and atherosclerosis. The goal is to provide an overview of
recent findings involving sPLA2s and to point to potential
pathophysiologic mechanisms that may become targets for
therapy.
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Introduction

The phospholipase A2 (PLA2, EC 3.1.1.4) family of
enzymes catalyze the hydrolysis of the sn-2 ester of

glycerophospholipids to produce free fatty acids and lyso-
phospholipids. Based on their primary actions, PLA2s are
divided into cytosolic and secretory forms [1]. In addition,
PLA2s are also subdivided into Ca2+-dependent and inde-
pendent based on their requirement for Ca2+ for catalytic
activity [2]. This review will specifically focus on the
secretory members of the PLA2 (sPLA2) family with an
emphasis placed on their respective biologic functions, in
particular, their role in host immunity, inflammation and
atherosclerosis. Other proposed roles for sPLA2s, including
cell migration [3], apoptosis [4–6], reactive oxygen species
generation and cytotoxicity [5, 7], proliferation and differ-
entiation [8, 9], coagulation [10] and cancer [11, 12] are
beyond the scope of this review.

Ten members of the sPLA2 family have been identified
in mammals, which are numbered and grouped in order of
their discovery: group IB (GIB), IIA, IIC, IID, IIE, IIF, III,
V, X and XII (Table 1) [13]. The exact molecular structure,
classification, genome localization and mechanisms of
catalytic activity are reviewed in detail elsewhere [14–17].
The human genome encodes nine sPLA2’s, with group IIC
existing as a pseudogene [18]. All sPLA2s contain a
histidine/arginine catalytic dyad forming the active center
and a conserved Ca2+-binding loop that is essential for the
enzymes’ proper function. Although not closely related at
the amino acid level (20–50% identity), the sPLA2’s share a
common molecular weight (14–16 kDa) and are rich in
disulfide bonds. The mammalian sPLA2’s have been
subdivided into three structural classes, based on the
position of disulfide bonds and sequence alignment [19].
Groups I, II, V and X sPLA2 comprise one subclass, and as
such have similar primary structures and partially over-
lapping sets of disulfides. The ~55 kDa mammalian GIII
sPLA2 is an atypical member of the sPLA2 family,
containing a central domain that is similar to the classical
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GIII bee venom sPLA2 flanked by a 130-amino acid N-
terminal domain and a 219-amino acid C-terminal domain
[20]. Finally, GXIIA sPLA2 comprises the third subclass
that is characterized by an unusual Ca2+ binding loop and
position and spacing of cysteine residues [14, 21]. Group
XIIB, a molecule homologous to GXIIA, has also been
identified [22]. Group XIIB has a mutation in the catalytic
site and has been shown to lack enzymatic activity.

The diversity in structure, enzymatic properties, and
tissue distribution of sPLA2’s argue for a wide variety of
physiological functions. The observation that one cell type
can express more than one sPLA2 also implies that their
biologic functions are not redundant. Historically, the first
sPLA2, GIB sPLA2 (also known as pancreatic sPLA2) was
identified in pancreatic secretions and recognized for its
role in the digestion of dietary phospholipids [23–25].
Interestingly, mice deficient in GIB sPLA2 exhibit no
defects in intestinal phospholipid digestion when fed a
normal rodent diet, suggesting that other enzymes, such as
pancreatic carboxyl ester lipase [26] and intestinal brush
border phospholipase B [27] may compensate for the
absence of GIB sPLA2. However, subsequent studies

revealed that GIB sPLA2-deficient mice are resistant to
high fat diet-induced obesity and obesity-related insulin
resistance, suggesting this enzyme may play a critical role
in dietary lipid absorption in the setting of a high fat diet
[28]. The protection against insulin resistance was later
attributed to reduced absorption of lysophospholipids, in
particular, lyso-phosphatidylcholine (lyso-PC), in the GIB
sPLA2-deficient mice [29]. These studies leave open the
question whether inhibitors of pancreatic PLA2 would be of
benefit in the context of high fat consumption in humans.
GIB sPLA2 has also been detected in other tissues such as
lung, liver, spleen, kidney, ovary and brain where additional
functions have been proposed [11, 30, 31].

Subsequent to the identification of GIB sPLA2, GIIA
sPLA2 (also known as non-pancreatic sPLA2) was isolated
from the synovial fluid of patients with rheumatoid arthritis
[32]. GIIA sPLA2, an acute phase reactant that is highly
upregulated during inflammation, has been strongly asso-
ciated with inflammatory conditions and its role in host
defense has been established [32–36].

Defining the physiological functions of each of the
members of the sPLA2 family poses a significant challenge.

Table 1 Mammalian sPLA2s

sPLA2

group
Tissue distributiona Features and functions Phospholipase

activity
Binding

I B Pancreatic secretions [23], lung [25],
liver, spleen, kidney, and ovary
[30], brain [31]

Digestion of dietary PLs [23], antibacterial [65],
eicosanoid formation, cell contraction,
proliferation [30], migration [11]

PG > PS >>
PC [44]

M-type [40]

II A Acute phase serum, intestinal
mucosa, lacrimal gland cells, prostatic
epithelial cells [36]

Acute phase protein [1,35], antibacterial
[60–62, 64–66], cell proliferation [3, 4],
migration [5], apoptosis [6], atherogenic [124]

PG > PS >>
PC [44]

M-, N-type [40]
HSPG [41]

C Pseudogene (human) [18] Testis,
pancreas (mouse) [44]

N/D PG >> PC [44] Low affinity
to M-type [40]

D Pancreas, spleen, thymus, skin,
lung, ovary, eosinophils [44]

N/D low phospholipase
activity PG~PC [44]

Low affinity
to M-type [40]

E Thyroid gland, uterus, embryo [44] Antibacterial [65] PG > PC [44] M-type [40]
F Placenta, testis, thymus, liver, kidney [44] Antibacterial [65] PG >> PC [44] M-type [40]

III Kidney, heart, liver, skeletal muscle,
placenta, leukocytes [20]

High molecular weight [20]. Antiviral [78] PG > PC [44] Low affinity
to M-type [40]

V Heart, eye, pancreas [44], macrophages
[99], neutrophils [69], mastocytes [70]

Antibacterial [17,65], antiviral [77], atherogenic
[137,142], AA release, eicosanoid generation [51],
phagocytosis [76]

PE > PC >
PS [46]

HSPG [41]
M-type [40]

X Intestine, lung, testis, stomach [44],
neutrophils [69], macrophages [73]

Secreted as pro-enzyme [86]. Antibacterial
[17, 65], antiviral [77], atherogenic [135],
AA release, eicosanoid generation [52, 99]

PC > PS [45] M-type [40]

XII A Heart, skeletal muscle, kidney,
pancreas [14]

Antibacterial [65] Low phospholipase
activity [14] PG >
PS >> PC

Low affinity
to M-type [40]

B Liver, kidney, skeletal muscle,
heart [22]

N/D Inactive [22] No binding
to M-type [40]

a GIB and GIIA data are obtained from humans. GV and GX data are obtained from humans and mice. Data for the other sPLA2s are obtained
from mice.
N/D not determined, PG phosphatidylglycerol, PS phosphatidylserine, PC phosphatidylcholline, HSPG heparan sulphate proteoglycans
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A common approach for studying their biologic functions
has been to exogenously add purified recombinant sPLA2

to cells in vitro, or to over-express these enzymes in
transfected cells. Gene-directed mRNA suppression and
pharmacological suppression of sPLA2 activity in vitro has
also been employed. However, with few exceptions, direct
in vivo data to support in vitro findings have been lacking.
To date, only a few animal models with altered expression
of sPLA2 have been created, and findings from these in
vivo models have not always been predicted by in vitro
studies.

Recently, new functions have been attributed to sPLA2s
that do not require enzymatic activity. Among these is the
binding to and possible cell signaling through cell surface
molecules [37–39]. For example, the relative binding
affinity of the full set of mouse sPLA2’s to the M-type
receptor has been documented [40]. Other members of the
sPLA2 family, such as GIIA and GV sPLA2, bind
proteoglycans with high affinity due to their overall
positive charge [41, 42]. These properties suggest that the
biologic functions of sPLA2s may extend beyond their
enzymatic activity and may at least in part explain the
existence of sPLA2s with poor phospholipase activity.

Biochemical properties

As their name indicates, sPLA2s catalyze the hydrolysis of
phospholipids at the sn-2 position, a reaction that generates
both free fatty acid and lysophospholipid. Due to the
amphipathic structure of phospholipids, under physiologic
conditions they are either incorporated in membranes or are
part of vesicles with various complexity, such as micelles,
lipoproteins or cellular membranes, with their hydrophilic
head-groups turned to the aqueous phase and hydrophobic
tails embedded in the inner parts of the membranes or the
vesicles. Therefore, sPLA2s must penetrate the interphase
comprised of phospholipid head groups to exert their
action. As such, an important prerequisite for the action of
sPLA2s is the successful binding to the phospholipid
surface, and this property determines some specificities of
their enzymatic activity. Indeed, the “interfacial specificity”
for each of the different sPLA2’s can vary by several orders
of magnitude [43].

In vitro studies utilizing recombinant enzymes and
artificial phospholipid substrates have provided substantial
information about the biochemical properties of the
different members of the sPLA2 family. For example, GIIA
as well as GIB sPLA2 have been shown to act on anionic
phospholipids such as phosphatidylglycerol (PG), phospha-
tidylserine (PS) and phosphatidylethanolamine (PE) but are
virtually inactive to phosphatidylcholine (PC) due to the
lack of high affinity binding [44]. In contrast, GV and GX

sPLA2 hydrolyze PC with much higher efficiency com-
pared to other members of the sPLA2 family due to a high
binding affinity [43, 45]. Perhaps not surprisingly, there is a
strong correlation between the ability of sPLA2s to
hydrolyze PC-containing artificial substrates and their
ability to hydrolyze mammalian cells and lipoprotein
particles, which contain primarily PC on the outer surface.
Thus, GV and GX sPLA2 have been shown to be the most
potent sPLA2s in mediating phospholipid hydrolysis when
added exogenously to mammalian cells, HDL and LDL
[43, 45, 46], and accordingly, these two members of the
sPLA2 family have received much attention.

Tryptophan residues located on the interfacial binding
surfaces near the N terminus appear to be critical for the
penetration of sPLA2 into zwitterionic interfaces. Thus, the
molecular basis for the extremely low activity of GIIA
sPLA2 to hydrolyze PC-rich vesicles, mammalian cell
membranes, and serum lipoproteins is the absence of
tryptophan residues that are present in both GV and GX
sPLA2 [47, 48]. The capacity of GIIA sPLA2 to discrim-
inate between PC-rich mammalian membranes and PG-rich
membranes may be critical for its role in innate immunity.
During acute infection, circulating levels of GIIA sPLA2

can increase up to three orders of magnitude [33]. High
affinity binding to bacterial membranes that are rich in PG
allows for selective phospholipid hydrolysis by GIIA
sPLA2, providing effective bacterial killing while protecting
mammalian membranes during an acute phase response.

In contrast to cytosolic PLA2 (cPLA2)-α (also designat-
ed GIVA PLA2), which has a marked specificity for
arachidonic acid at the sn-2 position of its substrate
phospholipids [49, 50], members of the sPLA2 family are
generally thought not to be arachidonyl-selective. Never-
theless, GV and GX sPLA2 have been shown to be quite
potent in mobilizing arachidonic acid and stimulating
eicosanoid synthesis in various cell types [51, 52], and
thus may play an important role in inflammation and
inflammatory diseases, as discussed in more detail in a
subsequent section of this review. Interestingly, membrane
sphingomyelin/ceramide content has been shown to modu-
late both the activity and arachidonic acid selectivity of GV
and GX sPLA2 [46, 53–55], suggesting a novel mechanism
whereby sphingolipids may regulate sPLA2-induced in-
flammatory responses. The exact mechanism by which
sphingomyelin/ceramide modulates sPLA2 activity is not
clearly understood, although the change in fatty acid
specificity has been attributed to segregation of PC and
sPLA2 between disordered and ordered sphingomyelin/free
cholesterol/PC lipid phases [53].

Conditions associated with cellular injury including
apoptosis have been shown to increase the susceptibility
of cellular membranes to hydrolysis by GIIA sPLA2

(reviewed in [56]). This may relate to the increased
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exposure of PS on the outer leaflet of the membrane [57].
Oxidative modification of phospholipids also alters the
physiochemical state of the membrane, which in turn
affects the susceptibility of oxygenated and non-oxygenated
fatty acid residues toward sPLA2 [58]. Perhaps relevant to
atherosclerotic processes, the ability of GIIA sPLA2 to
hydrolyze low density lipoproteins in vitro has been shown
to be enhanced by mild oxidation [59].

Host defense

The innate immunity is a highly conserved function of
mammalian organisms that provides a rapid yet non-
specific response to various invading agents. This targeted
and complex reaction serves to contain an infection prior to
the induction of the adaptive immune response and
involves various cell types, such as neutrophils, macro-
phages and natural killer cells and non-cellular host defense
molecules, which range from simple inorganic molecules,
such as hypochloric acid and nitric oxide, to more complex
proteins or lipids. Abundant evidence indicates that certain
members of the mammalian sPLA2 family play important
roles in host defense against microbial pathogens (recently
reviewed in [36]).

GIIA sPLA2 is predominantly recognized as part of the
innate immune system and appears to be a major
antibacterial factor against Gram-positive bacteria in human
acute phase serum [60–62]. A study of patients with sepsis
showed that of the nine human sPLA2’s, only GIIA sPLA2

could be detected in serum by time-resolved fluoroimmuno-
assay [63]. GIB sPLA2 could also be detected in sera of
patients suffering from acute pancreatitis, presumably
derived from injured pancreatic acinar cells that normally
store this enzyme in an inactive form in zymogen granules.
During acute infection, activation of the nuclear factor
(NF)-κB signaling pathway leads to the induction of pro-
inflammatory mediators, including TNF-α, IL-1 and IL-6,
which in turn induce the expression of GIIA sPLA2 in
multiple tissues [35].

GIIA sPLA2 efficiently kills various microorganisms,
such as S. aureus, E. coli, S. typhimurium and L.
monocytogenes [64–66]. Mice with transgenic expression
of human GIIA sPLA2 are resistant to infection by S.
aureus, E. coli, and B. anthracis [60, 67]. To achieve
bacterial killing, the enzyme needs to gain access to
bacterial cell membrane phospholipids. GIIA sPLA2 is able
to penetrate the peptidoglycan envelope of Gram-positive
bacteria due to its highly positive charge [65]. In contrast,
the cell membrane of Gram-negative bacteria, which is
coated by lipopolysaccharide is resistant to sPLA2 hydro-
lysis. Therefore, GIIA sPLA2 is capable of hydrolyzing the
phospholipid of the bacterial cell membrane only after the

lipopolysaccharide layer is disrupted by the action of the
bactericidal/permeability-increasing protein or the mem-
brane attack complex of complement [62, 68].

Several other sPLA2s in addition to GIIA have been
shown to have antibacterial activity. In rank order, the
potency of sPLA2s in killing Gram-positive bacteria in vitro
is: GIIA > GX > GV > GXIIA > GIIE > GIB > GIIF [65].
Identifying the precise antimicrobial roles of the various
sPLA2s in different inflammatory cell types await further
study. Current evidence suggests that GV and GX sPLA2 are
expressed by human neutrophils, whereas GIIA sPLA2 is not
detected [69]. In mouse bone marrow-derived mast cells,
GIIA sPLA2 is found associated with secretory granules,
while GV sPLA2 is present on Golgi membranes, the nuclear
envelope, and the plasma membrane [70]. Increased phos-
pholipase activity was reported in bronchoalveolar lavage
fluid of patients with respiratory distress syndrome [71] and
bronchial asthma [72], which was tentatively ascribed to
GIIA sPLA2. However, a subsequent immunohistochemistry
study showed that GIID, GV, and GX sPLA2 but not GIIA
sPLA2 is present in human lung macrophages [73].

In addition to direct killing, sPLA2s may have indirect
antibacterial effects through the activation of inflammatory
cells [39]. For example, GIIA sPLA2 stimulates neutrophils
to produce superoxide and release bactericidal enzymes
[74]. It also has been proposed that GIIA plays a role in the
removal of extracellular cell debris through a non-enzymatic
process that involves bridging of the GIIA sPLA2 protein
between anionic phospholipid vesicles and heparan sulfate
proteoglycans on macrophages [75]. In response to zymosan
stimulation, GV sPLA2 is recruited to phagosomes of
macrophages where it activates cPLA2-α and leukotriene
synthase, suggesting that it may participate in the killing of
ingested bacteria through the regulation of eicosanoid
production and as a component of the phagocytic machinery
[76].

Antiviral functions have also been attributed to GIII, GV
and GX sPLA2 [77, 78]. These sPLA2s apparently block
adenoviral infection of cells through different mechanisms.
In the case of GV and GX sPLA2, the anti-viral action
appears to be due to the conversion of PC to lyso-PC in the
host cell membrane, which interferes with virus fusion [77].
Interestingly, the anti-adenovirus effect of GIII sPLA2 is
reportedly dependent on the catalytically active central
domain as well as its unique N-terminal domain [79].
Studies to investigate the antiviral efficacy of these and
other sPLA2s in vivo are warranted.

Inflammation and eicosanoid generation

In addition to its antimicrobial activity, sPLA2s contribute
to innate immunity through the generation of various
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biologically active molecules that modulate immune re-
sponses [39]. As noted above, GIIA sPLA2 activity in
serum can increase by several orders of magnitude during an
acute phase response. The induction of other sPLA2’s during
inflammation is not well established, and it is possible that
there are species-specific differences in their regulation. In
humans, the genes for GIIC, IID, IIE, IIF, and V sPLA2 are
clustered at the same chromosomal locus of chromosome 1
as GIIA (1p34–36) [80, 81], and it is been suggested that the
transcription of these genes may be co-regulated. However,
studies investigating the induction of GV sPLA2 during
inflammation have been conflicting [42, 82–85]. GX sPLA2

transcription does not appear to be induced by inflammatory
stimuli [85]. Interestingly, findings from transgenic GX
sPLA2 mice are consisted with post-translational regulation
of GX sPLA2, such that during inflammation this molecule
may be converted from an inactive pro-peptide form to the
mature, catalytically active enzyme [86].

The generation of arachidonic acid via sPLA2 hydrolysis
has the potential to give rise to a wide variety of bioactive
lipid mediators, including prostaglandins, thromboxanes,
leukotrienes, and lipoxins. These molecules can have potent
and pleiotropic effects that modulate inflammatory
responses [87]. sPLA2s may provide arachidonic acid for
eicosanoid synthesis via multiple proposed mechanisms.
Through the “external plasma membrane pathway”, sPLA2

acts directly on the outer leaflet of the plasma membrane to
release free fatty acids. As summarized in a previous
section, this pathway is thought to be operative in the case
of GV and GX sPLA2, which are known to potently
hydrolyze PC on the surface of cells. Another possibility is
the “heparan sulphate proteoglycan (HSPG)-shuttling path-
way”, whereby heparin-binding sPLA2s may be internal-
ized and trafficked to intracellular compartments to release
arachidonic acid for eicosanoid production [88]. GIIA and
GV sPLA2 bind negatively charged HSPGs by virtue of
cationic domains in their C-terminal region. Alternatively,
sPLA2s may function intracellularly prior to secretion [89].

Numerous in vitro studies document the ability of GV
and GX sPLA2, and to a lesser extent GIIA, to generate
arachidonic acid for eicosanoid production in inflammatory
cells, including macrophages, neutrophils, eosinophils and
mast cells (for recent review, see [17]). In some cases, this
activity has been shown to involve cross-talk with cytosolic
GIV or GVIB sPLA2s [89–97]. With few exceptions, such
studies have involved transfection-mediated overexpression
or exogenous addition of sPLA2. Suppression of endoge-
nous GV sPLA2 using anti-sense oligonucleotides has been
shown to significantly reduce LPS-stimulated prostaglan-
din-E2 production in 388D1 mouse macrophage-like cells
[51]. Furthermore, peritoneal macrophages isolated from
mice deficient in GV sPLA2 exhibit impaired zymosan-
stimulated eicosanoid production [98]. However, only

modest changes in eicosanoid levels were detected in
bronchoalveolar lavage fluid of mice with transgenic over-
expression of GV sPLA2, despite approximately sevenfold
increased sPLA2 activity in their lungs compared to wild-
type mice [86]. In the case of GX sPLA2, mice with gene-
targeted deletion of this enzyme exhibited dramatically
reduced allergen-induced eicosanoid production and airway
inflammation in an in vivo model of asthma [99]. A more
recent study showed that GX sPLA2

−/− mice had attenuated
myocardial ischemia/reperfusion injury which was at least
partly due to the suppression of neutrophil cytotoxic
activities [100].

An important area of research concerns the involvement
of sPLA2s in the pathology of adult respiratory distress
syndrome (ARDS), which is characterized by alterations in
pulmonary surfactant composition that lead to increased
alveolar surface tension, alveolar collapse, and severe
disturbance of pulmonary gas exchange. Several studies
have reported increased sPLA2 activity in bronchoalveolar
lavage fluid of patients with ARDS [101–103] or severe
pneumonia [73], and that pharmacological inhibition of
sPLA2 protects animals against experimental ARDS [104].
A role for GV sPLA2 in lung pathology is also suggested
by recent studies in GV sPLA2 transgenic mice [86].
Unexpectedly, these mice died in the neonatal period
because of respiratory failure that was attributed to marked
reduction of the lung surfactant phospholipids, PC and PG.
In contrast, GX sPLA2 transgenic neonates displayed
minimal abnormality of the respiratory tract with normal
alveolar architecture and surfactant composition. Although
this finding appears to be inconsistent with in vitro data that
GX sPLA2 is more potent in hydrolyzing surfactant
phospholipids compared to GV sPLA2, the lack of a
phenotype in GX sPLA2 transgenic mice may be due to
the fact that GX sPLA2, unlike GV sPLA2, is originally
expressed in an inactive form that requires removal of 11
amino acid residues at the N terminus for catalytic activity
[52]. The authors showed that the bulk of GX sPLA2 in
lungs of the transgenic mice was present in the precursor
form. This conclusion was borne out by a more recent
study, in which the mature form of GX sPLA2 was
expressed in transgenic mice using the macrophage-specific
CD68 promoter [105]. These mice died neonatally due to
severe lung pathology that was characterized by severe
interstitial pneumonia, increased eicosanoid levels, and
enhanced hydrolysis of lung surfactant. Future studies of
experimental ARDS in GV and GX sPLA2-deficient mice
will provide definitive evidence whether or not these
sPLA2s contribute to lung dysfunction either by promoting
inflammation-induced surfactant damage and/or pathologi-
cal eicosanoid generation.

In addition to ARDs, numerous studies provide ample evi-
dence for sPLA2 involvement in other diverse inflammatory
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conditions, including rheumatoid arthritis [106], central
nervous system inflammation and neurodegenerative diseases
[107, 108], inflammatory bowel diseases including Crohn’s
disease and ulcerative colitis [109, 110], and endotoxin-
induced septic shock [111]. While GIIA sPLA2 is the major
enzyme found elevated in the systemic circulation of patients
with various acute and chronic inflammatory diseases, other
sPLA2s have also been reported to be elevated locally at
sights of inflammation and cell injury.

Interestingly, many of the biological effects exerted by
sPLA2s on inflammatory and other cells appear to be
independent of their catalytic activity [39]. The recognition
that sPLA2’s may act through binding cellular targets
distinct from membrane phospholipids was first appreciated
through studies of snake and insect venoms [112, 113]. The
N-type receptors, which bind with high affinity several
neurotoxic sPLA2s, are highly expressed in mammalian
brain membranes but have not yet been isolated or cloned.
The M-type receptor mediates myotoxic effects of sPLA2s
and is probably the best characterized binding protein for
sPLA2s [113, 114]. This receptor is a 180-kDa member of
the C-type lectin family that is structurally similar to the
macrophage mannose receptor. Based on studies in vitro,
the M-type receptor has been proposed to mediate several
biological effects of GIB, GIIA, and GX sPLA2, including
eicosanoid release, cell proliferation, cell migration, and
cytokine induction [40, 115, 116]. On the other hand, the
M-type receptor is an endocytic receptor, and it has been
suggested that it may function to internalize and inactivate
sPLA2’s [117, 118]. Mice deficient in the M-type receptor
are resistant to LPS-induced lethality, suggesting a role in
inflammation [111]. The full complement of mouse
sPLA2’s have been assessed for their ability to bind the

mouse M-type receptor [40]: sPLA2 IB, IIA, IIE, IIF, and X
bind with highest affinity (K0.5=0.3–3 nM); sPLA2 IIC and
V bind with lower affinity (K0.5=30–75 nM) and the
remaining sPLA2’s bind only weakly or not at all (K0.5>
100 nM).

Intriguingly, human GIIA sPLA2 has very low binding
affinity to the M-type receptor [119], suggesting that
different receptors may mediate the actions that are
independent of the enzyme’s catalytic activity in humans.
Indeed, very recently Saegusa et al., reported that human
GIIA sPLA2 binds with very high affinity to integrins
αVβ3 and α4β1 and induces proliferation of a monocytic
cell line directly connecting the pro-inflammatory functions
of GIIA sPLA2 and integrins [120].

Atherosclerosis

According to the “response to retention” hypothesis, a key
event in atherosclerosis is the retention of atherogenic
lipoproteins in the vessel wall, which initiates the recruit-
ment of monocyte/macrophages [121, 122]. In an effort to
remove excess lipid accumulated in the subendothelium,
these cells may convert into “foam cells”. Simultaneously,
inflammatory cytokines produced by various cell types
present in the lesion trigger and sustain the inflammatory
milieu [123, 124]. Lipid-laden cells and chronic inflamma-
tion eventually lead to core necrosis and plaque instability
[125]. Current data suggest that sPLA2s may contribute to
lipoprotein retention, foam cell formation, and inflamma-
tion in a developing lesion (Fig. 1).

A potential involvement of GIIA sPLA2 in atheroscle-
rotic processes has been recognized for well over a decade

1. LDL and HDL
modification

endothelial cellsLDL

LDL - increased 
retention to ECM*

2.Generation of 
bioactive lipids

Enhanced uptake 
by macrophages 

sPLA2 
3. Macrophage

foam cell formation

Synthesis
of inflammatory 

mediators

HDL

HDL - decreased 
anti-atherogenic

properties

Fig. 1 Model for atherogenic
role of sPLA2. 1 Upon influx in
the subendothelial space LDL
and HDL are subject to hydro-
lysis by sPLA2 generating ath-
erogenic LDL and HDL with
decreased anti-atherogenic
properties. 2 sPLA2 generates
various bioactive lipids that
promote inflammatory process-
es. 3 sPLA2 modified LDL is
readily taken up by macro-
phages. ECM* extracellular
matrix
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[126]. This interest was further amplified with the 1999
finding that circulating levels of GIIA sPLA2 are an
independent risk factor for cardiovascular events in humans
[127]. The concurrent finding in 1999 that transgenic mice
with constitutive expression of human GIIA sPLA2 spon-
taneously develop atherosclerosis even in the absence of
hyperlipidemia provided compelling evidence that this
enzyme contributes to atherogenic processes, and is not
merely a marker for the disease [128]. GIIA sPLA2

transgenic animals exhibit systemic changes in lipoproteins
including elevated VLDL/LDL cholesterol levels, lower
HDL and decreased paraoxonase activity [128] that could
contribute to increased atherosclerosis susceptibility. The
decreased HDL was later shown to be due to an increase in
the rate of hepatic selective uptake of HDL-cholesterol ester
and plasma clearance of HDL [129, 130]. Subsequent
studies in LDL receptor-deficient mice demonstrated that
expression of human GIIA sPLA2 only in bone-marrow
derived cells or specifically in macrophages increased
lesion area without any detectable changes in systemic
lipoproteins, indicating that sPLA2 in the local environment
of a developing lesion is pro-atherogenic [131–133]. The
recent discovery of additional members of the sPLA2

family that are present in lesions has raised the question
of which sPLA2 subtypes contribute to atherosclerotic
processes [134–136].

There are several potential mechanisms by which
sPLA2s can affect atherosclerotic lesion development. As
briefly reviewed in the previous section, sPLA2s may
contribute to pro-inflammatory processes through the
generation of bioactive lipid mediators, including free fatty
acids and lysophospholipids. By liberating arachidonic
acid, sPLA2 may promote the localized production of
prostaglandins, leukotrienes and thromboxanes, all of
which have potent pro-inflammatory and thrombogenic
potential. A second mechanism by which sPLA2 may
enhance lesion formation is through the generation of
atherogenic lipoproteins [137–142]. Both GV and GX
sPLA2 are capable of hydrolyzing LDL and HDL in vitro
with higher potency compared to GIIA sPLA2, producing
free fatty acids and lysophospholipids and structurally
modified lipoprotein particles [45, 46, 137, 139]. LDL
hydrolyzed by either GV or GX sPLA2 promotes macro-
phage foam cell formation in vitro [137, 139]. Our
laboratory has investigated the molecular mechanism by
which macrophages take up GV sPLA2-modified LDL, and
have shown that this process is independent of scavenger
receptors SR-A and CD36 and dependent on cell-surface
proteoglycans [140]. This finding is in agreement with
studies that sPLA2 modification of LDL leads to confor-
mational changes in apoB that enhance apoB binding to
proteoglycans of the extracellular matrix [143]. Interesting-
ly, upon binding to proteoglycans, GV sPLA2 activity on

LDL also increases [42]. Hydrolysis by sPLA2 may also
impact lipid accumulation in the vessel wall by reducing the
anti-atherogenic functions of HDL [141].

Consistent with the large body of in vitro data, a recent
gain-of-function and loss-of-function study in LDL receptor-
deficient mice confirmed that GV sPLA2 promotes athero-
sclerotic lipid deposition in vivo [144]. In the near future,
valuable information about the role of GX sPLA2, and
perhaps other members of the sPLA2 family known to be
present in lesions [134], will be provided as appropriate
mouse models become available. An important area of
research that requires further investigation is the impact of
sPLA2 on plaque stability. Several studies have reported that
macrophage-specific overexpression of GIIA or GV sPLA2

leads to increased collagen content of atherosclerotic lesions
in mice fed a high fat diet, compared to their wild type
littermates [132, 133, 144]. Although not directly demon-
strated, increased collagen deposition might be expected to
provide a more stable plaque phenotype in lesions with
enhanced expression of sPLA2. Clearly, more studies are
needed to determine whether sPLA2 alters collagen deposi-
tion by enhancing its production or reducing its degradation
in plaques, and whether such changes have an effect on
plaque stability.

Summary and future directions

Elucidating the biologic functions of specific sPLA2s
remains a significant challenge, given the relatively large
number of family members, their overlapping tissue
distribution, and their distinct biochemical properties. The
development of specific reagents and animal models to
probe their respective functions will undoubtedly lead to
novel and important insights.

The inhibition of sPLA2 activity remains an attractive
target in the treatment of acute and chronic inflammatory
diseases. However, the appropriate strategy should take into
account their diversity, their potentially redundant activities
and beneficial properties. Although sPLA2 inhibition has
been achieved through the development of compounds that
partition into the phospholipid membrane and decrease
enzyme binding, such inhibitors exhibit low specificity and
only modest efficacy [145]. In addition to the potentially
adverse effects of the inhibitors per se, non-selective
blockade of PLA2s may prove to be detrimental since they
are involved in vital cell processes and have defensive
functions that should not be overlooked. Since it appears
that more than one sPLA2 may be involved in a particular
process, selective targeting of only one sPLA2 may not be
sufficient. An additional caveat is the recent recognition
that in addition to acting as lipolytic enzymes, sPLA2s can
serve as high affinity ligands for cell surface receptors. The
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fact that there are currently no available reagents that block
enzymatic activity independent of receptor binding and vice
versa is one complication in carrying out studies to
elucidate the divergent functions of sPLA2s.
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