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Abstract
Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treat-
ment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible 
for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the  LGR5+ve CSC population 
is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert 
to a stem-like state in response to chemotherapy treatment which replenishes the  LGR5+ve CSC population and maintains 
tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the 
revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is 
quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the 
 CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor 
patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on 
CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective 
target for therapeutic intervention.
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1 Introduction

The development of malignancy along all sections of the 
colon or rectum is referred to as colorectal cancer (CRC). 
CRC presents a severe global health burden as the third 
most commonly diagnosed cancer and one of the top four 
leading causes of cancer-associated death [1–4]. Early 
stage CRC is often curable through surgical interventions; 
however, the survival rate for patients diagnosed with 
metastatic disease significantly drops to as low as 10% 
[5, 6]. Most of the deaths that occur from this disease are 

due to cancer recurrence at secondary sites after initial 
treatment [7] with tumour relapse and development of 
chemoresistance presenting a key challenge to the effec-
tive treatment of CRC.

Cellular plasticity, where cells can transition between 
different cell states, is a feature of solid tumours that con-
tributes to tumour progression and relapse [8, 9]. Cellular 
phenotypes are dynamic and capable of responding to envi-
ronmental pressures to control cell fate. This includes enter-
ing a quiescent stage upon challenge with anti-neoplastic 
agents that target dividing cells. The cancer stem cell (CSC) 
hypothesis is one model that describes cellular plasticity 
within tumours whereby a small subpopulation of tumour 
cells with regenerative potential drives tumour growth, 
therapy resistance, recurrence and metastasis [10]. This is 
evidenced by an association between the expression of stem 
cell markers and an increased risk of tumour recurrence [11]. 
Therefore, due to their ability to self-renew and differentiate, 
cells that possess stem cell properties within tumours repre-
sent a prospective target for therapeutic intervention. A key 
feature of stem cells in the normal intestinal epithelium is 
the ability to drive the continual production of cells and to 
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restore the integrity of the epithelial lining following injury. 
Daily turnover of cells is driven by crypt base columnar 
(CBC) stem cells marked by leucine-rich repeat-containing 
G-protein coupled receptor 5 (LGR5) [12]. Upon injury, 
 LGR5+ve CBC stem cells are rapidly lost and replaced by 
 LGR5−ve cells [13, 14]. Key studies have revealed that the 
 LGR5+ve stem cells within CRC tumours are also sensitive 
to injury through radiation and chemotherapy [15–17]. It has 
been suggested that the  LGR5+ve CSC population is replen-
ished after therapeutic treatment by progenitor cell types 
that revert into a stem-like state to drive tumour regeneration 
through mechanisms of cellular plasticity [17–20]. Further-
more, metastasis is primarily driven by  LGR5−ve tumour 
cells that have greater dissemination potential, inducing sec-
ondary tumour growth at distant sites through a process of 
dedifferentiation into  LGR5+ve tumour cells [20].

Recently, a unique revival stem cell (RevSC) population 
has been identified in regenerating murine epithelium by 
single-cell RNA sequencing [21]. The RevSC, character-
ised by high clusterin (CLU) expression, is a quiescent stem 
cell population during homeostasis [21]. However, upon 
tissue injury and subsequent upregulation of YAP signal-
ling, CLU-expressing cells proliferate and restore the dam-
aged epithelium, including  LGR5+ve CBC stem cells [21]. 
As  LGR5+ve CSCs share many of their characteristics with 
 LGR5+ve CBC cells and most likely originate from these 
CBC cells during cancer initiation [22, 23], it is possible that 
a regenerative stem cell type similar to the  CLU+ve RevSC is 
also present in the tumour tissue and may be either partly or 
entirely responsible for the repopulation of the CSC popula-
tion following therapeutic treatment. High CLU expression 
has been associated with several adverse outcomes in CRC 
including poor patient prognosis, tumour metastasis and 
chemotherapy resistance [24–28]. Despite this, the under-
lying mechanisms are yet to be elucidated. In this review, 
we discuss recent advancements in our understanding of 
CLU in a cancer context and its possible roles in enhancing 
the plasticity of regenerative stem cells in CRC. We further 
consider the implications of  CLU+ve regenerative stem cells 
as a potential therapeutic target.

2  Structure and function of the clusterin 
protein

CLU, also referred to as apolipoprotein J (APOJ), sulphated 
glycoprotein 2 (SGP2), serum protein 40,40 (SP-40,40), 
X-ray-inducible transcript 8 (XIP8), complement lysis inhib-
itor (CLI) or testosterone-repressed prostate message 2 gene 
(TRPM-2) is a sulphated glycoprotein first discovered in 
1979 in human salivary extract [29, 30]. In 1983, CLU was 
characterised and named due to its cell-aggregating ability 
[31]. CLU is expressed in various tissues and bodily fluids 

including the testes [32], brain [32], liver [32], kidney and 
thymus [33]. In humans, the CLU gene is located on position 
p21 of chromosome 8. The gene contains nine exons [34, 
35] and encodes at least two protein isoforms: the conven-
tional 70–80 kDa secreted CLU (sCLU) and the 49 kDa non-
secreted nuclear CLU (nCLU) (Fig. 1). The sCLU is a heter-
odimer glycoprotein consisting of two 35–40 kDa subunits, 
the α-chain and β-chain, linked by five disulphide bonds [32, 
36] (Fig. 1). nCLU, on the other hand, lacks the endoplasmic 
reticulum (ER)-targeting sequence due to exon 2 skipping 
by alternative splicing, therefore is translocated back to the 
nucleus upon translation without cleavage or glycosylation 
[37] (Fig. 1). Thus, these isoforms are present in distinct 
subcellular locations and perform different functions.

The sCLU isoform is typically secreted into the extra-
cellular fluid; however, it is retained in the cytosol upon 
cellular stress [38] (Fig. 1). sCLU was first described as 
stress-induced chaperone, protecting cells by clearing mis-
folded proteins through hydrophobic interactions [39]. It has 
been implicated in various physiological processes including 
sperm maturation [40], complement inhibition [36], lipid 
transport [32] and inhibition of apoptosis [41]. One study 
reported a decrease in cell death, cytochrome c expression 
and caspase-9 activation in sCLU overexpressing HT1080 
fibrosarcoma cells following treatment with a chemothera-
peutic agent [42]. However, conditioned media produced 
from sCLU overexpressing HT1080 cells had no such effect 
on apoptosis. Therefore, it appears that extracellular sCLU 
does not possess the same anti-apoptotic function as cyto-
solic sCLU [42]. The CLU α-chain interacts with the Bcl-
2-associated X (Bax) protein and prevents oligomerisation, 
and function of Bax [42]. Bax is required for the release of 
cytochrome c from the mitochondria to activate caspase-9, 
that in turn initiates apoptosis. The inhibition of this process 
by cytosolic CLU results in an anti-apoptotic function within 
the cell (Fig. 1).

Conversely, the nCLU isoform, which appears to be pro-
apoptotic, lacks the hydrophobic ER-signal sequence typical 
of secreted proteins and instead translocates to the nuclear 
compartment within apoptotic cells [38, 43–45] (Fig. 1). 
nCLU was shown to bind to the 70 kDa protein of the Ku 
autoantigen (Ku70) through a Ku70-binding domain in the 
C-terminus [37, 46, 47]. Ku70 in turn forms a heterodimer 
with an 80 kDa protein (Ku80), which, in addition to DNA-
dependent protein kinase, stimulates DNA repair [46, 47]. 
While the exact mechanisms of induction of apoptosis by 
nCLU through Ku70 are unclear, mutations in the Ku70 
binding domain which prevent nCLU from binding to Ku70 
result in decreased apoptosis in MCF-7 breast cancer cells 
[37]. Overexpression of nCLU in MCF-7 cells results in a 
reduction in cell growth due to an increase in cell death 
[46]. More recently, it was revealed that nCLU can bind 
directly via its C-terminal coiled-coil domain to B-cell 
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lymphoma-extra large (Bcl-xL) [48]. Bcl-xL is itself an 
inhibitor of apoptosis, demonstrating that nCLU can indi-
rectly promote apoptosis [48].

2.1  Regulation of clusterin gene expression

CLU expression is modulated by triggers including cel-
lular stress and is downstream of several different signal 
transduction pathways (Fig. 2). Transforming growth fac-
tor β (TGFβ) signalling induces expression of CLU in 
CCL64 cells [43] via activation through AP-1-binding 
sites (5*-TGA GTC A) in the minimal promoter region 
of CLU [51, 52]. In MCF7 breast cancer cells, ionizing 
radiation-induced activation of the insulin-like growth 
factor (IGF)-1 receptor and the downstream Src/Raf/

Mek/Erk cascade leads to CLU expression through early 
growth response 1 transactivation [53] (Fig. 2). The stress-
activated transcription factor, Y-box binding protein-1 has 
also been reported to mediate CLU expression via direct 
binding to the promoter region following treatment with 
chemotherapeutic paclitaxel in prostate cancer cell lines 
[54] (Fig. 2). In CRC cell lines, the cell adhesion molecule 
L1 protein upregulates CLU levels through the binding of 
signal transducer and activator of transcription 1 (STAT-1) 
to the CLU promoter which is independent of NF-κB [28] 
(Fig. 2). In addition, histone modifications have also been 
linked to the regulation of expression of the CLU isoforms, 
with H3K4me3 and H3K9me3 enhancing nCLU expres-
sion by alternative splicing in CRC cell lines [55]. In con-
trast, the eukaryotic initiation factor 3 subunit f (eIF3f) 

Fig. 1  Structure and function of nuclear clusterin (nCLU) and 
secreted clusterin (sCLU) isoforms. The CLU gene is composed 
of nine exons. Two CLU isoforms are generated through alterna-
tive splicing where exon 2 is skipped for nCLU. For sCLU, transla-
tion begins at the AUG start codon in exon 2, whereas nCLU initi-
ates in exon 3. These two isoforms have very distinct properties and 
are localised in different cellular compartments. nCLU is retained in 
the nucleus and promotes apoptosis either by affecting DNA repair 
through Ku70 binding [37, 46, 47], or by inhibiting the pro-apoptotic 

protein, Bcl-xL [48]. In contrast, sCLU translocates to the cytoplasm 
under stress or is secreted from the cell during homeostasis [38]. In 
the cytosol, sCLU inhibits oligomerisation of Bax, preventing the 
release of cytochrome c and apoptosis [42]. This results in tumour 
progression, chemotherapy resistance and promotion of metastasis. 
Furthermore, sCLU has been identified in cancer stem cells [49, 50], 
playing a critical role in aiding gastric cancer stem cell survival [50]; 
however its function and molecular mechanism within these cells 
remain to be elucidated
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has been shown to negatively affect CLU expression by 
directly interacting with the α-chain of sCLU and inhibit-
ing its secretion [56] (Fig. 2). In addition to this, it has 
been found that vitamin D can act to inhibit CLU in CRC 
indirectly through a long non-coding RNA referred to as 
maternally expressed gene 3 (MEG3) [57] (Fig. 2). Finally, 
recent studies have revealed that intestinal cells enriched 
with YAP-transcriptional signatures express a high level 
of CLU [58, 59] and the activation of YAP1-dependent 
signalling induced ectopic CLU-expressing cells in the 
intestinal epithelium [21]. Conversely, treatment with 
verteporfin, an inhibitor of YAP-signalling, blocked CLU 
expression [50] (Fig. 2).

3  Clusterin in colorectal cancer

High CLU expression has been associated with various 
cancers, including CRC [61]. Moreover, the abundance, 
intracellular localisation and histological distribution of 
CLU expression have been associated with the progression 
of CRC [38, 62–65] (Table 1). Conversely, a recent pan-
cancer analysis by Fu and colleagues of CLU expression 
revealed decreased expression across most cancers com-
pared to the matched normal tissue, including CRC [66]. 
However, this could be attributed to the opposing func-
tions of the CLU isoforms which as previously mentioned, 

Fig. 2  CLU expression can be activated by a variety of stimuli. 
L1CAM acts via STAT1 [28]; TGFβ activates TGFβR and TWIST1 
[43, 51, 52, 60], IGF1-R and the downstream Src/Raf/Mek/Erk cas-
cade acts via Egr-1 to activate expression of CLU [53]. Cellular 
injury caused by ionising radiation or chemotherapy has also been 
shown to induce CLU expression via the YB-1 In contrast, eIF3f [56] 
and MEG3 (via the vitamin D receptor) [57] can inhibit CLU action 

by interacting directly with sCLU. Pro-apoptotic Bax activity is inhib-
ited by sCLU which promotes cell survival. CLU expression has 
more recently been associated with a unique RevSC population that 
is upregulated via YAP signalling following injury [21] which may 
define a cancer stem cell population that is resistant to chemotherapy 
in CRC 
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play very different roles in the cell. For example, elevated 
expression of sCLU has been reported in invasive colo-
rectal adenocarcinomas, whereas expression in normal 
colonic tissues was detected only at very low levels [64]. 
Similar observations across different stages of colorec-
tal tumorigenesis have also been reported, with 17% of 
the adenomas, 46% of the primary CRCs and 57% of the 
CRC metastatic lesions displaying overexpression of cyto-
plasmic CLU, compared to normal mucosa [62]. Whilst 
upregulation of CLU can occur in the early stages of pre-
malignant adenomatous polyp formation, overexpression 
of CLU has been significantly correlated with advanced 
clinical stage [62]. High CLU expression also correlated 
with poor outcomes in stage II CRC within a cohort of 202 
patients [63]. Additionally, sCLU was found to be abun-
dant in the epithelium of tumour tissue, whereas in normal 
mucosa, sCLU is more abundant in the stroma [63]. Con-
versely, expression of nCLU was found to be decreased in 
colon cancer tissues compared to matched normal control 
tissues [67]. Whilst the nCLU isoform is pro-apoptotic 
and primarily expressed in normal colon epithelium, dur-
ing tumour progression, expression of nCLU decreases 
with more sCLU translocated into the cytoplasm where 
it plays a protective role in preventing apoptosis [27, 68]. 
This shift in the expression of CLU isoforms is linked 
to increased tumour cell survival, aggressiveness and 
enhanced metastatic potential [69]. Therefore, these stud-
ies highlight an oncogenic role of sCLU during tumour 
progression and its potential as a diagnostic biomarker.

3.1  Clusterin expression as a diagnostic marker

Early-stage CRC is often treatable through surgical interven-
tions and as such, early detection through the implementa-
tion of screening programs such as the faecal occult blood 
test has significantly reduced the burden of disease [70]. 
CLU expression has shown promise as a predictive bio-
marker for the identification of individuals at risk of devel-
oping CRC or in the early stages of disease [64, 71–74]. 
The progressive increase of sCLU expression in the setting 
of CRC correlates with a significant increase of CLU in the 
serum and stool of CRC patients [27, 73]. Moreover, Maz-
zarelli et al. [27] identified a significant positive correlation 
between CLU expression in stool and more advanced stage 
of disease [27]. In animal studies, it was also demonstrated 
that CLU secreted from a colon cancer cell line (Caco-2) 
injected into mice was detectable in blood samples, with 
the increasing level of CLU correlating with the increasing 
dimension of the tumours [72]. A positive correlation was 
identified between CLU expression and tumour severity with 
elevated expression of CLU also associated with a decrease 
in disease-free survival in CRC [24, 63, 65, 75] (Fig. 1). 
Again, Fu et al. [66] noted conflicting results from their 
pan-cancer analysis regarding CLU expression and overall 
survival, with high CLU expression conferring a survival 
advantage in some cancers, and a disadvantage to others 
(including CRC). Therefore, this suggests that monitoring 
expression levels of the sCLU isoform specifically may be 
a useful biomarker for the detection of disease as well as 

Table 1  Expression of clusterin (CLU) across normal, adenomatous and tumour tissue of colorectal origin

TNM: Tumour, Nodes, Metastases; n/a: not available

Studies Diagnosis TNM stage CLU expression Sample size

Nucleus Cytoplasm

Chen et al. [64] Normal colonic tissue /  −  − (very weak) 2
Hyperplastic polyps /  −  + 3
Tubular adenomas /  +  +  +  +  +  + 1
Villous adenomas /  +  +  +  +  +  + 1
Invasive adenocarcinomas n/a  −  +  + 1

Pucci et al. [68] Normal colonic tissue /  +  − 30
Adenoma /  +  + 10
Adenocarcinoma I to II  −  +  +  + 10
Adenocarcinoma III to IV  −  +  +  +  + 10

Xie et al. [62] Normal colonic mucosa / n/a  + (100%) 76
Adenoma / n/a  +  +  + (17%) 20
Primary carcinoma II n/a  +  +  + (33%) 42
Primary carcinoma III-IV n/a  +  +  + (60%) 43
Metastases IV n/a  +  +  + (57%) 35

Kevans et al. [63] Epithelium Stroma
Normal colonic mucosa / n/a  +  +  + 202
Colorectal cancer II n/a  +  +  +  + 202
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potential as a surveillance tool, in a similar approach to 
monitoring of circulating tumour DNA for the detection of 
disease relapse.

3.2  Clusterin in chemoresistance and metastasis

In addition to its use as a diagnostic marker, high CLU 
expression is also associated with advanced tumours which 
are more prone to resist chemotherapy treatment and metas-
tasis. Upregulated expression of CLU has been linked to 
increased chemoresistance in multiple cancer types includ-
ing the breast, lung, prostate, bladder, liver, pancreatic, 
ovarian, cervical, melanoma and osteosarcoma [26, 38]. As 
the sCLU isoform has an anti-apoptotic function, the sup-
pression of CLU expression may promote cell death when 
challenged by chemotherapy. Studies which modulate CLU 
expression have found that decreasing endogenous CLU 
expression through the means of drug [50, 53, 76], anti-
sense oligonucleotide [77–81] or siRNA inhibition [82, 83] 
increases sensitivity to chemotherapeutics and reduces over-
all tumour burden (as reviewed in detail by Praharaj et al. 
[38]). In contrast, treatment with exogenous CLU results in 
increased resistance to chemotherapeutics [84], despite the 
fact that sCLU in conditioned media failing to demonstrate 
an anti-apoptotic effect in cell lines [42]. Combination ther-
apy involving an antisense oligonucleotide, Custiren (OSX-
011, an inhibitor of sCLU) [77, 79] with chemotherapeutics 
in various cancers, including prostate [85, 86], lung [87] and 
breast cancer [88] demonstrated improved patient survival 
in Phase II clinical trials. However, during Phase III synergy 
trials, OGX-011 combined with prednisone and cabazitaxel 
[89] or docetaxel [90] showed no significant improvement 
in overall survival in castration-resistant prostate cancer 
patient.

CLU expression has recently been examined in CRC 
patient-derived organoids (PDOs) that had been treated 
with the chemotherapeutic 5-FU [24]. CLU expression is 
not only significantly increased after 5 days of chemother-
apy treatment in vitro but also correlated with an increase 
in PDO resistance to chemotherapy [24]. In hepatocellu-
lar carcinoma, sCLU was found to induce resistance to the 
chemotherapeutic oxaliplatin via activation of the phosph-
oinositide-3-kinase–protein kinase B (PI3K)/Akt pathway 
[91] (Fig. 1). Further analysis revealed that sCLU regulates 
PI3K/Akt pathway via downregulation of growth arrest and 
DNA-damage-inducible 45 alpha (Gadd45a) which itself 
decreases phosphorylation of Akt [92] (Fig. 1). Another 
study also explored the relationship between CLU expres-
sion and chemoresistance specifically in CRC by generat-
ing a SW480 CRC cell line that overexpresses intracellular 
sCLU. Interestingly, the sCLU overexpressing cells were 
more sensitive to combined chemotherapy treatment under 
normal and hypoxic conditions [93]. Therefore, further 

exploration of the role of CLU in therapy resistance in CRC 
is warranted, with consideration of factors including differ-
ent cancer stages, mutation profiles and consensus molecular 
subtypes (CMSs) required.

In addition to chemoresistance, an increase in CLU 
expression has also been linked to metastasis. Flanagan et al. 
[25] generated a breast cancer cell line which overexpressed 
sCLU to explore the effect on treatment response. This study 
found that sCLU-overexpressing cells transplanted into host 
mice were more resistant to cytokine-induced apoptosis and 
were also more likely to metastasise to the lung compared to 
the parental cell line [25]. Moreover, upregulation of CLU 
expression combined with L1CAM mediated signalling, a 
marker of tumour cells with metastatic potential [94], within 
LS174T CRC tumour cells results in substantial metastasis 
formation within the liver and spleen after transplantation 
(Fig. 2) [28]. Subsequent suppression of CLU expression 
via shRNA significantly decreased the number and size of 
these metastases [28]. Similarly, silencing CLU expression 
via siRNA in SW480, SW620, and Caco2 CRC cell lines in 
vitro reduced their proliferative and migratory capabilities 
[95].

Furthermore, it was shown that CLU expression is nec-
essary for TGFβ-induced cell migration as knockdown of 
both CLU, and its transcriptional regulator Twist1, sig-
nificantly reduced the number of invasive prostate cancer 
cells [60] (Figs. 1, 2). This suggests that CLU may mediate 
epithelial-mesenchymal transition and thus metastasis for-
mation through activation of the TGFβ signalling pathway. 
In contrast, overexpression of MEG3 in CRC cell lines sig-
nificantly inhibited cell proliferation and cell migration in 
vitro which corresponded to a reduction in tumour growth 
and metastasis formation in xenograft models [57].

4  Clusterin‑expressing regenerative stem 
cells

Enriched CLU expression marks the injury-induced stem 
cell type [21]. This damage-enriched  CLU+ve regenerative 
stem cell is highlighted for its tolerance to injury and cellular 
plasticity to regenerate damaged cells, and more recently 
has been identified in CRC (reviewed by Tape [96]). Upon 
irradiation or chemical-induced tissue injury,  CLU+ve cells 
can reconstitute all cell types within the intestinal crypt, 
including the  LGR5+ve CBC population [21]. The  CLU+ve 
RevSC is believed to be a unique stem cell population that is 
quiescent during homeostasis and proliferative upon tissue 
injury where these cells appear to revert to a fetal phenotype, 
with a transcriptional profile characterised by expression of 
Anxa1, Ly6a (Sca1) and Clu [21, 58, 59, 97]. In addition to 
this, the YAP gene signature is present exclusively in the 
 CLU+ve RevSC and not in the  LGR5+ve CBC population 
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[21]. Knockout of YAP1 inhibits the expansion of  CLU+ve 
RevSCs after injury, while activation of YAP1 causes pre-
mature emergence of the  CLU+ve RevSCs under homeostasis 
confirming the dependence on YAP signalling [21]. As cyto-
plasmic CLU is known to play a pro-survival role in cells, 
this could be a possible explanation for the maintenance of 
these cells in response to injury. In support of this, deple-
tion of CLU, or treatment with verteporfin, an inhibitor of 
CLU and YAP-signalling, in patient-derived gastric cancer 
tumorspheres causes apoptosis of gastric cancer stem cells 
and reduced tumour growth, highlighting the critical pro-
survival and oncogenic role of CLU [50]. A recent func-
tional single-cell study demonstrates that stromal TGFß1 
and WNT3a produced from fibroblasts can enrich colonic 
RevSC via YAP signalling under low PI3K and MAPK sig-
nalling conditions [98]. This suggests that stromal signals 
via YAP could be potentially targeted, blocking the transi-
tion towards more drug-tolerant RevSCs in CRC. This high-
lights the intricate interplay of the oncogenic and stromal 
signalling in cell-fate plasticity during colonic oncogenesis.

A RevSC signature, that includes CLU, has been con-
firmed in human colorectal tumours and, similarly to what 
has been observed in the mouse intestine, it appears to be 
largely mutually exclusive with the  LGR5+ve stem cell sig-
nature [49]. This RevSC signature was also found to be 
upregulated in serrated tumours, which constitute 15–30% 
of all colorectal tumours, and harbour different mutational 
and epigenetic signatures to conventional colorectal tumours 
[99]. Conversely, the  LGR5+ve CSC signature was predomi-
nantly found in conventional colorectal tumours [49]. CRC 
can further be divided into four consensus molecular sub-
types which categorise CRC tumours based on their molecu-
lar features including mutational signature, somatic copy 
number alterations, methylation status and proteomic profile 
[100]. The  CLU+ve RevSC signature has been identified pri-
marily within CMS4 tumours, which are characterised by 
their mesenchymal phenotype due to strong stromal infiltra-
tion and have worse overall survival when compared to the 
other subtypes [49, 100, 101]. The  LGR5+ve CSC signature 
is instead overexpressed in CMS2 tumours which represent 
canonical activation of WNT signalling, once again high-
lighting the distinct expression of the two stem cell signa-
tures [49, 100, 101].

Quiescent stem cell populations have been identified in 
PDOs derived from colorectal tumours [24, 102]. These cells 
are enriched for CLU and can re-enter the cell cycle and 
generate organoids when isolated through FACS [102]. This 
supports the notion that CRCs have considerable plastic-
ity where a  CLU+ve cells can transition to a  LGR5+ve CSC 
phenotype or vice versa, depending on the environment and 
could form the basis of differential responses to treatments. 
This transitional signature is supported by further work on 
cell-state plasticity in the initiation of metastasis, whereby 

tumour cells transition from a  LGR5+ve CSC tumour char-
acterised by canonical intestinal gene signatures into tumour 
cells expressing non-canonical gene pathways, which in 
turn were positively associated with metastasis and worse 
overall survival [103]. This transition between canonical 
and non-canonical states was further associated with a fetal 
progenitor signature which was highly expressed during 
the transition point and thus suggests a potential reversion 
to a fetal-like state prior to the acquisition of metastatic-
promoting characteristics [103]. Therefore, the ability of 
tumour cells to adapt and shift phenotype not only affects 
a response to chemotherapy but may also increase the pro-
pensity for the tumour to metastasise. To address this, it 
is necessary to identify the key drivers of these stem cell 
populations and target both simultaneously to completely 
eradicate the tumour cells and prevent treatment resistance 
or disease relapse.

4.1  The clusterin‑expressing regenerative stem cell 
as a potential therapeutic target

Extensive evidence has linked an increase in CLU expres-
sion with an increase in tumour severity and treatment resist-
ance. However, the mechanism underlying increased chem-
oresistance in CRC associated with high CLU expression 
remains unclear and may be due to the anti-apoptotic effect 
of CLU, the plasticity of  CLU+ve cells, or even the combina-
tion of both factors. It is evident that the pro-survival role of 
CLU indeed contributes to the maintenance of gastric CSCs 
in response to injury [50] and promotes CSC phenotype in 
hepatocellular carcinoma cells [104]. Whereas inhibition of 
CLU in breast CSCs has been shown to increase chemosen-
sitivity through necrosis activation [105].

The RevSC signature, including CLU, has been impli-
cated with an overall poor prognosis and it is primarily 
expressed within chemoresistant CRC tumour cells [49]. 
This signature is also observed immediately after ablation 
of the  LGR5+ve CSCs in mouse models of CRC, followed 
by repopulation of the  LGR5+ve CSC 5 days later [49]. An 
increase in CLU expression, as well as other RevSC mark-
ers including Anxa1 and Basp1, is also evident following 
chemotherapy treatment in genetically engineered mouse 
organoid models of CRC [106], and this correlates with 
what is observed in CRC PDOs [24]. Expression of these 
RevSC markers is subsequently reduced once chemotherapy 
is withdrawn and the organoids have recovered [106]. This 
demonstrates that the model of  CLU+ve cells repopulating 
 LGR5+ve CSCs after loss or damage can also be observed 
in vitro. Therefore, the  CLU+ve regenerative stem cell is 
emerging as a potential therapeutic target for the prevention 
of chemo- and radiotherapy resistance and tumour relapse. 
However, the mechanisms and processes underlying this are 
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yet to be discovered, and the role of CLU in regulating the 
function of regenerative stem cells is still undetermined.

Interestingly, a correlation between the RevSC and 
TGFβ signalling (a key regulator of CLU expression) has 
been observed by several groups, with upregulated TGFβ 
pathway activation in RevSC-enriched tumours. A work by 
Fodde et al. [107] specifically notes a correlation between 
increased Clu expression and TGFβ signalling in mouse 
colorectal tumours which develop through an inflammatory 
pathway [107]. Additionally, treatment with TGFβ pushes 
mouse WT and tumour organoids towards a RevSC pheno-
type [49], while organoids co-cultured with mesenchymal 
cells pre-treated with TGFβ1 exhibit higher expression of 
RevSC genes, including Clu, compared to organoids co-cul-
tured with vehicle pre-treated mesenchyme [108]. Another 
study by Sharif et al. [109] identifies a mesenchymal-derived 
signal (Asporin) which is induced transiently after chemo-
therapy treatment and drives an upregulation of Clu expres-
sion via the Tgfb receptor [109]. Subsequent inhibition of 
the TGFβ receptor via A8301 prevents this increase in Clu 
expression and the organoids lose their regenerative pheno-
type (represented by a cystic shape and decreased budding) 
[109]. As TGFβ signalling is known to regulate CLU expres-
sion, this provides a potential avenue for CLU to regulate the 
function of the RevSC, particularly given its known role as 
an inhibitor of apoptosis.

5  Conclusion and future directions

The tumour stem cell population is no longer considered a 
static population but has instead been shown to adapt and 
shift phenotype in response to environmental stresses. This 
is particularly relevant during chemotherapy treatment, 
where the sensitive  LGR5+ve CSC population is replenished 
by the residual resistant tumour cells, to reinitiate tumour 
formation. Hence, many therapeutics that fail to completely 
eradicate the whole tumour will ultimately result in relapse. 
The recent identification of a new regenerative stem cell 
population in CRC has provided a potential druggable target 
that may provide an avenue to improve treatment outcomes. 
CLU has been identified as a key marker of this regenerative 
stem cell, with clear associations with resistance to treat-
ment and metastasis. This may be due to the anti-apoptotic 
function of CLU, or to the role of CLU in defining plasticity 
of cells within CRC. In particular, it remains to be deter-
mined if the CLU is important in the regenerative process 
(particularly as key pathways regulating the RevSC such as 
YAP and TGFβ have also previously been associated with 
regulation of CLU expression), or if it is simply a biomarker 
for this stem cell population. Regardless, the identification of 
the RevSC as the regenerative source of the  LGR5+ve CSC 
population following chemotherapy treatment, and the role 

CLU has in this process, could elucidate a druggable target 
that may prove efficacious for the treatment of CRC.
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