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Abstract
Epithelial ovarian cancer (EOC) is often diagnosed in advanced stage with peritoneal dissemination. Recent studies indicate 
that aberrant accumulation of collagen fibers in tumor stroma has a variety of effects on tumor progression. We refer to 
remodeled fibrous stroma with altered expression of collagen molecules, increased stiffness, and highly oriented collagen 
fibers as tumor-associated fibrosis (TAF). TAF contributes to EOC cell invasion and metastasis in the intraperitoneal cavity. 
However, an understanding of molecular events involved is only just beginning to emerge. Further development in this field 
will lead to new strategies to treat EOC. In this review, we focus on the recent findings on how the TAF contributes to EOC 
malignancy. Furthermore, we will review the recent initiatives and future therapeutic strategies for targeting TAF in EOC.
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1 Introduction

Epithelial ovarian cancer (EOC) is the most lethal gyneco-
logic malignancy [1]. Approximately 210,000 patients die 
annually from EOC globally, and the number is increas-
ing every year [2]. Since ovaries are directly exposed to 
the intraperitoneal cavity, EOC frequently exhibits a char-
acteristic mode of metastasis, such as peritoneal dissemi-
nation (metastasis to a wall of the abdominal cavity) and 
formation of omental cake (metastasis on the omentum) 
[3]. Due to the lack of specific symptoms and lack of an 
effective early detection screening system, more than half 
of the EOC patients are diagnosed in advanced stages with 
peritoneal dissemination [2]. Surprisingly, 2–7% of EOC 
patients in early stage (stages I–II) already have invisible 
micro-metastasis in the intraperitoneal cavity [4, 5]. Despite 
the use of combined cytoreductive surgery and platinum-
based chemotherapy, over 70% of advanced-stage patients 
experience recurrence within 5 years [6], and its most com-
mon recurrence site of advanced EOC is the intraperitoneal 
cavity [7]. Once recurrence occurs, the patients have a poor 
prognosis due to chemotherapy resistance and it is difficult 
to remove all the tumors. Considering that the prognosis of 
EOC dramatically worsens from stage III [8], it may improve 
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the refractory nature of advanced EOC if it becomes possible 
to control the intraperitoneal dissemination.

To control peritoneal metastasis, it is necessary to under-
stand the underlying mechanism of intraperitoneal dissemi-
nation. The most common type of EOC, high-grade serous 
ovarian cancer (HGSOC) has been classified into four 
molecular subtypes based on mRNA profiling: immuno-
reactive, proliferative, differentiated, and mesenchymal [9, 
10]. Among the four subtypes, the “mesenchymal” subtype, 
which involves dynamic stromal changes, has been reported 
to more frequently metastasize to the intraperitoneal cavity 
[11] and has the poorest patient prognosis [10, 12]. There-
fore, understanding the nature and function of tumor stroma 
may help us to elucidate the mechanism of intraperitoneal 
dissemination of EOC. The tumor stroma is the main com-
ponent of the tumor microenvironment which contains abun-
dant extracellular matrix (ECM) molecules. Among ECM, 
collagen fibers are the predominant form of structural pro-
teins, which play various roles in many types of solid tumor 
[13]. In fact, Masson-trichrome staining, which stains col-
lagen fibers, shows omental metastases have complex struc-
tures of cancer cells with substantial fibrous stroma around 
the tumor cells (Fig. 1). We define this excessive accumula-
tion of collagen fibers in tumors as tumor-associated fibrosis 
(TAF), which contributes to tumor progression, metastasis, 
and chemotherapy resistance of EOC so as with other neo-
plasms [13]. In general, fibrosis is seen in the wound healing 
process, which is precisely regulated by various cytokines 
and chemokines [14]. As cancer is described as “wounds 
that never heal” [15], both wound healing and cancer pro-
gression share common molecular reactions, which has been 
reviewed in many studies [16, 17], but how the intrinsic 
crosstalk with EOC cells and its surrounding fibrotic tis-
sue contributes to tumor progression is still unclear. In this 
review, based on the recent findings, we focus on how TAF 
contributes to EOC’s malignancy. Furthermore, we review 

the recent initiatives and future therapeutic strategies for 
targeting TAF in EOC.

2  Tumor‑associated fibrosis: remodeled 
tumor‑favorable stroma

Collagens are the most prominent molecules in ECM and 
considered one of the most influential factors in the nature 
of the stroma [13]. Since inappropriate accumulation and 
crosslinking of collagens have many downstream effects in 
many types of solid tumor, such as tumorigenesis, cell prolif-
eration, invasion, metastasis, and dormancy, collagens have 
recently received significant attention [16, 18–21].

Elucidating the mechanisms involved in remodeling the 
tumor surrounding microenvironment into TAF are key to 
controlling intraperitoneal dissemination (Fig. 2). Tumors 
opportunistically alter ECM homeostasis by biochemical 
cross-talking with cancer-associated fibroblasts (CAFs) and 
induce dynamic stromal change, thus affecting the nature 
of the tumors, such as tumor growth, angiogenesis, and 
immune cells infiltration [22, 23] (Fig. 2). ECM alteration 
in tumors consists of two major processes: degrading exist-
ing normal collagen fiber network in stroma, and creation 
of a tumor-microenvironment (TME) by cross-linking the 
collagen molecules [24].

Breaking down the normal collagen networks is cata-
lyzed by matrix-degrading enzymes, such as ADAMs (a 
disintegrin and metalloproteinases), ADAMTSs (ADAMs 
with thrombospondin motifs), and matrix metalloproteases 
(MMPs) [25]. The MMP family are involved in various 
biological functions in tumors, such as tumor progression, 
and are considered to be a possible therapeutic target [25, 
26]. In EOC, various types of MMPs are involved in tumor 
growth, invasion, and metastasis [27]. Interestingly, MMP-2 
and MMP-9 may induce ascites formation via vascular 

Fig. 1  Example of Masson-trichrome staining in an omental metastasis from a patient with high-grade serous ovarian cancer (unpublished data). 
It shows complex structures of cancer cells with substantial fibrous stroma around the tumor
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endothelial growth factor (VEGF) secretion [28]. ECM 
also acts as a storage site for various cytokines, including 
VEGF and transforming growth factor-β (TGF-β), which are 
embedded in ECM and can be released by MMP proteolysis 
[29, 30]. These cytokines may be released to heal the dam-
aged tissue when the wound or cancer invasion damage the 
stroma.

Lysyl oxidase (LOX) is a well-known collagen remod-
eling enzyme, which normally acts in the tissue repair by 
catalyzing the cross-linking of collagen fibers through oxida-
tive deamination of lysine residues [31]. Accumulation of 
thick and long collagen fibers cross-linked by LOX reduces 
stromal elasticity and forms stiff tumor [32]. LOX and four 
LOX-like proteins (LOXL1-4) comprise the LOX-family, 
and recent studies indicate that elevated expression LOX 
family members is significantly correlated with tumor inva-
sion, metastasis, and chemoresistance, which causes poor 
prognosis in EOC [33–35]. Furthermore, expression level of 
LOX1, LOX2, and LOX3 can predict prognosis and efficacy 
of platinum-based chemotherapy [36].

The elaborate and intricate collagen fiber network in 
tumors plays various roles in tumor malignancy. Recent 
studies have shown not only aberrant expression of ECM-
remodeling enzymes but also the nature of remodeled stroma 
itself, such as stiffness and orientation of collagen fibers [37, 
38]. In addition, tumor stroma contains various collagen 

molecules that form intricate collagen fiber networks, affect-
ing various tumor functions, such as progression, invasion, 
and chemoresistance [13]. Next, we discuss the three distinct 
factors of ECM remodeling, which determines the stromal 
nature: the composition, the stiffness, and the alignment of 
collagen molecules.

3  Composition of collagen molecules: 
various collagen molecules contribute 
to tumor malignancy

Collagen comprises 28 family members, each of which play 
unique functions in stromal architecture [39]. Surprisingly, 
recent studies revealed that various types of collagen mol-
ecules are associated with EOC progression and prognosis. 
Collagen type I is the most dominant collagen and mainly 
plays a structural role in the stroma. Accumulation and aber-
rant morphology of collagen type I in EOC stroma enhance 
tumor progression and metastasis [40]. Furthermore, its 
overexpression promotes EOC cell invasion with epithelial 
mesenchymal transition (EMT) and chemoresistance [41]. 
Collagen type I, α1 (COL1A1), is also considered a predic-
tive marker for poor prognosis of EOC [42].

Collagen type II, α1 (COL2A), which normally aug-
ments strength in connective tissue, was also reported to be a 

Fig. 2  Schematic diagram of tumor-associated fibrosis. Left: pre-
fibrosis. Right: post-fibrosis. Accumulation of collagen fibers alters 
tumor microenvironment by biochemical cross-talking with CAFs, 

which affects the nature of the tumors, such as tumor growth, angio-
genesis, and immune cell infiltration. Abbreviation: ECM, extracel-
lular matrix
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predictive marker for recurrence in HGSOC [43]. It has been 
suggested that collagen type II secreted by stromal fibro-
blasts may promote tumor growth and angiogenesis [44].

Another type of collagen, collagen type IV(COL4), which 
is the main component of the basement membrane [45], also 
contributes to EOC cell function. Histopathological exami-
nation revealed that reduced expression of COL4 corelates 
with p53, Ki67, and EOC grade [46, 47], which indicates 
that EOC breaks down the basal membrane for further inva-
sion. Tumor necrosis factor α (TNF-α) is one of the most sig-
nificant promoter to cause basement membrane remodeling, 
paving the way for tumor invasion by decreasing COL4 [48]. 
Interestingly, high expression of COL4A2 is reported to lead 
to anoikis resistance via Notch3 signaling [49], by which 
EOC cells derived from epithelial cells can metastasize in 
the intraperitoneal cavity [50]. Furthermore, it has been sug-
gested that adhesion and invasion may be promoted by col-
lagen I and IV secreted by fibroblasts stimulated by TGF-β 
and other factors [45].

Recently, it has been demonstrated that high expression of 
collagen type VI, usually expressed in the basal membrane, 
directly affects tumor growth, invasion, and metastasis in 
various neoplasms [51]. In EOC, upregulation of collagen 
type VI α3 (COL6A3) may enhance tumor invasion and 
metastasis [52]. Furthermore, COL6A3 is also associated 
with cisplatin resistance in an autocrine manner [53]. Inter-
estingly, a recent study indicated that chemotherapy induces 
the upregulation of various types of collagen, such as col-
lagen type VI, in the omentum and peritoneum of EOC [54].

Minor types of fibrillar collagens are also reported to 
play several functions in EOC. Upregulation of collagen 
type XI α1 (COL11A1) appears to be related to platinum 
resistance via α1β1 integrin and discoidin domain recep-
tor 2 (DDR2) [55]. Upregulation of collagens type XI by 
TGF-β enhances cell migration, invasion, and progression 
in vivo [56]. A recent report indicated that COL11A1 drives 
fatty acid β-oxidation, which may also facilitate cisplatin 
resistance [55]. Furthermore, Twist family primary helix-
loop-helix transcription factor 1-related protein 1 (TWIST1) 
activated by COL11A1 induces chemoresistance and inhibits 
apoptosis in EOC cells [57]. Quantitative proteome analysis 
revealed the upregulation of COL12A1 in multidrug resist-
ant EOC cell lines [58]. It is interesting that the expression 
of several types of collagen molecules in the ECM is either 
upregulated or downregulated in the chemo-resistant EOC 
cell lines. The biological function of collagen type XVIII is 
still not well-known, but expression of C-terminal fragment 
of this collagen, called endostatin, is significantly increased 
in EOC [59]. The function of collagen type XX is also 
poorly understood, but its expression is increased in various 
solid tumors, including EOC [59].

Aberrant accumulation of collagen fibers and expression 
of various types of collagens in the EOC stroma secreted by 

both cancer cell and fibroblasts can possibly affect the nature 
of the tumor. Interestingly, the expression pattern of collagen 
molecules, even the collagen type I, varies from report to 
report [40, 60]. This may possibly reflect the diversity of the 
stroma and suggests that expression of collagens is dynami-
cally changing depending on the location and chronological 
stages of the EOC stroma.

4  Stiffness: tough foundation for tumor 
invasion and metastasis

Recent studies suggest that biomechanical stress, such as 
stiffness, also drives various tumor functions [61]. In solid 
tumor, stiffness refers to resistance to deformation to an 
applied force, which is determined by the accumulation and 
crosslinking of ECM, such as hyaluronic acid and collagen 
type I [37, 62]. In vitro, the rigid substrate status increased 
proliferative capacity of EOC cells [63]. Virginie et al. 
reported that increased tumor stiffness with a high content 
of CAFs and collagen fibers promoted tumor growth in vivo 
in a mesenchymal HGSOC model [64]. Thus, the tumor stiff-
ness also seems to influence the nature of EOC.

As stiffness plays a vital role in EOC functions, sev-
eral studies have been conducted to elucidate the detailed 
mechanism of how tumors receive and react to this bio-
physical signaling. The rigidity seems to stimulate mul-
tiple signaling pathways via integrins and FAK [54], and 
transmit external signals to various subsequent reporters 
(Fig. 3). The Yes-associated protein (YAP)/transcriptional 
coactivator with PDZ-binding motif (TAZ) is one of the 
well-known mechano-responsive signaling pathway regu-
lators in various tumors, including EOC [37, 65]. Tumor 
stiffness promote nuclear translocation of YAP/TAZ in 
EOC cells and promotes proliferation, migration, EMT, 
and chemoresistance by receiving the external stimuli via 
focal adhesion kinase(FAK) [66–69], suggesting that rigid-
ity influences various tumor functions via YAP/TAZ in the 
Hippo pathway. Interestingly, in a breast cancer model, the 
YAP related-pathway appears to form a positivistic feed-
back loop in CAFs to express additional collagen mole-
cules forming more rigid tumors [70]. YAP promotes EMT 
and enhances the invasive and migratory potential of EOC 
cells [71]. Stiffness also activates RhoA/ROCK axis via 
transgelin (TAGLN), which is associated with larger cell 
morphology, augmented invasion, and cell proliferative 
capabilities [72]. In addition, a xenograft model of mes-
enchymal HGSOC showed increased activation of MAPK/
MEK axis as tumor stiffness increased [64]. Together these 
studies indicate that the mechano-signaling pathway via 
integrin/FAK and its subsequent signaling pathways forms 
a very intricate signaling network in EOC, augmenting 
tumor malignancy (Fig. 3). The increased stiffness of the 
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tumor may initially limit the ability of the cancer cells to 
escape from the tumor for further metastasis [73]. How-
ever, as tumors become stiffer, tumor cells acquire the 
capacity to facilitate their escape and metastasize [72]. 
Since stiff tumors can stimulate various signaling path-
ways related to cancer malignancy, targeting the one spe-
cific pathway might not be an effective way to control the 
tumor progression. However, softening tumor rigidity may 
restrict the various signal networks that respond to stiff-
ness and limit the tumor progression.

Although it is not known whether same positive sequen-
tial cycle can be applied to intraperitoneal dissemination in 
advanced EOC, a comparison between the primary tumor 
and the metastatic tumor of HGSOC showed that the meta-
static tumor was more rigid with higher expression of col-
lagen type I and collagen-crosslinking enzyme, LOX [72]. 
Based on previous in vitro and in vivo reports, the response 
to stiffness may occur in both primary and metastatic tumors 
leading to enhanced tumor progression and activation of the 
signaling pathway shown in Fig. 3. Especially in the omen-
tum, metastatic cancer cells may also interact with CAFs to 
augment collagen production [74], leading to increased stiff-
ness and enhanced tumor growth. The mechanisms involved 
are discussed in more detail in the next section.

Research on signaling pathways responding to tumor stiff-
ness in EOC is just beginning to emerge. A better under-
standing of mechano-signaling pathways their role in pro-
moting stiffness of intraperitoneal metastatic tumors will 

lead us to find potential novel therapeutic targets in advanced 
EOC patients.

5  Alignment of collagen fiber: metastatic 
rails for tumor invasion

The accumulation of fibrous collagens are major compo-
nents of stiff tumors. The morphological changes in accumu-
lating collagen fiber networks have recently attracted much 
attention and is a growing field of research [74]. Second 
harmonic generation imaging (SHG) has enabled us to visu-
alize the collagen fiber morphology in the stroma. In 2006, 
the novel model of invasive breast cancer, tumor-associated 
collagen signatures (TACS) classification, was proposed 
based on the orientation of collagen fibers in tumor stroma 
observed by SHG [75]. There are many reports and reviews 
indicating that the process of remodeling a collagen net-
work by degrading the wavy normal collagen fiber to form-
ing straighter collagen fibers can pave the way for tumor 
invasion and intravasation [76–80]. Linear alignment of col-
lagen fibers in the breast cancer is significantly associated 
with poor prognosis [81, 82], suggesting that orientation of 
collagen fibers may play a pivotal role in tumor function.

SHG examination also revealed aberrant collagen align-
ment in EOC [83, 84]. It has been reported that colla-
gen fibers in the normal ovarian stroma exhibit a random 
mesh-like arrangement, whereas the alignment of collagen 

Fig. 3  Tumor stiffness stimulates EOC cells by activating integrin/
FAK and its subsequent signaling pathways: Rho/ROCK pathway, 
and Hippo pathway. MEK/MAPK pathway is also stimulated by stiff 
external stimuli, and it might be activated by integrin/FAK. These 
signal pathways responding to tumor stiffness facilitates tumor pro-
gression. Stiffness may also augment collagen production via Hippo 

pathway in OCAMs or CAFs. These reactions against tumor stiffness 
also promote tumor progression and more collagen production, aug-
menting tumor stiffness. Abbreviations: EOC, epithelial ovarian can-
cer; OCAM, ovarian-cancer associated mesothelial cell; CAF, cancer-
associated fibroblast
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fibers in EOC becomes straighter [85]. In a study analyz-
ing the arrangement of collagen fibers in the fallopian tube 
stroma, a possible origin of HGSOC, the collagen fibers 
network morphology was changed to a more a straight 
alignment as the disease progressed to malignancy, like 
in the TACS model of breast cancer [86]. The highly ori-
ented collagen fibers promoted EOC cell migration more 
than the random collagen network in the normal stroma 
[87]. Although the precise mechanism how this alignment 
alteration affects the movement of cancer cells is not yet 
known, it may have an important influence on the nature 
of cancer. Interestingly, it has also been shown that the 
pattern of collagen fiber orientation differs depending on 
the histological subtype of EOC. Bruce et al. evaluated the 
collagen morphology in the stroma of three types of EOC: 
endometrioid, low-grade serous ovarian cancer (LGSOC), 
and HGSOC, using SHG, and it revealed that these three 
EOC subtypes have different collagen fiber morphology 
compared to normal ovary stroma [85]. Endometrioid EOC 
and HGSOC showed more straightforward collagen fiber 
networks, and LGSOC showed more fibrotic network com-
pared to normal stroma with shorter fibers than HGSOC 
[85]. In breast cancer, deep learning analysis revealed that 
the percentage of straight collagens corelated with the 
stiffness of the tumor [88]. As discussed above, stiffness 
corelates with tumor aggressiveness and poor prognosis. 
This indicates that the content of straight collagen fibers in 
the metastatic tumor in intraperitoneal cavity can be a pre-
dictive marker for EOC patients. Although the mechanism 
and significance of collagen fiber linearization in EOC and 
its impact on tumor progression is still unclear, it is plau-
sible that not only the composition and stiffness but also 
alignment of collagen fibers collectively affect multiple 
EOC functions in intraperitoneal metastasis. Furthermore, 
targeting collagen linearization can be a novel potential 
therapeutic approach for EOC. However, it is still unclear 
what causes collagen linearization in EOC. Interestingly, 
a recent report indicated that one of the WNT1 induc-
ible signaling pathway (WISP) protein subfamily, WISP1, 
directly binds to collagen type I to induce linearization of 
collagen fibers in vitro and in vivo via the TGF-β axis in 
the breast cancer cell line, 4T1[89]. Increased expression 
of WISP1 was also observed in EOC patient tissue and 
correlates with poor prognosis of EOC patients [90], but 
the effects of WISP1 in the EOC microenvironment and 
its role especially fibrosis has not been fully investigated. 
As far as we know, no reports have focused on biophysi-
cal mechanisms that cause collagen linearization in EOC. 
Considering the collagen linearization plays a significant 
role in tumor progression, inhibiting the formation of lin-
ear collagen fibers should also be investigated as a novel 
therapeutic strategy for EOC.

6  Omentum: the most common site 
for intraperitoneal metastasis of EOC

EOC is frequently associated with malignant ascites, in which 
spheroids spread throughout the intraperitoneal cavity and 
forms intraperitoneal dissemination. Omentum is the most 
common metastatic site in intraperitoneal cavity. For accurate 
staging of EOC and its therapeutic benefit, omentectomy is 
performed even in patients with early stage EOC [89]. The 
surgeons frequently observe dramatic changes in the omentum 
and desmoplastic reactions in advanced EOC [72], and it is 
assumed that the omentum play an significant role in EOC 
progression. The human omentum comprises layers of meso-
thelial cells and adipocytes with a highly vascularized struc-
ture. Collagen, elastin, and reticular fibers compose the cen-
tral stroma with blood vessels and lymph vessels in this organ 
[91]. The omentum also has an unusual lymphatic circulation 
system. An early study showed that most of intraperitoneally 
administered dye, indigocarmine, reached and adhered to the 
omentum, which implies that omentum is the organ where 
intraperitoneally disseminated tumor cells are more likely to 
metastasize to [92]. As the omentum contains a lot of adipose 
cells, it is also considered as an energy storage site [91]. This 
organ is thought to be an energy provider for highly metabolic 
active cancer cells and a significant regulator of EOC meta-
static growth [93].

The intraperitoneal cavity, including the omentum, also has 
a very characteristic local immune system [94]. Lymphoid tis-
sue, called “milky spots” in the omentum, consists of lym-
phocytes, macrophages, and dendritic cells that contribute to 
peritoneal immunity [95]. Etzerodt et al. reported that tissue-
resident macrophages (TRM) in omentum promoted intraperi-
toneal metastasis by forming a metastatic niche in EOC [96]. 
In pancreatic cancer, TRM also drives fibrosis, but whether 
the same reaction can be applied to the metastasis of EOC is 
still not clear. Immune response in tumors has attracted the 
interest of many researchers. Although we are not going in 
detail in this review, understanding of local immune response 
in the omentum might pave the way for elucidating the mecha-
nism of creating a metastatic niche and intraperitoneal dis-
semination of EOC. Interestingly, the omentum is clinically 
considered a powerful source for regenerative surgery because 
of its biological functions [97]. These biological functions of 
omentum can provide a favorable environment for tumor pro-
gression. Figure 4 summarizes the co-evolution cycle of EOC 
cells and stroma in intraperitoneal metastasis and recurrence 
via omentum.
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7  Cultivating the fertile soil for future 
metastasis: forming a premetastatic niche 
in the omentum

As we discussed above, the altered collagen fiber composi-
tion, tumor stiffness, and collagen fiber arrangement in the 
tumor stroma can play a significant role in EOC progression. 
These changes of tumor microenvironment have been found 
to occur prior to formation of metastasis in various cancers, 
which is called pre-metastatic niche [98]. In EOC, a pre-
metastatic niche refers to the formation of a microenviron-
ment, in which EOC cells released from the primary tumor 
can easily attach and invade the peritoneum. Here, we will 
discuss the formation of premetastatic niches related to TAF 
in the omentum.

The first step of intraperitoneal metastasis is the attach-
ment of EOC cells to the mesothelial cell layers in the 
abdominal cavity [99]. Although mesothelial cells func-
tion as a protective barrier against tumor attachment [45, 
100], EOC is often associated with peritoneal dissemina-
tion [100]. Malignant ascites from the primary EOC flow 
through the abdominal cavity and can form a premetastatic 
niche scaffold for the attachment of the EOC cells [101]. 

One of the most significant cytokines in the malignant 
ascites is the TGF-β [102], which modifies the local micro-
environment for tumor progression in various types of can-
cers [103–105]. In EOC, TGF-β stimulates various cells 
in the omentum to change into supportive cells for tumor 
progression (Fig. 4 top right). Mesothelial cells are one 
of the most abundant cells in the omentum and increase 
the expression of fibronectin, which promotes cancer cell 
adhesion by TGF-β stimulation [106, 107]. Furthermore, 
TGF-β causes EMT, which is also called mesothelial-
mesenchymal transition (MMT), of the mesothelial cells, 
by which mesothelial cells express CAF markers, such as 
α-SMA, and also acquire mesenchymal functions [108, 
109]. These changes in mesothelial cells may support the 
attachment and invasion of EOC cells on the peritoneum. 
We refer to these EOC-stimulated mesothelial cells that 
promote tumor progression as ovarian-cancer associ-
ated mesothelial cells (OCAMs). In addition to OCAM 
[108], TGF-β also promotes mesenchymal differentiation 
from fibroblasts [110] and adipocytes in the omentum 
[111, 112] to form CAFs. Because CAFs are already pre-
sent in the omentum stroma even without metastasis in 
EOC patients [113] and 3D omentum model with CAFs 

Fig. 4  EOC metastasis and recurrence cycle of tumor stroma. 1 (top 
right): Chemokines and cytokines, such as TGF-β, and exosomes 
alter the stroma in future-metastatic sites. 2 (bottom right): After 
tumor cells attach to mesothelial cells, they establish the “soil” by 
remodeling the collagen-rich stroma. Expression patterns of various 
types of collagens, stiffness, and alignment of collagen are altered to 
create a tumor-favorable environment. 3 (bottom left): Tumor-associ-

ated fibrosis affects various tumor cell functions. 4 (top left): Chemo-
therapy induces further fibrosis, which may lead tumor cells into 
dormancy and enable them to persist in the harsh environment. After 
chemotherapy, tumor cells can sprout leading to recurrence. Abbrevi-
ations: EOC, epithelial ovarian cancer; EMT, epithelial mesenchymal 
transition; MMT, mesothelial-mesenchymal transition; CAF, cancer-
associated fibroblast
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increased the adhesion and invasion of EOC cells [110], 
CAF’s existence prior to the cancer cells’ attachment is 
important for metastasis. Since the omentum is mainly 
composed of adipocytes covered with abundant mesothe-
lial cells, it can be a significant source of CAF, which 
may augment the tumors’ attachment and post-adhesive 
progression.

Recently, another cell communicative process between 
primary tumors and distant organs has been studied by 
many researchers to involve exosomes. Exosomes are 
small extravesicles (30–150 nm in diameter) secreted by 
various types of cells, and contain a variety of molecules, 
such as nucleic acids (mRNA, DNA, microRNAs), vari-
ous proteins, and lipids, interacting with target cells [114]. 
Exosome released from primary EOC attach to the perito-
neum, and promotes tumor progression [114]. Cell-to-cell 
communication via exosomes enhance immunosuppres-
sion, angiogenesis, CAF conversion, macrophage polariza-
tion, and mesothelial clearance, and thus creating a tumor-
favorable microenvironment [115]. Although there are few 
reports that show the direct interaction between exosome 
and fibrosis of EOC, recent studies revealed that exosomes 
are strongly associated with fibrosis. Exosomes released 
from EOC cells are reported to promote the conversion 
of normal fibroblasts and adipose-derived mesenchy-
mal stem cells to CAFs [116, 117], and CAFs with more 
activated mesenchymal signature [118]. Low contents of 
micro-RNA, miR-29c-3p, in exosome released from omen-
tal CAF may promote EOC metastasis by keeping con-
tinuous expression of MMP2 [119]. Since the exosomes 
contain various molecules and target multiple organs and 
cells [120], it seems that cancer cells and other non-cancer 
cells, such as CAFs, form more complicated networks than 
expected.

Immunity also plays a critical role in creating a tumor-
associated microenvironment for metastasis. This is one of 
the growing fields in cancer research. Recent studies have 
shown that not only lymphocytes and macrophages but also 
neutrophils play an essential role in forming the premeta-
static niche [121]. Ovarian tumor-derived inflammatory 
factors, such as interleukin-8, G-CSF, or MCP-1, stimulate 
neutrophils to secret neutrophil extracellular traps (NETs), 
which entraps tumor cells to attach to the omentum [121]. 
It also causes local inflammation, leading to fibrosis that 
creates an environment favorable for tumor invasion after 
attaching to the mesothelial layer of the omentum [121].

In this section, we showed how a primary tumor creates 
a supportive microenvironment for tumor attachment in 
distant organs through malignant ascites containing TGF-β 
and exosomes, which may support the subsequent growth 
of metastatic tumors. Next, we will discuss dynamic remod-
eling of tumor stroma and metastatic niche in the omentum 
from the perspective of TAF.

8  Role of omentum as “soil” in metastatic 
tumor growth

Once EOC cells adhere to the mesothelial cells, they 
invade and grow in the omentum. For further cancer pro-
gression, the tumor cooperates with cells such as CAFs 
and TRMs to promote a tumor favorable microenviron-
ment (Fig. 4 bottom right). Our previous histological anal-
ysis of the peritoneal metastasis diagnosed with advanced 
EOC revealed that fibroblastic cells surrounding the invad-
ing tumor cells were associated with the peritoneal meso-
thelial cells, CAFs, including OCAMs that cooperated 
together with cancer cells to form a microenvironment that 
promoted cancer cell invasion [122]. Furthermore, CAFs 
also secrete TGF-β, facilitating EMT of attached tumor 
cells, which helps the further invasion of EOC [123, 124]. 
CAFs are also be a major source of ECM materials, such 
as collagen, cytokines, and chemokines, for remodeling 
tumor stroma [54, 123]. Proteome analysis comparing 
the primary tumor and omental metastases revealed that 
increased expression of collagen type I and other ECM 
protein [54, 125]. Recently, it has been shown that the 
presence of COL11A-positive CAFs is associated with the 
presence of linear collagen fibers in EOC stroma [126]. 
COL11A expression is also increased in omental metas-
tases compared to primary tumors [125]. Furthermore, the 
expression of WISP1, which linearizes collagen fibers in 
breast cancer, is significantly increased in advanced EOC 
patients [90]. Although there are no reports analyzing 
the collagen fiber arrangement in EOC metastases, the 
increased collagen observed in omental metastases [127] 
is predicted to be remodeled linearly like primary tumors 
to further support EOC cell invasion and growth.

As the metastatic tumor grows, it needs more blood 
supply because of the increasing demand of oxygen and 
other nutrients of the cancer cells [128]. Furthermore, 
excessive accumulation of collagen fibers makes the 
tumor more hypoxic and malnutrition by collapsing of the 
blood vessels due to the high interstitial pressure within 
the tumor [128] (Fig. 4 bottom left). Therefore, tumors 
change their metabolism by expressing glycolytic enzymes 
to tolerate malnutrition and a hypoxic environment known 
as the Warburg effect [128]. On the other hand, the tumor 
tries to break through this unfavorable hypoxic state via 
various biological pathways promoted by hypoxia-induc-
ible transcription factor (HIF) axis [129]. The hypoxic 
microenvironment also affects mesothelial cells adjacent 
to tumor foci, causing collagen production through the 
HIF-α pathway and promoting further growth of intraperi-
toneal metastatic tumor [130].

Hypoxia created by tumor growth and TAF also induces 
VEGF expression, which controls oxygen and nutrients 



Cancer and Metastasis Reviews 

supply for tumor growth by promoting vascularization. It 
also provides a scaffold for invasion and metastasis [131]. 
In addition, Sonic Hedgehog (SHH) secreted from EOC 
cells promotes lymphangiogenesis via the Hh (Hedgehog)/
VEGF-C signaling axis [131]. Since the cancer cells need 
guidance toward a new environment via blood vessels or 
lymph ducts, the tumor may remodel collagen fiber net-
work, which promote metastasis through newly generated 
blood vessels [132]. Moreover, hypoxia also increases 
intracellular reactive oxygen species (ROS), which is typi-
cally generated during cell metabolism or inflammation, in 
the mitochondrial electron transport chain [133, 134]. ROS 
also play an important role in cancer progression in the 
tumor microenvironment [135]. Tissue analysis of EOC 
patients has shown the increased expression of NADPH 
oxidase 4 (NOX4), which produces ROS [135]. NOX4 
is associated with TGF-β-mediated collagen production 
[4], suggesting that ROS may support collagen production 
in EOC through TGF-β. Furthermore, increased cellular 
ROS also promotes further EMT of EOC cells [35]. Thus, 
hypoxia contributes to the vicious cycle of tumor progres-
sion by mediating an intricated network of cytokines via 
ROS.

The omentum promotes metastatic tumor growth by the 
abundant CAFs and ECM supply, which is necessary for 
TAF formation. Interestingly, a recent analysis of the mesen-
chymal subtype of HGSOC reported that its expression sig-
nature profile was only present primary HGSOC in patients 
with concurrent upper abdominal/omental metastases but 
not in HGSOC that were confined to the ovary [136]. These 
findings suggest that the mesenchymal subtype may rep-
resent an advanced intraperitoneal tumor dissemination to 
the ovary rather than a subtype of primary HGSOC. EOC 
cells released from omental metastasis may have the capac-
ity to change their overall tumor characteristics to a more 
malignant phenotype, depending on the microenvironment 
of surrounding cells and stroma at the metastatic niche.

In this section, we discussed the TAF creates a supple-
mentary tumor microenvironment with increased rigidity, 
highly oriented collagen fibers, hypoxia, and vascularization 
for metastatic tumor growth after the EOC cells attached to 
the omentum. Next, we discuss the contribution of TAF to 
chemoresistance.

9  TAF as biophysical barrier 
against chemotherapy 
and chemotherapy‑induced fibrosis

Most EOC patients receive platinum-based chemother-
apy as a first-line chemotherapy treatment after complete 
debulking surgery. Although this seems effective, over 70% 
of patients experience recurrence and develop platinum 

resistance within five years [137], contributing to the poor 
prognosis of EOC [138, 139]. So far, several mechanisms of 
chemoresistance have been identified in cancer cells, such as 
drug availability or signaling pathways [140]. Furthermore, 
EOC treatments targeting cancer cells have changed dramati-
cally in recent years with the advent of molecularly targeted 
drugs, such as poly ADP-ribose polymerase (PARP) inhibi-
tors, bevacizumab, and immunological checkpoint inhibi-
tors, such as anti-programmed death 1 (PD-1)/programmed 
cell death-ligand 1 (PD-L1) [141], based on genetic profiling 
and platinum resistance [142]. However, the survival rate 
still has not improved dramatically [140].

Recently, it has been pointed out that the stroma plays a 
significant role in chemoresistance [143]. Fibrosis acts as a 
physical barrier to chemotherapy and provides an environ-
ment where tumors acquire chemotherapy resistance (Fig. 4 
top left). As we discussed above, TAF creates an anaero-
bic environment within the tumor, which promotes HIF-1 
expression leading to chemoresistance of tumor cells. HIF-1 
also shifts tumor cells from apoptotic condition to dormancy, 
which also seems to promote cell survival under chemo-
therapy [144]. Furthermore, the dense deposition of collagen 
fibers also acts as a physical shield against chemotherapy by 
collapsing blood vessels, which reduces the amount of blood 
flow and chemotherapy drugs into the tumor [144–146].

Recently, Jeremy et al. proposed an intriguing model of 
platinum-resistant and sensitive recurrence taking into con-
sideration with the function of ECM [147]. In the model, 
it is noted that the ECM protects cancer stem cells from 
chemotherapy by restricting the drug delivery into the tumor 
and maintains cancer cell heterogeneity [147]. If the plati-
num-sensitive tumor is covered with fibrotic stroma and pro-
tected from chemo drugs, it may be seemed like a platinum-
resistant recurrence. Since the fibrotic microenvironment 
protects platinum-sensitive EOC cells from chemo drugs, 
platinum-based chemotherapy may be effective even for the 
patients who were diagnosed as platinum-resistant EOC if 
the tumor stroma becomes less fibrotic, which may be one 
of the reasons why platinum-based rechallenge therapy may 
be effective for some patients with platinum-resistant EOC 
[148]. Fibrosis also plays an essential role in tumor immune 
suppression by reducing infiltration of immune cells [149]. 
Recent studies have also shown that the effect of the anti-
PD-1 treatment may be limited by the accumulation and 
cross-linking of collagen fibers by restricting T cell infiltra-
tion into the tumor [150].

Clinically, tissues exposed to chemotherapy are replaced 
by fibrotic stroma [150, 151]. This chemotherapy-induced 
fibrosis makes it challenging to complete cytoreductive sur-
gery in advanced EOC [152] (Fig. 4 top left). However, there 
are few reports analyzing the fibrosis after chemotherapy. 
One histopathological studies of EOC after neoadjuvant 
chemotherapy (NAC) suggest that a high degree of fibrosis 
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correlates with a better prognosis [153]. Although this report 
contradicts our viewpoint, but it only describes the degree 
of fibrosis after NAC, which may reflect the high efficacy 
of chemotherapy. An important factor is the composition 
of the environment surrounding the EOC cells that survive 
after chemotherapy as recurrence can occur if there are a 
few viable cells present. Factors associated with the fibro-
sis including stiffness, composition, and collagen linearity 
before and after NAC should be assessed in further stud-
ies. Chemotherapy-induced fibrosis can play various roles 
in EOC progression, but limited studies have investigated 
this so far.

We discussed above that TAF can act as a barrier against 
chemotherapy. In this context, reducing the fibrous stroma 
accumulation could be a breakthrough to enhance existing 
anti-tumor therapy and increase blood flow, chemotherapy-
drug, and immune cell infiltration to the tumor. We propose 
that normalizing the fibrous stroma may provide a novel 
future therapeutic strategy. Lastly, we discuss the anti-fibro-
sis therapy on EOC.

10  Is anti‑fibrosis therapy a solution?

As discussed above, the tumor microenvironment plays a 
significant role in tumor proliferation, invasion, metastasis, 
and chemoresistance. Conversely, manipulating the micro-
environment can affect various tumor functions. Interest-
ingly, cancer cell proliferation ability was suppressed in 
the presence of normal stromal components [154]. So far, 
several stromal targets in EOC, such as endothelial cells, 
CAFs, and TAMs, have been identified [146]. Significantly, 
the microenvironment with an aberrant accumulation of col-
lagen fibers influences various tumor functions, and TAF 
can determine a tumor’s fate. Conversely, reducing the 
fibrous tumor stroma may suppress tumor aggressiveness 
and improve drug delivery thereby improving therapeutic 
efficacy and patient prognosis. Several reports also show that 
anti-stromal therapy normalizes the malignant stroma and 
improves life expectancy in various cancer, such as pancre-
atic cancer, breast cancer, prostate cancer, hepatocarcinoma, 
and melanoma [155–160].

In terms of targeting fibrosis, there are two therapeutic 
ways: to suppress new fibrosis or to breakdown existing 
fibrosis. Since most EOCs are diagnosed at an advanced 
stage with intraperitoneal dissemination with fibrosis, 
reducing the fibrous stroma could effectively improve the 
prognosis of advanced EOC patients. If the TAF could be 
diminished, chemotherapy drugs could be delivered even 
into tumor foci where chemo drugs were not able to reach 
due to fibrous stroma. Several studies show several existing 
drugs which may control the TAF.

One of the target is the renin–angiotensin–aldosterone 
(RAA) system, which is associated with fibrosis in various 
organs and fibrotic diseases [161]. Primarily, angiotensin II 
promotes direct secretion of TGF-β and is considered to be a 
molecular driver of fibrosis [161]. Moreover, several studies 
have shown the effectiveness of the RAA system targeting 
therapies. For example, administration angiotensin inhibitor 
reduces solid stress due to fibrosis, improving the efficacy of 
chemotherapy in pancreatic cancer [128].

One of the candidates for anti-stromal therapy for EOC is 
angiotensin II type 1 receptors (AT1R) inhibitors that have 
been reported to inhibit tumor invasion, angiogenesis, and 
peritoneal dissemination [162]. Recently, adding the angio-
tensin inhibitor, losartan, to platinum-based chemotherapy 
reduced collagen fiber deposition and increased blood perfu-
sion into the tumor, enhanced chemotherapy response, and 
reduced ascites formation [144]. Importantly, a retrospective 
analysis indicated that patients that received angiotensin sys-
tem inhibitors had improved overall survival compared with 
patients who received other forms anti-hypertensives [144].

Metformin is another drug that reduces fibrosis of various 
organs, such as the heart, lungs, kidney, liver, and ovaries, 
via the TGF-β axis [163]. Intriguingly, an observational 
study of patients using metformin suggested that metformin 
reduced cancer risk by 23% [164]. After this report in 2005, 
increasing numbers of studies focused on how metformin 
decreases cancer risk and revealed its anti-cancer effects, 
including EOC [165, 166]. Furthermore, omental fibrosis 
is also strongly associated with insulin resistance, and anti-
diabetic drugs such as metformin may play a role in reducing 
fibrosis [167]. Metformin affects various signaling pathways, 
mainly the AMPK pathway, which is involved in various 
tumor promoting properties [166]. Although metformin is 
considered to target cancer stem cells in its treatment [168], 
a recent study indicates that metformin suppresses EOC 
progression by inactivating stromal fibroblast stimulated 
by interleukin-6 (IL-6) [169], which cause fibrosis through 
chronic inflammation in acute peritoneal inflammation 
models [169]. Furthermore, a recent article indicated that 
metformin downregulates mesothelin (MSLN) expression of 
EOC cell lines, and downregulates IL-6/ STAT3 signaling 
activity that increases VEGF and TGF-β expression [170]. 
These reports indicate that metformin might inhibit tumor 
progression by mitigating stromal fibrosis. Recent phase 
II clinical trials indicate that the addition of metformin to 
treatments such as primary debulking surgery and chemo-
therapy in 38 patients with EOC improved overall survival 
and was associated with epigenetic changes in the tumor 
stroma [171].

In conclusion, understanding the complicated crosstalk 
between the tumor is necessary to break the vicious recur-
rence and metastasis cycle of EOC as mentioned in Fig. 4. 
The journey to develop the stromal-targeted therapies in 
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EOC has just begun. In the future, further understanding of 
the TAF in EOC could lead to novel EOC treatment strate-
gies (Table 1).
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