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Abstract
Metabolic reprogramming, a hallmark of cancer, allows cancer cells to adapt to their specific energy needs. The Warburg 
effect benefits cancer cells in both hypoxic and normoxic conditions and is a well-studied reprogramming of metabolism in 
cancer. Interestingly, the alteration of other metabolic pathways, especially lipid metabolism has also grabbed the attention 
of scientists worldwide. Lipids, primarily consisting of fatty acids, phospholipids and cholesterol, play essential roles as 
structural component of cell membrane, signalling molecule and energy reserves. This reprogramming primarily involves 
aberrations in the uptake, synthesis and breakdown of lipids, thereby contributing to the survival, proliferation, invasion, 
migration and metastasis of cancer cells. The development of resistance to the existing treatment modalities poses a major 
challenge in the field of cancer therapy. Also, the plasticity of tumor cells was reported to be a contributing factor for the 
development of resistance. A number of studies implicated that dysregulated lipid metabolism contributes to tumor cell plas-
ticity and associated drug resistance. Therefore, it is important to understand the intricate reprogramming of lipid metabolism 
in cancer cells. In this review, we mainly focused on the implication of disturbed lipid metabolic events on inducing tumor 
cell plasticity-mediated drug resistance. In addition, we also discussed the concept of lipid peroxidation and its crucial role 
in phenotypic switching and resistance to ferroptosis in cancer cells. Elucidating the relationship between lipid metabolism, 
tumor cell plasticity and emergence of resistance will open new opportunities to develop innovative strategies and combi-
natorial approaches for the treatment of cancer.
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TG  Triglyceride
TGF-β  Transforming growth factor-beta
TKI  Tyrosine kinase inhibitor
TME  Tumor microenvironment
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1 Introduction

Cancer, with a worldwide death of nearly 10 million in 2020, 
remains one of the most lethal diseases of mankind [1]. The 
fundamental question of understanding cancer remains a 
difficult task because of the various challenges associated 
with the observation [2–4]. Diverse molecular pathways 
governing cellular processes such as survival, proliferation, 
phenotype transition, migration, aging, and death rely on the 
cascades of intracellular signalling [5–8]. Anomalies aris-
ing from errors in deoxyribonucleic acid (DNA) replication, 
chromosomal modifications, and epigenetic changes disrupt 
these processes [5–8, 9]. Consequently, these disruptions 
foster aberrant cell growth, ultimately contributing to tum-
origenesis [5, 8]. Human cells acquire various functional 
attributes that are essential during their transition from nor-
mal state to neoplastic state and are termed as hallmarks of 
cancer, might be mapped to align with each step of tumo-
rigenesis [5, 8]. The metabolic reprogramming observed in 
cancer cells, was identified as a hallmark by Hanahan and 
Weinberg in 2011, involves aberrations in bioenergetic pro-
cesses encompassing carbohydrate metabolism, amino acid 
metabolism, nucleic acid metabolism, lipid metabolism, and 
other metabolism [8, 10]. This adaptive process allows can-
cer cells to finely tune their molecular machinery in response 
to the microenvironment during various stages of cancer 
progression [8, 10]. Until 1900s, lipolysis and/or proteolysis 
were considered to be the necessary energy-yielding reac-
tions associated with cancer growth [11]. Lipids, including 
phospholipids (PL), sphingolipids (SL), triglycerides (TG), 
fatty acids (FA), and sterols, were not only involved in essen-
tial biological functions such as energy reserves, membrane 
components, and signalling molecules, but also reported 
to be involved in immunoediting, angiogenesis, invasion, 
and migration of cancer cells [12–14]. Cancer cells obtain 
lipids from the neighboring microenvironment through 
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direct uptake or by de novo synthesis [12]. De novo lipo-
genesis (DNL) is the process of synthesizing lipids from glu-
cose, acetate, or glutamine [12]. This process is specifically 
restricted to adipocytes, hepatocytes, and lactating breast in 
normal physiological conditions, but cancer cells reactivate 
this process of lipid synthesis [12]. Other than activation of 
DNL, genes responsible for lipid uptake such as, FA trans-
locase/cluster of differentiation 36 (FAT/CD36), solute car-
rier (SLC) family 27 (SLC27) also known as FA transport 
protein family (FATP), and plasma membrane FA-binding 
proteins (FABPs), were observed to be modulated in tumor 
[15–20]. In cancer cells, augmented FA synthesis is typically 
observed irrespective of extracellular lipid availability [21, 
22]. However, under metabolically stressful conditions, cells 
scavenge lipids over synthesis to meet the need for energy 
[23–26]. Tumor cells increase lipid levels and disrupt home-
ostasis by altering various lipid metabolic processes such 
as DNL, lipid transport, and lipid oxidation to assist cell 
proliferation and movement and to meet the future energy 
demand of the cancer cells [12, 13, 18, 27–29]. These dis-
ruptions enable metabolic adaptation of cancer cells linked 
with the tumor microenvironment (TME) changes to assist 
the progression of the disease [10, 12, 30–33]. The drugs 
designed to target cancer cells impede their proliferation; 
however, metabolic reprogramming subsequently reinstates 
the survival and growth of cancer cells, contributing to ther-
apeutic failure [30, 34–36]. Thus, metabolic reprogramming 
also plays a pivotal role in the development of resistance 
[35–38]. Chemoresistance, whether intrinsic or acquired, 
encompasses the mechanisms employed by TME to evade 
the therapeutic effect of chemotherapy [35, 39–41]. This 
phenomenon arises due to distorted regulation in signalling 
pathways, cancer stem cells (CSCs) adaptations, altera-
tions in cancer metabolism, epithelial-mesenchymal transi-
tion (EMT), drug efflux, dodging apoptosis, mutations in 
relapsed tumor and mitochondrial alterations [35, 39–41]. 
Resistance often evolves as a result of clonal selection by 
promoting a metabolic rewiring suited to the stress due to the 
drug and exerts a greater difficulty in achieving the expected 
therapeutic outcome [35–37, 42]. Another driving force for 
the emergence of resistance is tumor cell plasticity [43–45]. 
The ability of cells to reversibly switch phenotypes, known 
as cellular plasticity, is an indispensable feature of liver cells 
and stem cells to adapt to numerous cellular constraints that 
occur during liver regeneration and embryonic development 
[46, 47]. EMT is often referred to as a binary process dis-
tinguished either as epithelial or mesenchymal phenotype; 
however, a more recent understanding suggested that the 
cells lie in a continuum, allowing cells to exist anywhere 
in the spectrum of EMT, expressing combined features of 
both epithelial and mesenchymal phenotypes [48, 49]. In 
addition, cells in the intermediate EMT state have shown 
to exhibit stem cells characteristics [49]. EMT inducers, 

including SNAIL1 and TWIST, have also been observed to 
increase the degree of stemness of cells [49]. These obser-
vations demonstrated that EMT might be linked to acquisi-
tion of stem cell properties [48, 49]. Interestingly, targeting 
tumor cell plasticity and reversal of EMT has demonstrated 
the potential to improve cancer therapeutics [43, 50, 51]. The 
involvement of lipids in diverse facets of cancer progression 
and the role of tumor cell plasticity in conferring therapeu-
tic resistance has been extensively investigated [13, 14, 43, 
45]. However, there is currently a dearth of research focused 
on addressing the interconnected relationship between lipid 
metabolism and drug resistance associated with the plastic-
ity of the tumor cells. Therefore, in this review, we focused 
on the process of understanding the tumor cell plasticity and 
the consequent development of drug resistance in response 
to lipid metabolic reprogramming. Moreover, in our explo-
ration of tumor cell plasticity, we focused on key factors 
such as CSC, transdifferentiation, EMT, and the processes 
of invasion, migration, and metastasis that result from EMT 
in cancer cells. Inclusively, this offers a different vantage 
to delineate the molecular interactions within cancer by 
embracing lipid remodeling as a vital regulator of the tumor 
plasticity associated with drug resistance.

2  Lipid uptake and tumor cell plasticity

The process of lipolysis, including the hydrolytic cleavage 
of both extracellular and intracellular complex lipid enti-
ties into free FA (FFA), subsequently accompanied by FFA 
uptake, plays a pivotal role in augmenting the cellular FA 
pool [21, 52, 53]. FAs are essential components in diverse 
cellular functions, contributing to the composition of the 
plasma membrane, serving as an energy reservoir, and par-
ticipating in signalling pathways [54, 55]. The uptake of 
cholesterol, low-density lipoproteins (LDL), and FAs were 
mediated by several surface receptor proteins, including 
the LDL receptor (LDLR), LDLR-related family proteins 
(LRP), adenosine triphosphate (ATP) binding cassette 
(ABC) A subfamily proteins, scavenger receptor proteins, 
and SLC27 [15–17, 56]. Modulation of lipid uptake proteins 
has been demonstrated to influence tumor cell plasticity and 
the development of drug resistance. A detailed summary has 
been given in Table 1.

Exploring the effect of adipocyte conditioned media 
(ACM) on breast cancer cell lines, Zaoui and colleagues 
observed increased levels of palmitic acid and arachidonic 
acid, along with reduced oleic acid levels in ACM obtained 
after differentiation of adipocyte stem cells (ASCs) from 
breast cancer patients compared to ACM from ASCs of 
cancer-free women [57]. Culturing breast cancer cell lines 
with ACM, induced invasion and migration of SUM159 
cells irrespective of whether ASCs originated from tumors 
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or normal tissues [57]. The ACM treatment also resulted in 
an increased expression of CD36, but no lipid accumulation 
was observed in SUM159 cells, irrespective of ACM origin 
[57]. Interestingly, a similar alteration in CD36 expression 
was observed in MCF-7 cell line upon ACM treatment, but 
with an increased lipid accumulation regardless of ACM ori-
gin [57]. This change in CD36 expression and lipid droplet 
levels did not significantly affect the invasion and migration 
of the MCF-7 cell line [57]. These observations showed that 
the ACM from ASCs of tumor and normal tissues were not 
fundamentally different [57]. In another study, co-culture 
with human primary adipocytes (HPA) increased CD36 
expression in ovarian cancer cell lines and enhanced FA 
uptake and total cholesterol level [19]. In addition, ACM 
also increased FA uptake in the SKOV3ip1 cell line, and this 
effect was repressed by the CD36 inhibitor sulfo-N-succin-
imidyl oleate (SSO) [19]. HPA co-culture mediated increase 
in CD36 expression shifted lipid metabolism towards reli-
ance on exogenous FAs and cholesterol, indicated by a 
decrease in the expression of acetyl-CoA carboxylase alpha 
(ACACA), sterol regulatory element-binding transcription 
factor (SREBF)1 and SREBF2, proteins and transcription 
factors involved in lipid synthesis [19]. HPA co-culture 
also upregulated interleukin-8, which is involved in omen-
tal metastasis,  in SKOV3ip1 cells [19]. The enhanced 
CD36 expression facilitated the invasion and migration of 
SKOV3ip1 cells [19]. Moreover, the knockdown of CD36 
with short hairpin ribonucleic acid (shRNA) reversed the 
HPA co-culture-induced invasion and migration of SKO-
V3ip1 cells along with a reduction in the total cholesterol 
level and lipid accumulation [19]. Further, inhibition of 
CD36 resulted in significant reduction of metastasis in SKO-
V3ip1 and OVCAR-8 xenograft models [19]. Furthermore, 
supporting the in vitro and in vivo results, CD36 expres-
sion was higher in omental metastasis tissues compared to 
paired primary tumor tissues in ovarian cancer patients, and 
consistent upregulation was observed in omental metastatic 
expression data from Oncomine datasets [19]. Another study 
showed that inhibition of CD36 with SSO sensitized the 
lapatinib-resistant breast cancer cells (rBT474) to lapatinib 
[59]. In addition, small interfering RNA (siRNA) mediated 
silencing of CD36 enhanced apoptosis in rBT474 cell line 
[59]. Moreover, the CD36 inhibitor, JC63.1, sensitized the 
lapatinib treatment in SCID mice bearing lapatinib-resistant 
breast cancer cells [59]. Breast, colon, and prostate cancer 
cells, upon exposure to adipocyte-derived stem cell condi-
tioned media (ASCM), showed hypoxia-inducible factor-1α 
(HIF-1α) upregulation and enhanced cell migration [58]. 
The increased migratory capability of WiDr colorectal can-
cer cells upon ASCM treatment was attributed to increased 
expression of HIF-1α, subsequently led to the upregulation 
of vimentin, zinc finger E-box binding homeobox 1 (ZEB1), 
SLUG, and β-catenin and downregulation of E-cadherin Ta
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and zonula occludens-1 [58]. In addition, treatment with 
charcoal-stripped (CS)-ASCM, downregulated HIF-1α and 
reduced migration of MCF-7, PC-3, and WiDr cells [58]. 
Moreover, when these cell lines treated with lipid mixture 
and CS-ASCM, the HIF-1α expression and cell migration 
were increased [58]. Further, the involvement of HIF-1α in 
the metastatic transformation of cancer cells was substanti-
ated through in vivo studies on WiDr cells xenografts, which 
showed reversal of lipid mixture induced metastasis by intra-
peritoneal injection of HIF-1α siRNA [58]. Thus, adipocyte-
derived lipids enhanced the cancer cell migration by regulat-
ing EMT-related genes via the lipid/HIF-1α axis [58].

27-Hydroxycholesterol (27HC), an oxysterol, has been 
shown to attenuate the growth of estrogen receptor-nega-
tive breast cancer cells [18]. In addition, the ability of migra-
tion of 27HC resistant (27HCR) 4T1, Py230, and HCC1954 
breast cancer cell lines and BPD6 and B16F10 melanoma 
cell lines was enhanced on normal culture condition with 
fetal bovine serum (FBS), when compared to its 27HC sen-
sitive (27HCS) counterparts [18]. 27HCR cell lines showed 
increased lipid levels and FA uptake by altering the expres-
sion of VLDLR, SLC27, and FABPs [18]. Particularly in the 
HCC1954-27HCR cell line, increased levels of cholesterol, 
PL, neutral lipids (NL), SL, sterols, and FFA were observed 
[18]. Moreover, culturing with delipidated FBS (DL-FBS), 
the migrating ability of HCC1954-27HCR, Py230-27HCR, 
BPD6-27HCR, and B16F10-27HCR cell lines were not 
enhanced, and there was a reduction in 4T1-27HCR migrat-
ing index on comparing with 4T1-27HCR FBS culture [18]. 
Besides, the in vivo models bearing 4T1-27HCR, Py230-
27HCR, and BPD6-27HCR cell lines displayed high meta-
static potential [18]. In another study, in silico analysis 
performed using proteome datasets from the Iglesias-Gato 
database showed a remarkable upregulation of 16 lipid 
transporters in bone metastasis samples compared to pri-
mary tumor samples from prostate cancer patients [20]. 
In contrast, the expression of two other lipid transporters, 
ABCA2 and SLC27 member 4, was found to be decreased 
in the bone metastasis samples [20]. In addition, an elevated 
expression of LDLR was observed in metastatic samples 
compared to the primary tumor, in prostate cancer data from 
the Grasso and LaTulippe cohorts of the Oncomine dataset 
[20]. In metastatic samples from the Grasso, Varambally, 
and LaTulippe cohorts, the scavenger receptor class B type 
1 gene was upregulated [20].

Further, single-cell analysis of prostate cancer tissues 
revealed the presence of increased numbers of lipid-loaded 
tumor-associated macrophages (TAMs) characterized by 
elevated expression of adipophilin [60]. This phenomenon is 
associated with prostate cancer progression, as these TAMs 
release the chemokine C–C motif ligand 6 (CCL6), thereby 
promoting the migration of prostate cancer cells [60]. These 
lipid-loaded TAMs also contributed to invasion of cancer 

cells and to development of resistance to docetaxel in pros-
tate cancer, which was shown to be effectively reversed by 
treatment with macrophage receptor with a collagenous 
structure (MARCO) neutralizing antibody [60]. MARCO 
is a scavenger receptor involved in the uptake of LDLs into 
TAMs, thus contributing to the generation of lipid-loaded 
TAMs [60]. Collectively, increased expression of lipid trans-
porters has demonstrated to enhance the uptake of FAs, con-
sequently promoting cancer metastasis via inducing tumor 
cell plasticity (Fig. 1). Notably, the overexpression of CD36, 
a scavenger receptor, has been consistently linked to the 
invasion, migration, and metastatic potential of various can-
cers [19, 57, 59]. A recent study showed that the SUM159 
and MCF-7 breast cancer cell lines responded differently to 
ACM treatment [57]. This observation indicates that cancer 
cells exhibit distinct responses to their microenvironment 
based on their specific energy requirements [57]. Not only in 
cancer cells but also increased uptake of LDL by the TAMs 
in TME conferred chemoresistance and also promoted the 
disease progression [60].

3  Lipid synthesis and tumor cell plasticity

Lipid synthesis, or lipogenesis, constitutes the intricate bio-
chemical pathway responsible for the production of lipids 
from surplus cellular energy sources such as glucose and 
glutamine [12, 61]. The process involves a series of enzy-
matic reactions mainly involving ATP-citrate lyase, ACACA, 
FA synthase (FASN), stearoyl-CoA desaturase (SCD), glyc-
erol phosphate acyltransferase, acylglycerolphosphate acyl-
transferase and hydroxymethylglutaryl-coenzyme A reduc-
tase (HMGCR), lanosterol 14α-demethylase (CYP51A1), 
that convert precursors, such as acetyl-CoA and malonyl-
CoA, into different forms of lipids, including FA, TG, LPA 
and cholesterol [55, 62–64]. In the subsequent discussion, 
we will explore how lipid synthesis drives the plasticity of 
cancer cell, ultimately fostering therapeutic resistance and 
disease progression (Table 2).

The overexpression of the protein C receptor (PROCR) in 
nasopharyngeal carcinoma (NPC) significantly enhanced the 
stem cell properties of the cancer cells [67]. This enhance-
ment was evidenced by the upregulation of SRY-box tran-
scription factor 2 (SOX2) and NANOG when PROCR was 
activated by its specific ligand, activated protein C (APC) 
[67]. Apart from serving as a marker for NPC, PROCR 
also plays a crucial role in promoting invasion and migra-
tion [67]. Specifically, in the PROCR overexpressed 5-8F 
NPC cell line, upon APC treatment, there was a notable 
increase in the cells’ ability to invade and migrate through 
the ECM, which was facilitated by the transition of cancer 
cells from an epithelial state to a mesenchymal state [67]. 
When PROCR is activated, it triggered signalling through 
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Fig. 1  This figure provides an overview of the involvement of lipid 
uptake and lipid synthesis in modulating tumor cell plasticity and 
drug resistance in cancer cells. It illustrates the fatty acid transport-
ers, cholesterol receptors, and scavenger receptors, which mediate the 
transport of fatty acids resulting from extracellular lipolysis of exog-
enous lipids released from adipocyte tissues, circulating lipoproteins, 
and cholesterol. In addition, it depicts the biosynthesis pathways of 
cholesterol, fatty acids, and sphingolipids. Moreover, this figure 
majorly highlights the elevated expression (indicated either in green 
color or with “↑”) and the diminished expression of proteins denoted 
in red color, thereby contributing to increased plasticity and drug 
resistance in cancer. 3P, 3 phosphate; ABC, ATP-binding cassette 
family proteins; ACC, Acetyl-CoA carboxylase; ACAT, Acetyl-CoA 
acetyltransferase; ACLY, ATP citrate synthase; AGPAT, 1-acylglyc-
erol-3-phosphate O-acyltransferase; CD36, Cluster of differentiation 

36; CDase, Ceramidase; ELOVL, Fatty acid elongase; ER, Endo-
plasmic reticulum; FA, Fatty acids; FADS, Fatty acid desaturase; 
FASN, Fatty acid synthase; FDFT1, Farnesyl diphosphate farnesyl-
transferase 1; FDPS, Farnesyl pyrophosphate synthase; GLUT, Glu-
cose transporter; GOT2, Glutamic-oxaloacetic transaminase 2; HDL, 
High density lipoprotein; HMG-CoA, Hydroxy-3-methylglutaryl-
coenzyme A; HMGCR, Hydroxy-3-methylglutaryl-coenzyme A 
reductase; HMGCS, Hydroxy-3-methylglutaryl-coenzyme A syn-
thase; LDL, Low density lipoprotein; LPA, Lysophosphatidic acid; 
LPAR1, Lysophosphatidic acid receptor 1; MUFAs, Monounsaturated 
fatty acids; PUFAs, Polyunsaturated fatty acids; S1P, Sphingosine-
1-phosphate; SCD, Stearoyl-CoA desaturase; SGPL1, Sphingosine-
1-phosphate lyase 1; SLC27, Solute carrier family 27; SPHK, Sphin-
gosine-1-kinase; TCA, Tricarboxylic acid; VLDL, Very low density 
lipoprotein; αKG, Alpha-ketoglutarate
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the cAMP-protein kinase A pathway, resulting in the release 
of calcium from the endoplasmic reticulum [67]. Subse-
quently, calcium activated calcium/calmodulin-dependent 
protein kinase, which further activated Nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) [67]. The 
activated NF-κB then initiated the transcription of FASN, 
which is a rate-limiting enzyme involved in DNL [67]. 
By inhibiting the enzymatic activity of FASN with C75, 
the abnormal lipid synthesis was disrupted, leading to the 
reversal of the enhanced invasive and migratory properties 
of NPC cancer cells [67]. This suggests that the elevated 
lipid production facilitated by FASN is directly involved in 
promoting the invasive and migratory behavior of NPC can-
cer cells [67]. Similarly, in prostate-to-bone metastasis 
samples of prostate cancer patients from the Iglesias-Gato 
proteome dataset, the expression of FASN and HMGCR 
mRNA was found to be upregulated, suggesting increased 
lipid synthesis in these metastatic samples [20]. Another 
study showed that SCD1 inhibition in glioblastoma stem-like 
cells with shSCD1 resulted in reduced unsaturated FA lev-
els along with downregulation of pluripotency markers such 
as octamer-binding transcription factor 4 (OCT4), SOX2, 
NANOG, Nestin, and oligodendrocyte transcription factor 
2 [65]. A similar reduction in the stem cell phenotype was 
observed when a master regulator of lipid synthesis, sterol 
regulatory element binding protein (SREBP) 1, was silenced 
with shRNA [65]. In addition, inhibition of SCD1 with CAY 
(SCD1 inhibitor) sensitized the glioblastoma stem-like cells 
to temozolomide by increasing the level of apoptotic pro-
teins, namely caspase-3/7 along with DNA repair proteins 
such as C/EBP homologous protein, syntaxin-binding pro-
tein 1, and γ-H2AX as well as decreasing the expression of 
RAD51 [65]. Similarly in another study, SCD1 was shown 
to regulate the stemness in the 3D spheroids of melanoma 
cancer cell lines by increasing the level of monounsaturated 
FA (MUFA) as well as stem cell markers, including OCT4, 
NANOG, cluster of differentiation 133 (CD133), and SOX2 
[71]. They have also showed that the increased expression 
of SCD1 sustained resistance to BRAF inhibitors [71]. 
Moreover, treatment with MF-438 (SCD1 inhibitor) sen-
sitized melanoma cells to B-Raf proto-oncogene (BRAF)/
mitogen-activated protein kinase kinase (MEK) inhibitors by 
decreasing the  IC50 value, MUFA levels, YAP/TAZ activ-
ity and reducing the expression of baculoviral IAP repeat 
containing 5, TEA domain transcription factor 4 and stem 
cell markers such as OCT4, NANOG, JARID1B and CD133 
[71]. Further, similar reversal of resistance to BRAF/MEK 
inhibitors was observed when  treated along with SCD1 
siRNA [71]. Therefore, lipogenesis has shown to be a signif-
icant contributor to the promotion of invasion and migration 
in cancer cells while also playing a crucial role in maintain-
ing the CSC phenotype.

Citrate is an important metabolite of cells that provides 
energy through the TCA cycle [72]. Besides that, the trans-
port of citrate through membrane transporters plays a cru-
cial role in lipid biosynthesis [73–75]. Similarly, prostate 
cancer cell line pre-incubated with citrate showed enhanced 
lipid synthesis, particularly the levels of phosphatidylcho-
line, phosphatidylinositol, and sphingomyelin were elevated 
[69]. This alteration in lipid composition affects membrane 
fluidity, facilitating disease progression [69]. Following 48 h 
of incubation with citrate, the cells undergo EMT, charac-
terized by an increase in SNAIL and vimentin expression, 
as well as an increase in the number of single cells, ame-
boid cells, and filopodia, indicating enhanced migration of 
prostate cancer cells [69]. Furthermore, long-term (2 weeks) 
exposure to citrate is associated with metastatic colonization, 
as evidenced by the downregulation of SNAIL, SLUG, and 
vimentin, along with a reduction in filopodia and increased 
GLUT1 expression and flattened cells [69]. Surprisingly, 
despite the significant downregulation of the plasma mem-
brane citrate transporter (pmCiC) after 48 h of citrate incu-
bation, the lipid synthesis was increased in PC-3 M cells 
[69]. However, significant pmCiC downregulation was not 
observed after 2 weeks of incubation of PC-3 M with citrate 
[69]. It is worth noting that, in the case of pancreatic cancer 
in vivo model, the inhibition of pmCiC with gluconate leads 
to increased apoptosis and reduced metastasis [69]. These 
findings further support the notion that citrate-induced alter-
ations in lipogenesis promote plasticity of cancer cells and 
contribute to the progression of the disease [69].

Lipids are also involved in signal transduction that sup-
ports the development of cancer and promotes survival, 
proliferation, and metastasis [76]. Lysophosphatidic acid 
(LPA) and sphingosine-1-phosphate (S1P) are intermedi-
ates of lipid metabolism, which can also act as signalling 
molecules to regulate cellular processes such as lipid syn-
thesis, differentiation, survival, adhesion, and migration 
[77–79]. In addition, the expression of S1P lyase 1 (SGPL1) 
was observed to be downregulated in MCF-7, BT-20, and 
MDA-MB-231 breast cancer cell lines when compared to 
normal breast epithelial cell lines MCF-10A and MCF-12A 
[66]. This downregulation of SGPL1 promoted the migra-
tion of breast cancer cell lines when treated with S1P [66]. 
Conversely, overexpressing SGPL1 reduced the migrating 
capacity of MCF-7 and BT-20 cell lines [66]. Another study 
showed contradicting results with charcoal-stripped serum 
(CSS) and S1P [70]. Supplementing the prostate cancer cell 
lines with CSS, deprived of  LPA and S1P, increased the 
invasiveness and migrating ability of PC-3 and LNCaP cell 
lines [70]. This was characterized by a decrease in sphe-
roid roundness and an increase in basement membrane 
disintegration [70]. However, the CSS-induced migration 
and invasion were inhibited by the addition of LPA or S1P 
[70]. Moreover, specifically inhibiting the activity of LPA 
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receptor (LPAR) 1, but not LPAR2 and S1P receptors 1–4, 
increased the invasiveness of the PC-3 cell line [70]. Sub-
sequent molecular-level analyses and in vivo validations 
were warranted for a robust interpretation of these findings. 
Despite Harma and colleagues reported the involvement of 
LPAR1 in modulating the invasiveness of a prostate cancer 
cell line, these results present contradictions when compared 
to recent studies conducted using DL-FBS and charcoal-
stripped media, wherein the increase in lipid content was 
associated with enhanced cellular plasticity [18, 58, 70].

Many studies have highlighted the role of cholesterol in 
the progression of cancer and the development of therapeutic 
resistance [68, 80–82]. In the context of prostate cancer, it 
has been observed that cholesterol facilitated the interac-
tion between adipocyte plasma membrane-associated pro-
teins and epidermal growth factor receptor (EGFR) substrate 
15-related protein (ESP15R) [80]. This interaction resulted 
in a decrease in EGFR endocytosis, subsequently promoting 
EMT in prostate cancer [80]. In another study, Shao et al. 
have elucidated a mechanism in which cholesterol plays a 
regulatory role in the selective autophagic degradation of 
receptor tyrosine kinases (RTKs) mediated by Golgi mem-
brane protein 1 (GOLM1) through the mammalian target 
of rapamycin complex-1 axis [81]. In hepatocellular carci-
noma, cholesterol impeded the degradation of RTKs such 
as EGFR and MET, consequently enhancing the recycling 
of these receptors [81]. Interestingly, the combination of the 
cholesterol inhibitor, lovastatin with tyrosine kinase inhibi-
tor (TKI) enhanced the effectiveness of TKI, resulting in a 
reduction of pathways associated with tumor formation [81]. 
Additionally, another study demonstrated an increase in the 
synthesis of cholesterol in lung cancer cell lines treated with 
lapatinib or gefitinib, both of which are inhibitors of the 
EGFR tyrosine kinase [68]. The research uncovered that the 
administration of these drugs induced resistance in the cell 
lines by activating specific genes associated with cholesterol 
synthesis, namely CYP51A1, SREBP2, dehydrocholesterol 
reductase (DHCR) 7, and DHCR24 [68]. Intriguingly, co-
treatment with ketoconazole, an inhibitor of CYP51A1, 
reversed this resistance and triggered apoptosis [68]. Cor-
responding outcomes were observed in a xenograft mice 
model where the combined treatment resulted in diminished 
tumor growth [68]. Notably, in nude mice H1650 xenograft 
model, transitioning from lapatinib monotherapy to a combi-
nation with ketoconazole led to a reduction in tumor growth 
compared to the group with only lapatinib treatment [68].

In essence, lipid synthesis has been shown to be a key 
factor in the metastatic progression of cancer, the gen-
eration of CSCs, and the development of drug resistance 
which is commonly associated with stem cells [41]. Figure 1 
summarizes the process of lipid synthesis and highlights 
the major genes that are involved in enhancing cell inva-
sion and migration and in maintaining the CSC phenotype. 

As discussed previously, Drexler et al. showed that citrate 
treatment increased the aggressiveness of prostate cancer 
cells [69]. Contrastingly, a recent study by Zhao et al. dem-
onstrated that treatment with citrate promotes senescence 
in tumor cells and inhibits the growth of various cancers, 
such as breast, colorectal, and lung, by stimulating excessive 
lipid synthesis [72]. These conflicting results suggest that 
the role of lipid synthesis may vary across different types 
of cancer. Further investigation is necessary to elucidate the 
precise contribution of metabolites and genes involved in 
lipogenesis and their impact on tumor cell plasticity and 
drug resistance.

4  Lipid catabolism and tumor cell plasticity

Lipid catabolism is an integral aspect of lipid metabolism, 
serving as the process through which the body breaks down 
fats mainly to generate energy [55, 83]. It plays a crucial role 
in maintaining energy homeostasis, ensuring a continuous 
fuel supply to meet the energy requirements of various cel-
lular processes [83]. The degradation of FAs forms a central 
part of lipid catabolism [55, 83]. FAs are the building blocks 
of simple and complex lipids [55]. The initial step, lipolysis, 
entails the hydrolysis of lipids, resulting in the generation of 
FFAs [53]. Before being transported into the mitochondrion 
for oxidation, FFAs are activated to form fatty acyl-CoA by 
the acyl-CoA synthetase long-chain family proteins (ACSLs) 
[84]. On the outer mitochondrial membrane, an enzyme 
called carnitine palmitoyltransferase I (CPT1) converts 
fatty acyl-CoA to fatty acylcarnitine [55, 84]. The acylcar-
nitine is then shuttled into the mitochondrial matrix by the 
carnitine/acylcarnitine translocase (CACT) located on the 
inner mitochondrial membrane [55, 84]. Once entered inside 
the matrix, carnitine palmitoyltransferase II (CPT2), posi-
tioned on the matrix side of the inner membrane, converts 
acylcarnitine back to acyl-CoA for further metabolism and 
production of ATP [55, 84]. Interestingly, cancer cells have 
developed intricate alterations to modify this energy-gen-
erating process, to support their progression by undergoing 
molecular and phenotypic changes [85–88]. In this session, 
we will discuss the modifications in lipid catabolic pathway 
in cancer cells to facilitate their progression. Table 3 sum-
marizes the role of lipid catabolism and associated proteins 
in tumor cell plasticity and drug resistance.

In a study conducted by Blucher and group, treating 
the breast cells with ACM derived from adipose tissue of 
morbidly obese patients, upregulated angiopoietin-like 4 
(ANGPTL4), cAMP responsive element binding protein 3 
like 3, and FA β-oxidation genes such as CPT1A, SLC family 
25 member 20 and acetyl-CoA acyltransferase 2 [85]. These 
alteration in expression of genes resulted in increased inva-
sion and migration of MDA-MB-231, HCC38, and E0771 
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breast cancer cell lines [85]. Notably, the upregulation was 
more pronounced when cells were treated with ACM derived 
from adipose tissues of morbidly obese patients compared to 
tissues from overweight patients [85]. Additionally, inhibit-
ing ANGPTL4 using siRNA or shRNA reduced the invasive-
ness and migration potential of MDA-MB-231 cells [85]. 
Moreover, the inactivation of focal adhesion kinase (FAK) 
signalling was also observed during ANGPTL4 inhibition, 
which was activated upon ACM treatment [85]. Therefore, 
the upregulation of ANGPTL4 by ACM, enhanced FAK sig-
nalling, consequently regulating tumor cell plasticity and 
increased the invasion and migration capabilities of breast 
cancer cells [85]. In another study, prostate cancer cell lines 
with a highly malignant phenotype exhibited enhanced uti-
lization of FAs, as indicated by increased palmitate oxida-
tion, elevated expression, and activity of key enzymes such 
as CPT1A, CACT, and carnitine acetyltransferase (CRAT), 
as well as reduction in malonyl-CoA levels [86]. Interest-
ingly, the downregulation of miR-124, miR-129, and miR-
378, which have the potential to target these three enzymes, 

respectively, was observed in PC-3 and LNCaP cell lines 
[86]. In addition, transfection of PC-3 and LNCaP cell lines 
with miR-124, miR-129, and miR-378 mimics downregu-
lated CPT1A, CACT, and CRAT expression respectively, 
and resulted in decreased invasion and migration of these 
cell lines [86]. Bexarotene, a third-generation retinoid, 
treatment induced transition from mesenchymal to epithe-
lial state (mesenchymal-epithelial transition) by decreasing 
the expression of ZEB1, fibronectin (FN), serpin family E 
member 1 (SERPINE1), SLUG, and CD44 [87]. This shift 
in phenotype is driven by reducing FA oxidation (FAO) and 
promoting lipid accumulation [87]. In addition, bexarotene 
exposure conferred susceptibility to 5-fluorouracil treatment 
in both mesenchymal state paclitaxel-resistant SUM159 cell 
line and patient-derived cell line [87]. Moreover, inducing 
expression of SLUG in the MCF-7 cell line exhibited an 
increase in stored lipids along with upregulation of mesen-
chymal markers such as SNAIL, vimentin, FN, ZEB1, and 
N-cadherin, as well as a reduction in E-cadherin [87]. Inter-
estingly, inhibiting FAO with etomoxir (CPT1 inhibitor) or 

Fig. 2  This illustration depicts the accelerated lipid catabolism (indi-
cated by “↑”) in cancer cells, achieved by increasing the expression of 
the proteins (represented in green) that regulate this process. These 
modifications culminate in the increase of plasticity and promote can-
cer cell invasion and migration. Moreover, the figure elucidates the 
process of cytosolic lipolysis from the intracellular lipid storage and 
activation of fatty acid to assist the transportation into mitochondria 
to undergo β-oxidation for energy production. ACOX1, Acyl-CoA 

oxidase 1; ACSLs, Acyl-CoA synthetase long-chain family proteins; 
ATGL, Adipose triglyceride lipase; ATP, Adenosine triphosphate; 
CACT, Carnitine-acylcarnitine translocase; CoA, Coenzyme A; 
CPT1, Carnitine palmitoyltransferase 1; CPT2, Carnitine palmitoyl-
transferase 2; DAG, Diacylglycerol; ECH1, Enoyl-CoA hydratase 1; 
FA, Fatty acids; FAD, Flavin adenine dinucleotide; HSL, Hormone-
sensitive lipase; MAG, Monoacylglycerol; MGL, Monoacylglycerol 
lipase; TAG, Triacylglycerol; TCA, Tricarboxylic acid
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by knocking down CPT1A led to a shift towards the epithe-
lial state, and decrease in metastasis of MCF-7-Slug+Sox9 
cells in in vitro and in vivo mice xenograft models [87]. Con-
sistent findings were observed in A549 and Hep3B cell lines, 
where EMT was induced by transforming growth factor-beta 
(TGF-β), and etomoxir treatment resulted in the reversal of 
EMT in both lung and liver cancer cell lines [87]. Hence, 
lipid catabolism plays a crucial role in regulating plasticity 
and modulating cancer metastasis.

Li and team studied the role of lipid catabolic remod-
eling in neutrophils present in the lung microenvironment 
in facilitating breast cancer metastasis to the lungs [88]. The 
study showed that neutrophils were reported to promote lung 
metastasis of breast cancer by fueling the metastasizing 
breast cancer cells in lung microenvironment [88]. This is 
mainly achieved through the lipid-laden phenotype acquired 
by neutrophils through its interaction with lung mesenchy-
mal cells [88]. The lung mesenchymal cells initiate this 
process by suppressing adipose triglyceride lipase (ATGL) 
activity in neutrophils, which then promotes the storage of 
accumulated lipids in the form of TG in neutrophils [88]. 
The lipid-laden neutrophils then serve as a form of fuel or 
energy for the disseminated tumor cells in the secondary 
tumor site at the lung through extracellular vesicle-mediated 
transport of TG, thus promoting proliferation and metastatic 
ability of breast cancer cells [88]. This neutrophil-mediated 
lipid-driven energy utilization by tumor cells was confirmed 
both in vitro and in vivo [88]. The 4T1 tumor cells when 
co-cultured with lung neutrophils, showed increased expres-
sion of various lipolysis and FAO genes such as lipase E 
(LIPE), ATGL, lipase A (LIPA), CPT1B, CPT2, enoyl-CoA 
hydratase 1 (ECH1) and acyl-CoA oxidase 1 (ACOX1) [88]. 
The upregulation of these genes was also correlated with 
high oxidative phosphorylation, leading to high oxygen con-
sumption by the tumor cells, thus indicating metabolic shift 
and consumption of lipids as a source of energy for their pro-
liferation and metastatic colonization in the lungs [88]. They 
have also observed an increase in the viability of 4T1 cells 
upon its co-culture with lung neutrophil, even when the DNL 
was inhibited with cerulenin or C75 [88]. This indicated that 
there was no involvement of DNL in this lipid-driven disease 
progression and supported that the 4T1 cells are depend-
ent on transported TGs from neutrophils for energy [88]. In 
addition, analyzing the lung neutrophils of 4T1 tumor-bear-
ing mice in the premetastatic stage showed that the level of 
lipid droplets was increased, and the lipase activity and TG 
hydrolase activity were decreased [88]. This was due to the 
increased expression of ATGL inhibitors such as hypoxia-
inducible lipid droplet-associated protein (HILPDA), G0/G1 
switch gene 2 and cell death-inducing DFFA-like effector 
c in lung neutrophils of 4T1 tumor-bearing mice at prem-
etastatic stage [88]. Moreover, 4T1 cells co-cultured with 

lung neutrophils displayed increased metastasis in BALB/cJ 
mouse xenografts [88]. Furthermore, increased lipid droplets 
in neutrophils and enhanced metastasis were observed in 
AT3-bearing ATGL-conditional knockout (cKO) mice [88]. 
However, in AT3-bearing HILPDA-cKO mice, the meta-
static colonization was inhibited [88]. These in vivo results 
showed that the tumor cells in the presence of lipid-laden 
neutrophils become more progressive, thereby increasing the 
colonization of breast cancer cells in the lungs [88]. Hence, 
regulating lipid metabolism might be beneficial in managing 
breast cancer metastasis in the lung microenvironment [88].

In summary, the FAO appears to be one of the main con-
tributors to metastatic capabilities of cancer, as previously 
stated (Fig. 2). Inhibition of FAO through targeted interven-
tions towards key enzymes involved in the process has been 
shown to reduce the invasion, migration and metastasis of 
cancer cells. Moreover, when FAO is upregulated and shown 
to be the cause of metastatic transition, a decrease in FA 
synthesis is coupled. As shown in the study conducted by 
Blucher et al. where the treatment with ACM from obese 
individuals increased the expression of ANGPTL4 and FAO, 
thereby increasing invasion and migration of breast cancer 
cells and, at the same time, genes involved in lipid synthe-
sis such as SCD1, FASN, and SREBP were downregulated 
[85]. It was further supported by Valentino and colleagues, 
who observed a reduction in the level of malonyl-CoA and 
an increase in palmitate oxidation in metastatic prostate 
cancer cell lines [86]. Malonyl-CoA is an intermediate of 
FA synthesis that also acts as a direct inhibitor of CPT1, a 
rate-limiting enzyme in the β-oxidation pathway [84]. This 
indicates that cancer cells, while fulfilling their requisites 
for metastatic progression, consistently maintain a balance 
between lipid synthesis and catabolism.

5  Lipid peroxidation and tumor cell 
plasticity

Lipid peroxidation is a biological process that occurs when 
free radicals interact with lipids, resulting in the production 
of lipid peroxyl radicals and hydroperoxides [89]. Typically, 
lipid peroxidation is linked to cellular damage and aging 
[90]. However, emerging research has revealed its intriguing 
potential in impeding cancer progression through a specific 
type of programmed cell death known as ferroptosis [91, 
92]. Ferroptosis is a regulated mechanism characterized by 
the accumulation of lipid peroxides, which involves altera-
tion in iron metabolism and the depletion of intracellular 
antioxidants, particularly glutathione (GSH) [91, 92]. GSH 
peroxidase 4 (GPX4), an essential selenoenzyme, utilizes 
GSH as a co-factor to prevent lipid peroxidation of cell 
membranes, particularly during times of increased oxidative 
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stress [93]. In subsequent discussions, we aim to elucidate 
the significance of lipid peroxidation in the plasticity of 
tumors and the associated resistance (Table 4).

Viswanathan et al. have conducted extensive research on 
understanding the relationship between therapy-resistant 
mesenchymal states of various types of cancer cell lines and 
ferroptosis [95]. They showed that the gefitinib-resistant lung 
cancer cell line with a high mesenchymal phenotype is sensi-
tive to ML210, a GPX4 inhibitor known to induce ferroptosis 
[95]. Also, the high mesenchymal state pancreatic cancer cell 
line, KP4, was found to be sensitive to ML210 treatment 
[95]. However, the knockdown of ZEB1 led to the develop-
ment of resistance to ML210 in KP4 [95]. This showed that 
ZEB1 plays an important role in GPX4 dependency of the 
mesenchymal state cells [95]. It was also demonstrated that 
ML210 sensitivity was negatively correlated with erlotinib 
sensitivity, along with the positive correlation of mesenchy-
mal markers expression in patient-derived pancreatic cancer 
cell lines [95]. The supplementation of ferrostatin (FER) 1, 
a lipophilic antioxidant, facilitated the survival of GPX4-
KO cancer cell lines by protecting them from ferroptosis-
mediated cell death [95]. Nonetheless, upon withdrawal of 
FER1 supplementation, the GPX4-KO KP4 cell line exhib-
ited increased cell death due to ferroptosis, whereas the epi-
thelial state GPX4-KO cell lines remained unaffected [95]. 
The lipid peroxidation mediated ferroptosis was depended 
on the metabolism of long-chain polyunsaturated FA, such 
as arachidonic acid, which becomes reactive lipid peroxides 
upon lipoxygenase enzyme action [95]. Supporting their find-
ings, KO of polyunsaturated FA metabolism genes ACSL4 
and lysophosphatidylcholine acyltransferase 3 abolished the 
sensitivity of KP4 to ML210 treatment [95]. Similar results 
were observed when arachidonic acid lipoxygenases were 
inhibited with PD146176 and zileuton in the KP4 cell line 
[95]. In prostate cancer, the patient-derived organoid showed 
high expression of ZEB1, and mesenchymal genes, repre-
senting the therapy-induced neuroendocrine transition, were 
sensitive to treatment with RSL3, a direct inhibitor of GPX4 
[95]. In addition, the TGF-β treatment changed the phenotype 
of patient-derived melanoma cell lines into a mesenchymal 
state [95]. These mesenchymal state cell lines were resistant 
to vemurafenib (PLX-4032), a BRAF inhibitor, and sensitive 
to RSL3 treatment [95]. Moreover, the mesenchymal state 
LOXIMVI melanoma cell line was found to be susceptible 
to GPX4 inhibition, demonstrating antitumor activity in both 
in vitro and in vivo models [95]. Leiomyosarcoma cell line, 
RKN, a rare type of smooth muscle cancer, was also shown 
to rely on GPX4 expression to maintain a highly mesenchy-
mal state [95]. Similar to KP4 and LOXIMVI mesenchymal 
state cell lines, cessation of FER1 supplementation reduced 
the cell viability of the GPX4-KO mesenchymal state RKN 
cell line [95]. In another study conducted by Hangauer and 
team, they studied the susceptibility of persister cancer cells 

to GPX4 inhibition [94]. The breast, lung, ovarian, and skin 
cancer persister cell lines, generated from long-term treat-
ment of standard anticancer drugs, showed a reversible 
resistance to the anticancer drugs [94]. They have showed 
upregulation of mesenchymal markers such as vimentin, 
N-cadherin, FN, TWIST1, and SNAI2 as well as downregu-
lation of epithelial markers such as E-cadherin, claudin 4 
and 7 only in BT474 persister cells [94]. In addition, all the 
breast, lung, ovarian, and skin cancer persister cells showed 
a reduction in cell viability upon treatment of RSL3 and 
ML210 [94]. Moreover, this GPX4 inhibitor susceptibility 
was reversed by treatment with lipophilic antioxidants Fer1 
and liproxstatin-1, lipoxygenase inhibitors PD146176 and 
NDGA, and lipid transporter SCP2 inhibitors SCPI-2 and 
SCPI-4 in breast, lung, and skin cancer persister cells [94]. 
Further, the GPX4-KO A375 persister cells showed a reduc-
tion in cell viability upon Fer1 withdrawal [94]. Furthermore, 
cessation of FER1 supplementation reduced tumor relapse 
in GPX4-KO A375 mice xenografts [94]. In another study, 
27HCR cell lines showing high migratory potential displayed 
altered expression of genes involved in lipid peroxidation, 
antioxidant-mediated defense, and iron metabolism, as shown 
in Table 4 [18]. In addition, they displayed a differential 
expression of amino acid transporter SLC family 7 mem-
ber 11 and its associated protein SLC family 3 member 2 
and ferroptosis markers such as CHAC1, FANCD2, and 
PTGS2 [18]. Moreover, on treating 4T1, Py230, HCC1954, 
MDA-MB-436 and B16F10, 27HCS cell lines with 27HC 
showed a consistent downregulation of GPX4 [18]. On the 
other hand, treating the 27HCR counterpart of these can-
cer cell lines with 27HC either showed an increase or no 
prominent reduction in the expression of GPX4 [18]. This 
showed the importance of GPX4 in mediating the ferroptosis 
inhibition in resistant cell types [18]. Further, RSL3 treat-
ment reduced the growth of 4T1-27HCR, Py230-27HCR, 
HCC1954-27HCR, MDA-MB-436-27HCR, and B16F10-
27HCR cell lines, and FER treatment reversed the effect of 
RSL3 treatment [18]. Furthermore, RSL3 treatment along 
with GPX4 knockdown, effectively reduced the growth of 
Py230-27HCR and B16F10-27HCR cell lines [18]. A simi-
lar reduction in the tumor growth along with a reduction in 
metastasis was observed in the in vivo mice xenografts of 
GPX4 knockdown Py230-27HCR and B16F10-27HCR cell 
lines [18]. The micro and macro lung metastasis cell lines 
derived from Py230-27HCS and Py230-27HCR xenografts, 
respectively, exhibited remarkable resistance to the treatment 
of RSL3 and ML210 [18]. This observed resistance of cell 
lines derived from metastasized cancer cells to GPX4 inhibi-
tors strengthens the finding that ferroptosis inhibition was a 
specific feature of mesenchymal phenotypic cells, which was 
involved in the progression of cancer [18, 94, 95]. These find-
ings collectively provide insights into the intricate relation-
ship between GPX4, ferroptosis resistance, and mesenchymal 
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state in cancer cells (Fig. 3). Despite the alteration in the 
expression level of several proteins in such a way to support 
ferroptosis, blocking GPX4 displayed a significant reduction 
in growth and progression of cancer in both in vitro and in 
vivo models [18, 94, 95].

6  Conclusion

In recent years, there has been a growing emphasis on inves-
tigating lipid metabolism as a potential target for the devel-
opment of innovative therapeutics against cancer [96–101]. 

Cancer cells have been shown to enhance their FA uptake 
to meet the energy requirements for their phenotypic tran-
sition and progression. Particularly, CD36 overexpression 
was shown to play a substantial role in promoting tumor 
cell plasticity and drug resistance [19, 57, 59]. It is cru-
cial to highlight that co-treatment with CD36 inhibitors has 
demonstrated the ability to sensitize resistant cancer cells 
to anticancer drugs in both in vitro and in vivo models [59]. 
In addition, cancer cells have also been shown to enhance 
their lipid synthesis to develop and maintain stemness and to 
support metastasis. Similar to inhibition of FA uptake, sup-
pression of lipid synthesis has shown efficacy in sensitizing 
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drug-tolerant and resistant cancer cells to drug treatment 
[65, 68, 71]. Ladanyi and group have demonstrated that there 
was an inhibition of lipid synthesis when adipocyte-induced 
CD36 expression propels ovarian cancer progression and 
metastasis [19]. However, 27HCR breast cancer and skin 
cancer cell lines concurrently exhibited an upregulation in 
the expression of both lipid uptake and lipid synthesis genes, 
accompanied by a simultaneous enhancement of cancer cell 
migration and metastasis [18]. The presented evidence sub-
stantiates the notion that diverse malignancies undergo dis-
cernible metabolic reprogramming processes conducive to 
their progression. Consequently, a compelling imperative for 
extended inquiry arises to comprehensively elucidate the role 
of lipid uptake and synthesis across diverse types of cancer 
and at various stages of their progression. Moreover, inhibi-
tion of lipid catabolism was shown to induce mesenchymal-
epithelial transition and reduce the invasion and migration of 
cancer cells [85–87]. Unlike lipid uptake and lipid synthesis, 
β-oxidation of lipids and lipogenesis have not been reported 
to be enhanced simultaneously during the progression of 
cancer. These studies indicate that cancer cells modulate 
different aspects of lipid metabolism in a peculiar manner to 
support its progression and to develop resistant phenotypes. 

Notably, the reprogramming of lipid metabolism is evident 
not solely within cancer cells but extends to immune cells 
within the TME, particularly macrophages and neutrophils 
[60, 88, 102, 103]. This phenomenon induces malfunction in 
these immune cells, consequently promoting tumor growth, 
survival, and progression [60, 88]. As previously discussed, 
cancer cells undergoing metastatic colonization exhibited 
a reversal of EMT, favoring glucose uptake over citrate 
uptake mediated enhancement of lipid synthesis [69]. Addi-
tionally, cell lines derived from metastasized cancer cells 
showed resistance to GPX4 inhibitor treatment, while cells 
in a mesenchymal state were susceptible [18]. This high-
lighted the specificity of reprogrammed lipid metabolism 
and GPX4-mediated inhibition of ferroptosis in metastasiz-
ing cells. However, in-depth preclinical studies and clinical 
trials are warranted to completely understand the aspects 
of lipid metabolic shift during cancer metastasis. Moreo-
ver, GPX4 presents a promising therapeutic target, given its 
capacity to autonomously inhibit lipid peroxidation-induced 
ferroptosis and thereby assist the progression of cancer in 
preclinical studies [18, 94, 95]. In recent years, researchers 
have started exploring GPX4 inhibitors as therapeutic candi-
dates for various cancers [104–108]. Furthermore, exploring 
the efficiency of GPX4 inhibitors to regulate the metastatic 
progression and as chemosensitizers will open new treat-
ment strategies for cancer. Most importantly, clinical trials 
have to be conducted in order to validate the potential of 
GPX4 inhibition to control cancer metastasis and to reverse 
of resistance.

A notable lacuna exists in the integration of informa-
tion pertaining to alterations in distinct lipid metabolism 
domains and the strategic selection by cancer cells between 
relying on lipid anabolism or exogenous FA to propel the 
progression of the disease and to develop resistant phe-
notypes. To bridge this research gap, investigations must 
simultaneously scrutinize modifications in various lipid 
metabolism domains, particularly as cancer cells undergo 
adaptations to modulate plasticity throughout the course of 
disease progression. The subtle alterations in lipid metabo-
lism necessitate intricate examination in a spatiotemporal 
manner at each stage of cancer progression concomitant 
with the acquisition of plasticity. Despite the perturbations 
in the cellular lipid metabolism in tumors, an optimal bal-
ance between synthesis and catabolism appears to exist. In 
summary, we have elucidated the role of metabolic remod-
eling of lipids in facilitating tumor plasticity, thereby con-
ferring drug resistance. However, additional studies are 
imperative to leverage these potentially targetable lipid 
metabolic pathways for controlling cancer progression and 
combating drug resistance. The proposition of innovative 
combinatorial therapeutics involving modulators across 
diverse lipid metabolism domains promises to unveil a 
novel therapeutic avenue for cancer.

Fig. 3  The transformation of cell phenotype (plasticity) from epithe-
lial to mesenchymal state increases the resistance to ferroptosis. The 
figure comprises the complex interplay of various proteins that alters 
the crosstalk between iron metabolism, antioxidant defense, and pro-
teins that directly or indirectly affect the generation of lipid reactive 
oxygen species. Importantly, the major proteins that assist the inhi-
bition of ferroptosis in transformed mesenchymal cells were high-
lighted with different colors and symbols: green color and “↑” rep-
resents either an increase in the expression or activity of the protein, 
red color, and “↓” represents the reduction in the expression or activ-
ity of the protein and yellow color and “*” denotes the differential 
expression of the protein. AA, Arachidonic acid; ACSL4, Acyl-CoA 
synthetase long chain family member 4; AdA, Adrenic acid; ATF4, 
Activating transcription factor 4; CARS, Cysteinyl-tRNA synthetase; 
CBS, Cysteinyl-tRNA synthetase; CHAC1, ChaC glutathione spe-
cific gamma-glutamylcyclotransferase 1; CHOP, C/EBP homologous 
protein; CoA, Coenzyme A; CYS, Cysteine; DMT1, Divalent metal 
transporter 1; FANCD2, Fanconi anemia complementation group 
D2; FDFT1, Farnesyl-diphosphate farnesyltransferase 1; GCLC, 
Glutamate cysteine ligase; GCLM, Glutamate cysteine ligase modi-
fier; GLU, Glutamate; GLY, Glycine; GPX4, Glutathione peroxidase 
4; GSH, Glutathione; GSS, Glutathione synthetase; HSPA5, Heat 
shock protein family A member 5; HSPB1, Heat shock protein beta-
1; IREB2, Iron responsive element binding protein 2; LOXs, Lipoxy-
genase; LPCAT3, Lysophosphatidylcholine acyltransferase 3; MT1G, 
Metallothionein 1 G; NCOA4, Nuclear receptor coactivator 4; NOX4, 
NADPH oxidase 4; NQO1, NAD(P)H quinone dehydrogenase 1; 
NRF2, Nuclear factor erythroid 2-related factor 2; MET, Methionine; 
PEBP1, Phosphatidylethanolamine binding protein 1; PKC, Protein 
kinase C; PL, Phospholipid; PUFA, Polyunsaturated fatty acid; ROS, 
Reactive oxygen species; RSL3, RAS-selective lethal 3; SLC3A2, 
Solute carrier family 3 member 2; SLC7A11, Solute carrier family 7 
member 11; STEAP3, Six-transmembrane epithelial antigen of pros-
tate 3; SxC-, System Xc-; TFR1, Transferrin receptor 1; ZEB, Zinc 
finger E-box binding homeobox
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