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Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mito-
chondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial 
uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of 
UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
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1  Pancreatic cancer: an aggressive cancer 
dependent on mitochondrial metabolism

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer 
with a 5-year survival rate of less than 11% [1]. The disease 
is potentially curable with surgery, but 80–85% of cases are 
already locally advanced or distantly metastatic at the time 
of diagnosis, making most cases ineligible for operation. 
This is exacerbated by the lack of identified biomarkers and 
the fact that PDAC has such a low incidence in the popula-
tion that general screening of the population is not justified 
[2]. Overall, this results in late diagnoses in the majority of 
PDAC patients. In addition, the main driver and initiator 
of PDAC, KRAS (specifically the G12D mutation), present 
in over 90% of PDAC cases, is currently undruggable [3], 
resulting in a dearth of targeted therapies and reliance on 

powerful nonspecific chemotherapies that are highly toxic 
to patients. While exciting steps have been made with the 
FDA approval of the G12C inhibitor sotorasib [4–6], it is not 
a common mutation in PDAC, present in only 1% of cases 
[3]. Finally, PDAC exhibits resistance to a large array of 
treatments. Gold standard agents such as gemcitabine, nab-
paclitaxel, and FOLFIRINOX are the most effective com-
pounds but are limited by toxicity and moderate survival 
benefits [7, 8]. The combination of late diagnosis, lack of 
targeted therapies, and drug resistance makes PDAC one of 
the deadliest cancers and the focus of many research groups.

Like many cancers, PDAC also has rewired metabolism 
[9, 10]. This includes a shift towards aerobic glycolysis, 
increased lactate production, induction of non-oxidative 
pentose phosphate pathway, increased fatty acid synthesis, 
reliance on glucose to grow, and dependency on glutamine 
and collagen to replenish tricarboxylic acid (TCA) cycle 
intermediates [9, 11, 12]. While PDAC utilizes aerobic gly-
colysis, several groups have demonstrated that pancreatic 
cancer has sufficient metabolic plasticity to also use mito-
chondrial oxidative phosphorylation (OXPHOS) to generate 
ATP [13, 14], driving metastasis and treatment resistance 
[11, 13, 15–17]. While targeting mitochondrial respiration 
has had some preclinical promise [13, 18], the nonspecific 
poisoning of mitochondria has failed to demonstrate clinical 
success due to its suboptimal therapeutic ratio from its high 
toxicity in normal cells that rely on these same pathways. For 
instance, the targeting of complex I with the small molecule 
IACS-010759 showed efficacy against brain cancer and acute 
myeloid leukemia (AML) in preclinical models by inhibiting 
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proliferation and inducing apoptosis, but the ensuing phase 
I clinical trial, using relapsed AML and a variety of solid 
tumors, including 3 PDAC patients, was halted due to modest 
efficacy and induced resistance with the inability to esca-
late dose or intensify scheduling due to neurotoxicity [19]. 
This was also shown with the complex I inhibitor metformin, 
which failed to improve the survival of PDAC patients when 
combined with chemotherapy in clinical trials [20].

Despite the difficulty in selectively targeting mitochondrial 
function, these organelles play a vital role in metabolic repro-
graming in PDAC via OXPHOS functionality. In particular, 
the SLC25 family of transmembrane anion carriers medi-
ates glutamine and aspartate homeostasis, which are critical 
components of the metabolic rewiring that occurs in PDAC. 
Glutamine enters the mitochondria and is metabolized to glu-
tamate, which is then metabolized to α-ketoglutarate. Thus, 
glutamine is vital to replenishing TCA cycle intermediates. 
Further, glutamine is metabolized to aspartate, which is vital 
for protein synthesis, nucleotide synthesis, fatty acid synthe-
sis, and reactive oxygen species (ROS) elimination [16], all 
important pathways in PDAC. However, these two integral 
components of PDAC tumorigenesis and progression can-
not traverse the mitochondria alone and thus need carriers 
to transport them across the inner mitochondrial membrane. 
UCP2’s proposed role as a metabolite transfer protein may 
be indispensable to PDAC growth, in addition to its other 
functions, as is covered below.

As a result, many of the SLC25 family members are 
dysregulated in PDAC, UCP2 among them [21]. Moreover, 
UCP2 levels are increased in leukemia and cancers of the 
ovary, bladder, esophagus, testes, kidneys, lungs, colon/rec-
tum, and prostate [22, 23]. This overexpression has been 
correlated to chemotherapeutic agent resistance in leukemia 
as well, with drug-resistant cell lines significantly overex-
pressing UCP2 compared to sensitive cell lines [24]. In addi-
tion, UCP2 overexpression has been shown to reduce ROS 
levels and apoptosis upon chemotherapeutic exposure, thus 
promoting drug resistance in colon cancer [25].

2  The SLC25/mitochondrial uncoupling 
protein family

To better understand how UCP2 is involved in the pathobi-
ology of pancreatic cancer, it would be relevant to broadly 
review the biology of the family of proteins. UCP2 is a 
member of the SLC25 mitochondrial anion transporter fam-
ily [26]. These proteins, also known collectively as the mito-
chondrial carrier family, make up the largest group of solute 
carriers. Located mainly in the mitochondria with varying 
distribution of tissue expression between the family mem-
bers, they have an overarching function to link the metabolic 
functions of the cytosol and the mitochondria by providing 

the transport of a wide variety of solutes across membranes. 
The main features connecting all members of the SLC25 
family and making them a unique and distinguishable group 
are a tripartite structure, a threefold repeat signature motif, 
and 6 transmembrane alpha helices [26].

The UCP subfamily consists of 6 members (UCP1-6), all 
residing as integral membrane proteins in the inner mito-
chondrial membrane [27, 28]. All family members uncouple 
the ETC proton gradient from ATP generation by allow-
ing protons to “leak” or flow back down their gradient into 
the inner membrane space. Each protein has different tissue 
expressions and homology to each other. Generally, UCP1 is 
exclusively expressed in brown adipose tissue (BAT), UCP3 
is mostly contained to human skeletal muscle and rodent 
skeletal muscle and BAT, UCP4/5 is limited to neuronal 
expression, and UCP6 is only expressed in kidney tissue. In 
contrast, UCP2 is expressed ubiquitously. In addition, there 
is large homology between the proteins and between mouse 
and human homologs.

One of the most abundant and the classic member of the 
UCP2 subfamily is Uncoupling Protein 1 (UCP1), making 
up to 15% of mitochondrial protein mass [29]. UCP1 was 
identified in 1978 [30] and first cloned in 1986 [29]. It is 
expressed exclusively in BAT and is classically involved in 
mediating the non-shivering thermogenesis of this tissue; 
thus, its uncoupling generates heat, protecting against cold 
and controlling energy expenditure. Mice lacking Ucp1 are 
sensitive to cold and are unable to maintain body tempera-
ture in cold temperatures [31].

UCP2 was first discovered and cloned in 1997 [32, 33]. 
Due to its homology to UCP1 (about 59%), as well as its 
chromosomal location near regions linked to obesity and 
hyperinsulinemia and its ability to uncouple, UCP2 was first 
thought to also be involved in thermogenesis [32]. How-
ever, mice lacking Ucp2 were still able to maintain body 
temperatures in cold temperature, as well as body fat levels 
[34]; thus, UCP2 was unlikely to be involved in thermogen-
esis like UCP1. UCP2 is located on chromosome 7 of the 
mouse and chromosome 11 of humans, spanning 8.4 kb over 
eight exons and 7 introns. Upon transcription, it contains 
two untranslated exons followed by six coding exons [35]. 
In mice, Ucp2 is expressed in most tissues, and prominently 
in the lung, kidney, pancreas, adipose tissue, muscle, heart, 
brain, and spleen [28, 32, 33, 36, 37]. Human and murine 
UCP2 display 95% homology, whereas UCP1 and UCP3 
are only 58% and 71% homologous to UCP2, respectively.

The SLC25 family members all contain a tripartite struc-
ture, three tandemly repeated homologous domains com-
posed of about 100 amino acids, and six transmembrane 
helices (numbered H1 to H6), connected with two loops on 
the cytosolic side and three on the matrix side. Both the 
N and C termini are orientated toward the intermembrane 
space. These helices form a barrel that forms a depression 
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accessible to the outside [38]. The prolines of the odd num-
bered helices form a sharp kink, in known conserved regions 
of SLC25 mitochondrial transporter family members [26]. 
Charged residues form a salt bridge network that connects 
the transmembrane helices, closing the matrix side of the 
channel [39]. In addition, the SLC25 family has a single 
binding site that is only exposed to one side of the matrix at 
a time, depending on its conformation in the membrane. It 
is in the c-state when the substrate enters from the cytosolic 
side and the m-state when it enters from the matrix side, 
with a transition state in between. In the transition state, 
the substrate is deep in the center of the carrier, with both 
sides mostly closed off to either side of the membrane [26]. 
The structure of UCP2 was recently determined utilizing 
nuclear magnetic resonance [38]. The structure resembles 
that of the ADP/ATP carrier adenine nucleotide translocase 
(ANT), with conserved proline kinks and helices, but the 
third tandem repeat is significantly different than the ANT 
when bound to their respective inhibitor [38]. This differ-
ence results in a matrix side that is significantly more open 
in UCP2, resulting in a less-obstructed channel compared 
to ANT.

3  Dual roles for UCP2: an uncoupler 
and a transporter

3.1  Mechanisms of uncoupling

As its name implies, UCP2 was first identified as an uncou-
pling protein, allowing protons to flow back down the gra-
dient generated during the ETC, without generating ATP, 
thus uncoupling the proton gradient from the ATP genera-
tion. There were two debated mechanisms of how UCP2 
went about its uncoupling capabilities: the fatty acid (FA) 
cycling mechanism and the FA shuttling mechanism [39]. 
The FA cycling mechanism was proposed by Fedorenko 
et al. and maintains that UCP2 is a carrier of FA, whereby 
FAs bind a proton, travel through UCP2 in the protonated 
form, release the proton on the other side of the membrane, 
and travel back through UCP2 in the anionic form [40]. At 
first, studies demonstrating that histidine residues vital to 
proton transport in UCP1, H145, and H147, were not present 
in UCP2, generating support for the FA shuttling mechanism 
[41]. However, other studies showed that UCP2 has ample 
basic residues that can take the place of these histidines [42], 
and multiple studies disproved the FA cycling mechanism 
(reviewed in [39]). It is now agreed that UCP2 acts in a FA 
cycling capacity, otherwise known as the protonophoretic 
model, and involves a flip-flop mechanism [43–45]. In this 
model, protons bind to FA head groups on the outer leaflet 
of the intermembrane side of the mitochondrial membrane. 
The FA then flips across the membrane and releases the 

proton into the matrix. However, the FA becomes anionic 
in the process and is thus unable to flop back to the other 
side of the membrane unaided. The negatively charged FA 
now becomes electrostatically attracted to the positively 
charged amino acid residues Arg60 and Lys271 present in 
UCP2. UCP2 can then flip the FA back, where it continues 
binding protons (Fig. 1) [46]. In this mechanism polyun-
saturated FAs are the most potent UCP2 activators because 
their double bonds increase the disorder and fluidity of the 
membrane, thus the FAs are able to move and reorient faster 
than that of the more rigid membrane seen with saturated 
FAs [43, 47]. This uncoupling mechanism has been sup-
ported by multiple studies showing that overexpression of 
UCP2 in yeast [32] or proteoliposomes containing UCP2 
[42, 48] induced proton flux and that thymocytes from mice 
lacking Ucp2 had reduced proton leak compared to wild-
type mice [49].

Despite the evidence that UCP2 is an uncoupling protein, 
multiple groups have also determined that UCP2 does not 
have uncoupling abilities. Embryonic fibroblasts lacking 
Ucp2 reduced fatty acid oxidation, leading to an increase in 
glucose metabolism through glycolysis, likely to maintain 
levels of acetyl-CoA. In addition, they exhibited an increase 
in proliferation and a reduction of NADPH, all without a 
change in ROS levels or evidence for a role of uncoupling 
[50]. Ucp2 loss in vivo also had no impact on the inner mito-
chondrial membrane’s permeability to protons, nor was there 
an increase in the ATP/ADP ratio as one would expect with 
the loss of an uncoupling protein in the spleen and lung 
mitochondria. A potential issue with this finding is that the 

Fig. 1  The fatty acid protonophore flip-flop mechanism of Ucp2. 
Fatty acids bind a proton and flip to the other side of the membrane. 
After the proton has disengaged from the fatty acid, the anionic fatty 
cannot flop back across the membrane. The negatively charged fatty 
acid is electrostatically attracted to positively charged amino acid res-
idues in Ucp2, which then assists in moving the fatty acid back to the 
original side of the membrane so that it can bind another proton and 
repeat this process
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experiments were conducted using isolated mitochondria, 
thus additional factors needed to induce uncoupling may 
have been lost [51]. In addition, Bertholet et al. did not find 
evidence to support UCP2 to be the FA-dependent media-
tor of proton leak in the mitochondria, instead identifying 
the ATP/ADP carrier as the likely candidate [52]. Finally, 
Robson et al. generated a β-cell-specific knockout mouse 
but did not find any impact on rates of uncoupling respira-
tion and ATP content [53]. Although these results do not 
support UCP2 as an uncoupling protein, they may give evi-
dence to the fact that UCP2 likely has functions other than 
an uncoupling protein, such as a metabolite transfer protein, 
potentially depending on the tissue and environment. Other 
reasons for lack of uncoupling ability may stem from its low 
endogenous levels in the cell, or that activation is required.

3.2  Reactive oxygen species regulation

UCP2’s relationship with controlling ROS levels has been 
well established. UCP2 was first linked to ROS in the same 
year it was discovered, when GDP inhibition of the protein 
resulted in an increase in hydrogen peroxide, similar to that 
of UCP1. It was concluded that UCP2 modulates ROS lev-
els via membrane potential alterations, as these effects were 
not seen in UCP2 null hepatocyte cells [54]. When UCP2 
was lost in pancreatic β-cells, superoxide levels were sig-
nificantly increased, contributing to the β-cell dysfunction 
in obesity and diabetes [55], and overexpression of UCP2 
in pancreatic β-cells protected against ROS-induced toxicity 
[56] suggesting UCP2 is involved in antioxidant defense in 
these cells. Loss of UCP2 via antisense oligonucleotides in 
endothelial cells also resulted in increased levels of intra-
cellular ROS and oxidative stress [57]. Ucp2 loss in mice 
resulted in increased ROS species [34], as well as oxidative 
stress, with upregulation of multiple antioxidant genes and 
impaired glucose-stimulated insulin secretion [58]. Mice 
without Ucp2 had elevated staining of nitrotyrosine in islets, 
an in vivo marker for peroxynirite, thus suggesting local oxi-
dative stress in these tissues [58]. To avoid limitations of 
the whole-body knockout model of Ucp2 used previously, 
β-cell-specific Ucp2 knockout mouse were generated, and 
intracellular ROS levels were increased, as well as glucose-
stimulated insulin secretion, and aberrant glucagon secre-
tion [53]. This role in ROS regulation is vital to cell health, 
as dysfunction in ROS control can lead to a wide array of 
pathologies, including β-cell dysfunction and diabetes.

3.3  Metabolite transfer functions

In addition to uncoupling, UCP2 has been implicated in 
metabolite transfer properties. When reconstituted in lipid 
vesicles, UCP2 exchanged malate, oxaloacetate and aspartate 
for phosphate and a proton across the inner mitochondrial 

membrane [59], reducing the levels of these C4 metabolites 
in the mitochondrial matrix. This potential function resulted 
in decreased oxidation of glucose, leading to reduced acetyl-
CoA generation and redox pressure, as well as minimizing 
the ATP to ADP ratio and ROS production [59]. In addi-
tion, it enhanced glutaminolysis in the matrix of the mito-
chondria, resulting in significantly more C4 metabolites 
exported to the cytosol [59]. In PDAC, glutamate-derived 
aspartate is crucial for generation of reduced glutathione 
[12] to control ROS levels. Thus, UCP2’s export function 
is vital for the maintenance of PDAC’s dependence on glu-
tamine, redox control, and aerobic glycolysis state [59]. 
Ucp2 knockout in a skin carcinogenesis model supported 
the function of Ucp2 as a metabolite transfer protein, as the 
changes in pyruvate, succinate, and malate levels seen in 
wild-type animals were lost in knockout mice [60]. UCP2 
overexpression was shown to shift cancer cells away from 
glycolysis and back towards the normal pancreatic tissue 
phenotype of OXPHOS utilization, reducing tumorigenic-
ity [61] without impacting membrane potential. In addition, 
 UCP2−/− macrophages had impaired glutamine metabolism 
and reduced accumulation of aspartate, but no impact on 
mitochondrial uncoupling or the functional state of the mito-
chondria, suggesting that the glutamine metabolism role of 
UCP2 is independent of its uncoupling ability [62]. Finally, 
UCP2 was identified as the aspartate exporter out of the 
mitochondria upon metabolism of glutamine in PDAC cells. 
UCP2 loss significantly impacted growth of PDAC tumors 
in vitro and in vivo but only in cells with the KRAS muta-
tion characteristic of PDAC [16]. UCP2 loss coupled with 
KRAS mutation to decrease the growth of PDAC cells and 
cause aberrant redox homeostasis, in addition to reducing 
glutaminolysis. In KRAS WT cells, only glutaminolysis was 
impacted, demonstrating the connection between UCP2 and 
the rewired metabolism in PDAC [16].

3.4  Calcium transporter functions

Recent findings have also identified UCP2 in mitochondrial 
calcium  (Ca2+) transport. UCP2 was first linked to  Ca2+ in 
2007 by Trenker et al. Utilizing overexpression, mutagen-
esis and knock down studies, they determined that UCP2 is 
required for  Ca2+ uptake in cells. While overexpression of 
either protein did not affect release of  Ca2+ from the endo-
plasmic reticulum, or basal concentrations in the mitochon-
dria and endoplasmic reticulum, uptake, and sequestration 
of  Ca2+ was significantly increased [63] This was not seen 
with UCP1, suggesting a unique physiological function for 
UCP2. In addition, when UCP2 was reduced via siRNA, 
mitochondrial  Ca2+ uptake was reduced. Finally, they iden-
tified a domain homologous in UCP2 that is distinct from 
UCP1 responsible for  Ca2+ uptake: the intermembrane loop 
2. Upon mutation of this region, UCP2 correctly localized 
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to the mitochondria, but overexpression did not increase 
sequestration of  Ca2+ as seen with the wild-type protein [63].

Later, it was determined that the role of UCP2 depends 
on the source of the  Ca2+. While  Ca2+ mobilized specifically 
from the endoplasmic reticulum was preferentially impacted 
by UCP2 function,  Ca2+ entering the cell by crossing the 
plasma membrane (otherwise known as store-operated 
calcium entry, SOCE [64]) was UCP2 independent [65]. 
Knockdown experiments demonstrated that loss of UCP2 
only impacted  Ca2+ release from the endoplasmic reticulum, 
showing their role in uptake from specific routes of  Ca2+ 
sources. However, overexpression of the protein increased 
 Ca2+ sequestration from both sources, indicating that mito-
chondria uptake their  Ca2+ via distinct pathways that depend 
on the  Ca2+ source [65]. It is discussed that there must be 
UCP2-independent mechanisms of mitochondrial  Ca2+ 
uptake, but it was unknown at this time what this pathway 
may be.

It was determined in 2011 that the main route of  Ca2+ 
influx is via the mitochondrial calcium uniporter (MCU) 
[66, 67], and identification of other proteins involved in 
 Ca2+ flux across the inner mitochondrial membrane soon 
followed, including mitochondrial  Ca2+ uptake 1 (MICU1) 
and essential MCU regulator (EMRE) [68]. While MCU, 
MCUb (a dominant negative subunit), and EMRE form the 
pore that  Ca2+ traverses, MICU1 and MICU2 regulate the 
uptake of  Ca2+ into the mitochondria and prevent overload 
[69]. The identification of the units involved in  Ca2+ allowed 
for elaboration in the specific role UCP2 plays in  Ca2+ flux 
in the mitochondria. Madreiter-Sokolowski et al. deter-
mined that protein arginine methyltransferase 1 (PRMT1) 
regulates MICU1 via methylation at position 455 [70], 
reducing its  Ca2+ sensitivity and uptake. However, in the 
presence of UCP2, which binds specifically to methylated 
MICU and abolishes its sensitivity to PRMT1, leading to 
re-establishment of normal  Ca2+ import function [70]. This 
was reiterated by Gottschalk et al. utilizing super-resolution 
microscopy, who also reported that UCP2 anchors MCU to 
the inner boundary membrane of the mitochondria after ER 
 Ca2+ release [71]. In summary, UCP2 plays an important 
role in ER  Ca2+ release, sequestration of  Ca2+ in mitochon-
dria, and regulation of  Ca2+ flux into cells via MCU.

3.5  Controversies over mechanisms of UCP2 
activation

The mechanism of UCP2 activation is largely debated. 
UCP2 has low endogenous expression in tissue and thus is 
likely activated to achieve physiologically relevant levels. 
It was first determined in 1999, 2 years after its initial dis-
covery, that FA is required for proton flux of UCP2, while 
purine nucleotides inhibit it [42]. In addition, UCP1 utilized 
CoQ as a required cofactor [72], so it was explored whether 

UCP2 acts in a similar fashion to the original uncoupling 
protein. In 2001, Echtay et al. determined that UCP2 has 
uncoupling activity and that coenzyme Q (CoQ) is required 
for the transport of protons. In addition, they confirmed that 
FA is required for UCP2 uncoupling and that nucleotides 
inhibit this function [48], much like that of UCP1. In 2002, 
Echtay et al. determined that UCP2 is activated by ROS [73] 
on the matrix side of the mitochondria [74], then the follow-
ing year, determined that the lipid peroxidation byproduct 
4-hydrpxy-2-noneal (4-HNE) also induces UCP2’s uncou-
pling abilities [75]. While their confirmation of FA activa-
tion was largely accepted and replicated, their other claims 
have fallen into question.

The requirement of FA, specifically polyunsaturated fatty 
acids (PUFAs) and the inhibiting actions of purine nucleo-
tides were supported via proteoliposome experiments. FAs 
such as oleic, myristic, and PUFAs induced the fastest proton 
flux, followed by PUFAs, but PUFAs had the highest affinity 
to UCP2 compared to other FAs [76]. In addition, proton 
flux was inhibited by up to 50% by the presence of ATP, 
which had the highest affinity for the protein, followed by 
GTP, GDP, and AMP with the lowest affinity of the purine 
nucleotides [76]. In addition, planar lipid bilayers have 
shown that UCP2 has protonophoric function exclusively 
in the presence of FAs and that polyunsaturation is more 
effective than saturation of FAs [45]. iPLA2γ, a phospholi-
pase that cleaves the ester bond of membrane phospholipids, 
resulting in the release of both polyunsaturated and saturated 
FAs, is activated by hydrogen peroxide in lung and spleen 
tissues, thus providing a mechanism for UCP2 activation: 
iPLA2γ increases the levels of free FAs for UCP2 activation, 
resulting in a reduction in ROS. Thus, iPLA2γ and UCP2 
coordinate to reduce oxidative stress in tissues where UCP2 
is highly expressed [77]. This mechanism functions the same 
way in pancreatic β-cells, providing protection from lipo-
toxicity resulting from free FA-mediated oxidative stress 
[78]. Furthermore, support for FA binding, especially via 
the protonophore model, was enhanced when a FA binding 
site was discerned in UCP2. NMR determined that FA binds 
to a peripheral site of UCP2 between helices H1 and H6, and 
partially H2 and H5, in a hydrophobic groove [46]. Through 
mutagenesis studies, it was determined that residues Arg60 
and Lys271 are vital for FA binding to UCP2, providing 
positive charges for the basic/negatively charged fatty acid 
head group to interact with on the matrix side of the protein. 
If both these residues are mutated to neutral amino acids, FA 
cannot bind UCP2, and proton shuttling is decreased [46].

The inhibitory action of purine nucleotides on UCP2 was 
inferred to be similar to that of UCP1 and UCP3 because the 
seven residues involved in inhibition are conserved between 
the proteins [42]. However, there are large differences in 
nucleotide sensitivity between the proteins. The mechanism 
was elucidated following the reveal of UCP2’s structure 
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while it was in complex with GDP. GDP binds deep within 
the channel of UCP2 [38], in contrast to UCP1, where its 
inhibitor molecule ATP binds midway in the channel [79]. 
The binding of GDP induces a conformation change in 
UCP2, affecting residues Gly281 and Gly19, resulting in 
the displacement of any bound FAs, preventing further FA 
binding, and resulting in the loss of UCP2 uncoupling [46]. 
Residues Arg185, Arg88, and Lys141 within the helices of 
UCP2 participate in charge-charge binding with GDP to 
facilitate interaction [38].

While Murphy et al. confirmed that UCP2 was activated 
by both ROS and 4-HNE, they were in the minority for 
confirming activation by both species. They proposed that 
UCP2 is activated indirectly by ROS, specifically superox-
ide, which is dismutated to hydrogen peroxide by superoxide 
dismutase and reacts with ferrous iron released via the Fen-
ton reaction to generate the highly reactive hydroxyl radical. 
This radical then interacts with FA and generates a fatty acyl 
radical, which initiates lipid peroxidation reactions, leading 
to the generation of byproducts, including 4-HNE, which 
activates UCP2 [80]. In contrast, another group found evi-
dence of ROS activating UCP2 and UCP3, but not 4-HNE 
[81], which was supported by Malingriaux et al. who deter-
mined that 4-HNE does not directly activate UCP2, but 
rather 4-HNE helps increase the proton flux mediated by FA 
[82]. Endogenously produced superoxide activated UCP2 
in pancreatic β-cells, reduced ATP levels and impaired glu-
cose-stimulated insulin secretion [55]. Couplan et al. were 
unable to replicate the ROS-induced activation of isolated 
spleen and lung mitochondria in their studies [51], further 
questioning the validity of the original experiments.

4  Regulation of UCP2 expression

4.1  Transcriptional

UCP2 is regulated transcriptionally via transcription-binding 
sites for specific protein-1 (Sp1), sterol regulatory elements 
(SRE), thyroid hormone response elements (TRE), and the 
E-box binding sites in the promoter. It was first established 
that long-chain FAs can activate transcription of UCP2, but 
the mechanisms involved was unknown [83]. Both saturated 
and unsaturated FAs, including palmitic acid, oleic acid, and 
linoleic acid, were found to directly interact with peroxisome 
proliferation-activated receptor (PPAR)γ and PPARα [84] 
and PPARγ agonists were shown to increase UCP2 mRNA 
levels [85, 86]; thus, these genes were explored for their 
ability to activate UCP2 via fatty acids. Medvedev et al. 
determined that the E-box is necessary for promoter activ-
ity but PPARγ does not bind this region, thus its stimulation 
of UCP2 must be indirect via additional transcription factors 
interacting with the E-box region [87], but the exact factors 

involved are still unknown. PPARα also stimulates UCP2 
expression. In the heart, free fatty acids and the PPARα ago-
nist WY-14643 increased UCP2 expression [88]. In the liver, 
induction of UCP2 by PPARα was found to lower mitochon-
drial hydrogen peroxide produced during fatty acid oxida-
tion, thus reducing drug-induced hepatotoxicity [89].

UCP2 expression is regulated by a variety of other factors 
in addition to PPARs. In endothelial cells, the AMP-acti-
vated kinase (AMPK) activator AICAR inhibits palmitate-
induced apoptosis by reducing ROS levels, and UCP2 inhibi-
tion by GDP reverses this effect [90]. UCP2 overexpression 
also inhibited apoptosis and ROS generation, suggesting that 
AMPK inhibits palmitate-induced apoptosis in endothelial 
cells, and UCP2 may be a mediator [90]. Medvedev et al. 
determined that in pancreatic β cells SREBP1c, a controller 
of lipid homeostasis binds to UCP2 via its SRE region and 
upregulates its expression, potentially via a PPAR-depend-
ent pathway, due to the fact that FAs are natural ligands for 
these factors [91]. The SRE region is also critical for UCP2’s 
upregulation by FAs, as deletion of this region negated the 
response of UCP2 to FA induction [91]. In human pancreatic 
β cells, the two E-boxes are vital for stimulation of UCP2 
promoter activity via the sterol regulatory element-binding 
protein 1c (SREBP1c), as the SRE region is not conserved 
in humans [92]. UCP2 is also activated by the cAMP-PKA 
cascade, resulting in enhanced depolarization of membrane 
potential after stimulation with cAMP, which was not seen 
in functional mutant UCP2 neural cells [93]. Treatment with 
a protein kinase A (PKA) inhibitor also abolished the effects 
on membrane potential, suggesting that the cAMP-PKA 
pathway stimulates UCP2 expression in neural cells [93]. 
PGC-1α, implicated in insulin release by pancreatic β-cells, 
has been shown to stimulate human UCP2 expression via 
two thyroid hormone response elements in the promoter 
[92], and coordinated upregulation of pancreatic Ucp2 and 
Pgc-1α expression has been shown in animal models of type 
2 diabetes [94]. In addition, PGC-1α can indirectly stimu-
late UCP2 expression via liver X receptor-mediated expres-
sion of SREBP1c [92], while PGC-1β can directly activate 
SREBPs and upregulate UCP2 in pancreatic β cells [95, 96], 
thus supporting a role for both PGC-1α and β in insulin 
secretion regulation. The forkhead box protein A1 (FOXA1) 
transcription factor also interacts with UCP2, identified by 
a reduction in ATP synthesis in  FOXA1-/- pancreatic β cell 
islets due to an upregulation of UCP2 by Vatamaniuk et al. 
FOXA1 downregulates UCP2 transcription, potentially 
through interaction with the UCP2 repressor Sirtuin 1 (Sirt1) 
[97] as it binds near FOXA1 on the UCP2 promoter [98]. 
Finally, transforming growth factor beta (TGFβ)-induced 
SMAD4 was shown to bind to six repressive SMAD binding 
elements of the UCP2 promoter in breast cancer, repressing 
UCP2 transcription [99]. SMAD4 is a vital tumor suppressor 
gene that is inactivated in multiple cancer types, including 
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over 50% of PDAC cases, potentially contributing to the 
overexpression of UCP2 often seen in these pathologies 
[100].

4.2  Translational

UCP2 translation is regulated by a myriad of miRNAs, 
many of which are dysregulated in PDAC [101, 102]. This 
translational regulation results in protein expression patterns 
that do not always match mRNA levels. mir-15a, consid-
ered a tumor suppressor miRNA that is downregulated in 
PDAC, negatively regulates UCP2 translation, resulting in 
increased insulin biosynthesis in pancreatic β cells [103]. 
Another tumor-suppressive miRNA downregulated in PDAC 
is mi133a, a muscle-specific miRNA involved in myogenic 
differentiation [104]. On the other hand, miR-214 is upregu-
lated in PDAC, resulting in increased UCP2 expression. It 
was first identified by its reduction of oxidative stress asso-
ciated with diabetic neuropathy via UCP2 overexpression 
[105]. In addition, miRNAs can indirectly impact PDAC 
via UCP2, such as with miRNA-2909. miR-2909 suppresses 
the Kruppel-like factor 4 (KLF4) gene, a tumor suppressor 
downregulated in PDAC [106]. KLF4 negatively regulates 
UCP2 expression [107], thus when KLF4 is suppressed via 
miR-2909, UCP2 expression increases. Other miRNAs tar-
geting UCP2 include miR30e, a recently found inhibitor of 
PDAC carcinogenesis and progression that acts via restraint 
of SNAIL-mediated epithelial-mesenchymal transition. 
miR30e is downregulated in PDAC [108], contributing to 
the upregulation of UCP2 characteristic in PDAC, as well 
as that seen in kidney fibrosis [109]. Finally, miR24 and 
miR-34 also downregulate UCP2 expression [110]. miR-24 
is downregulated in PDAC [111] as it inhibits progression 
via downregulation of Laminin beta subunit 3 (LAMB3), 
a known oncogene upregulated in PDAC [112]. miR-34 is 
also downregulated, blocking tumor growth by inhibiting 
multiple oncogenic signaling pathway genes [113].

In addition to miRNAs, UCP2 translation is altered by 
glutamine, inducing UCP2 expression at physiological levels 
[114]. This was supported by the finding that removal of glu-
tamine from the cell media reduced UCP2 protein levels, but 
not mRNA, supporting a translational impact of glutamine 
on UCP2 [115]. Hurtaud et al. determined that the upstream 
open reading frame of the 5′ UTR is required for this action 
of glutamine [116].

UCP2 translation is also regulated by the RNA-binding 
protein heterogeneous nuclear ribonucleoprotein-K (hnRNP-
K). One study determined that hnRNP-K binds to the UCP2 
3′ UTR specifically with insulin treatment of cells, suggest-
ing that hnRNP-K is involved in the insulin-induced transla-
tion of UCP2 [117]. Additionally, Angiopoetin-1 stimulates 
interaction of Src with hnRNP-K leading to the phosphoryla-
tion of hnRNP-K and the upregulation of UCP2 translation 

in endothelial cells, providing an explanation of the quick 
response of endothelial cells to oxidative stress [118]. In the 
liver, adiponectin transiently increases ROS levels, initiating 
the translocation of hnRNP-K, resulting in the upregulation 
of UCP2 expression and protection against fatty liver dis-
eases and hepatic injury [119].

4.3  Post‑translational

UCP2 is negatively regulated post-transcriptionally by 
reversible glutathionylation [81]. Glutathionylation is stimu-
lated by reduced ROS levels and reversed with increasing 
ROS levels, creating an on-off switch of UCP2 activity. The 
protein family GRx is involved in the reaction, and specifi-
cally, reactive cysteine residues are the sites of glutathio-
nylation in UCP2. While  Cys259, located in a mitochondrial 
matrix-facing loop of the protein, was identified as the 
main residue involved for UCP3 glutathionylation, spe-
cific cysteine residues in UCP2 have not yet been evaluated 
[81]. This mechanism is also connected to UCP2’s role in 
negative regulation of glucose-stimulated insulin secretion 
(GSIS), where an increase in specifically matrix ROS results 
in deglutathionylation and activation of UCP2, consequently 
impeding GSIS in pancreatic islet cells [120].

4.4  Protein stability

UCP2 translation is constantly suppressed; thus, the protein 
has an unusually short half-life. Compared to UCP1 with a 
half-life of about 30 h, UCP2 is much more unstable, with a 
half-life as low as 30–60 min in certain tissues [121], includ-
ing pancreatic β cells [115]. This is likely due to the differ-
ent physiological functions of the proteins. While UCP1 is 
involved in the long-lasting thermogenesis process and must 
be present for long periods of time, UCP2 is involved in 
ROS levels and changes in nutrient supply, which are tightly 
regulated and change quickly, thus the proteins involved are 
synthesized rapidly but are only needed for short periods of 
time. UCP2 is stable in isolated mitochondria [115]; thus, 
there must be an extramitochondrial factors involved in 
UCP2 degradation. It was determined that the degradation 
of UCP2 is controlled by the cytosolic proteasome [122]; 
however, the exact mechanism is unknown, as there is no 
known mitochondrial export machinery in mammalian cells.

5  UCP2 as a Therapeutic Target in PDAC

In cancer, the electron transport chain is highly stimulated, 
generating copious amounts of ATP to keep the tumor cells 
growing and expanding. However, mitochondria are one of 
the highest producers of ROS in the cell [123]; thus, the 
extended ETC use increases the level of ROS in the cell. If 
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left unchecked, high levels of ROS can result in cell death. 
To evade this, cancer cells enact multiple methods of anti-
oxidants, PDAC included. UCP2 upregulation is likely a way 
that PDAC cells manage ROS. By uncoupling the ATP gen-
eration from the ETC, UCP2 reduces the chance of electrons 
leaking out of the complexes and interacting with oxygen to 
form ROS (Fig. 2). Thus, although UCP2 overexpression 
slightly reduces the amount of ATP generated, it keeps ROS 
levels manageable, thus promoting cell growth and survival.

5.1  Pharmacologic inhibition of UCP2

As discussed above, purine nucleotides are inhibitors of 
UCP2. However, these molecules, though potent, are not 
cell permeable, and thus are not feasible for use in the 
clinic. Genipin is a natural inhibitor of UCP2 extracted 
from the Gardenia jasminoides Ellis shrub in the Rubi-
aceae family. Fruits of this plant have been used in 
Asian communities as both a natural yellow, blue, and 
red colorant, as well as in traditional medicine to relax 
blood vessels and improve blood flow [124]. It has also 
been used to treat diabetes and neurological disorders 
[125]. Genipin forms from geniposide upon cleavage 
with β-glucosidase. Further reaction between genipin 
and amino acids or proteins results in the genipin blue 
colorant [124]. Genipin is a natural crosslinker, able to 
interact with proteins, collagen, gelatin, and chitosan, 

with low toxicity and high biocompatibility, making it a 
commonly used drug for drug delivery, despite lacking 
FDA-approval [124].

Despite its known crosslinking abilities, the exact mecha-
nism of inhibition that genipin has on UCP2 was unknown, 
leading to its lack of popularity in classical medicine. It 
was first identified as a Ucp2 inhibitor in 2016 when insulin 
secretion was stimulated in pancreatic islet cells from wild-
type mice with genipin treatment but not in those of mice 
lacking Ucp2. In this situation, genipin worked via a mech-
anism distinct of its crosslinking abilities [126]. Through 
synthesized genipin derivatives and UCP2 overexpression 
and silencing studies, the 1-OH group was determined to 
be the key site for its cytotoxic biological effect on PDAC 
cells [127]. Furthermore, at low concentrations, genipin 
binds arginine residues in the UCP funnel, leading to loss 
of proton leak abilities. At concentrations above 400 μM, 
however, there is increased nonspecific ion transport due 
to the formation of genipin-protein aggregates, leading to 
loss of specificity [125]. However, genipin was also found 
to inhibit the proton conductance of UCP1 and UCP3 in pla-
nar bilayer membranes, leading to speculation of genipin’s 
specificity [125]. Although the specificity of genipin has 
been questioned, knockout and silencing studies support the 
fact that this drug targets UCP2. Genipin inhibited proton 
leak in pancreatic islets, resulting in increased membrane 
potential and ATP levels, leading to  KATP channel closing 

Fig. 2  The ETC generates a proton gradient utilized by ATP synthase 
to generate ATP. UCP2 negates this gradient via mild uncoupling. 
Ucp2 indirectly controls ROS levels because when the proton gradi-
ent becomes too high electrons can escape from the ETC (red arrows) 

and react with oxygen to form reactive oxygen species. Ucp2 keeps 
the gradient at ideal levels, keeping the electrons moving through the 
pathway so they cannot form ROS
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and the secretion of insulin [126]. These results were UCP2-
dependent, as cells lacking UCP2 did not have these effects 
upon genipin treatment [126]. In addition, siRNA-mediate 
knockdown of UCP2 reversed the antiproliferative effects 
of genipin in pancreatic cancer [128], further supporting 
genipin specificity.

Due to its low cytotoxicity to normal cells and UCP2’s 
common overexpression in cancer, genipin’s anticancer 
effects have become an area of interest. In bladder cancer, 
genipin suppressed the growth of cancer cells, induced cell 
cycle arrest, promoted apoptosis, and inactivation of the 
PI3K/Akt signaling pathway, a vital pathway for bladder 
cancer [129]. In contrast, no impact to viability on non-
malignant cells was observed [129]. In breast cancer, inhi-
bition of UCP2 via genipin resulted in increased sensitivity 
to cisplatin and tamoxifen therapeutics, with additive effects 
on oxidative stress induction [130], and suppressed ROS, 
and reduced proliferation and invasion selectively in breast 
cancer compared to normal breast epithelial cells [22]. In 
drug-resistant leukemia cells, genipin treatment selectively 
sensitizes cells to cytotoxic drugs compared to drug-sensi-
tive controls [131]. In addition, genipin was utilized to dem-
onstrate that UCP2 is likely involved in the mechanism of 
action of cisplatin in colon cancer cells [132]. Finally, geni-
pin reduced the glycolytic flux and mitochondrial OXPHOS 
in breast and colon cancer cells, resulting in a decrease in 
lactate release, OCR reduction, and ROS increase, and this 
effect was recapitulated by UCP2 knockdown [133]. Geni-
pin has been implicated in autophagy suppression as well. 
Genipin inhibits the NLRP3 and NLRC4 inflammasomes via 
autophagy suppression, which are cytoplasmic complexes 
that control pro-inflammatory cytokine production. Thus, 
genipin may be a therapeutic option for inflammasome-
related disorders such as colon cancers and type 2 diabetes 
[134].

The use of an uncoupling protein inhibitor brings up 
expected comparisons to mitochondrial uncoupler therapies. 
Mitochondrial uncoupling therapy may be beneficial in the 
treatment of obesity [135], fatty liver disease, and NASH 
[136], but studies have only recently extended to cancer. 
The earliest uncoupler, also known as a protonophore, 2,4-
DNP (DNP) was first used in the 1930s as a weight-loss 
drug but was removed from the market by the FDA after it 
induced severe adverse events such as hyperthermia, agranu-
locytosis, and hepatotoxicity, limiting future clinical devel-
opment of uncouplers [137]. Thus, classic protonophores 
such as DNP, FCCP (fluorinated hydrazonomalononitrile), 
and CCCP (chlorinated hydrazonomalononitrile) are more 
commonly used in vitro to investigate uncoupling effects 
on cells. However, some FDA-approved drugs are being 
evaluated for repurposing potential as uncouplers in cancer. 
Although no uncoupler therapies are currently approved for 
clinic use in any cancer, several clinical trials are ongoing. 

Niclosamide, a drug approved for tapeworm treatment, 
has shown antitumor effects in multiple cancer types by 
decreasing cell proliferation, inducing G1 cell cycle arrest, 
inhibiting mTOR, and inducing apoptosis [138]. However, 
niclosamide has poor water solubility and oral bioavailabil-
ity [139], limiting its therapeutic potential. Indeed, a clini-
cal trial exploring this oral administration of this drug in 
combination with enzalutamide in castration-resistant pros-
tate cancer failed to improve patient outcome [140], but a 
phase II trial is currently ongoing exploring combinations 
with abiraterone and prednisone (NCT02807805). Nitazoxa-
nide, an FDA-approved antiparasitic drug, has also shown 
uncoupling ability, resulting in AMPK activation, mTOR 
inhibition, G1 cell cycle arrest, and decrease ATP rates in 
vitro and is currently in an active clinical trial for advanced 
cancers in combination with irinotecan (NCT02366884). 
In addition to repurposing drugs, novel uncoupling drugs 
are also being synthesized. A novel niclosamide analog has 
shown efficacy in T cell leukemia by inhibiting proliferation, 
activating AMPK, and decreasing mTOR signaling [141].

In comparison with genipin, there seems to be less 
ROS generation with mitochondrial uncouplers, or it was 
not explored in depth in the papers mentioned here. Both 
uncouplers and genipin slow cell growth and induce apopto-
sis. Interestingly, while genipin seems to upregulate mTOR 
signaling and make PDAC more susceptible to combination 
therapy with everolimus [142], mitochondrial uncouplers 
seem to consistently downregulate mTOR signaling, high-
lighting the difference between these two distinct compound 
groups, and the exploration that is still needed into the mech-
anism of mitochondrial uncouplers. Indeed, where genipin 
seems to induce oxidative stress in cells, these uncouplers 
seem to induce dysfunction in other pathways involved in 
cell growth.

5.2  UCP2 in PDAC

Inhibition of UCP2 as a therapeutic option in PDAC has 
become an increasing area of interest. The accepted role of 
UCP2 in PDAC is that it is downregulated during initiation 
of tumorigenesis to allow ROS accumulation and genomic 
instability, whereas it becomes overexpressed in later stages 
of tumorigenesis, contributing to tumor maintenance of high 
ATP generation, ROS protection, and treatment resistance 
[143], which has also been established in other cancers such 
as colorectal [23]. The combination of genipin with gem-
citabine resulted in a significant increase of ROS produc-
tion and synergized to inhibit cell proliferation compared 
to either treatment alone [144]. In addition, gemcitabine 
treatment induced UCP2 expression, suggesting that uncou-
pling may have a role in acquired resistance to gemcitabine 
treatment. In comparison, normal fibroblasts have drasti-
cally reduced response to this combination, suggesting a 
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tumor-specific role for UCP2 in gemcitabine resistance, and 
the possibility of combination therapy with genipin [144]. 
UCP2 inhibition also slowed PDAC cell line growth, and the 
resulting rise in ROS-induced autophagy, synergizing with 
that induced by gemcitabine [142].

Glutamine metabolism inhibition also elevated ROS, 
opening up the option for combination therapy with genipin 
to further elevate ROS and potentially impact PDAC growth, 
as PDAC is glutamine addicted [12]. In addition, UCP2 
enhances the Warburg effect, shifting PDAC cells away from 
OXPHOS metabolism and more towards glycolysis [61, 128, 
145]; thus, UCP2 makes PDAC cells more dependent on 
glycolysis and sensitizes them to glycolytic inhibition via 
the UCP2 overexpression common in this cancer type [128]. 
UCP2 inhibition induces an upregulation of the Akt/mTOR 
pathway in a ROS-dependent manner and sensitized PDAC 
cells to the mTOR inhibitor everolimus [146]. Finally, UCP2 
loss in PDAC cells reduced glutamine catabolism, increas-
ing ROS, and inducing a shortage of aspartate, but only in 
KRAS mutant lines, supporting the fact that UCP2 is vital 
for glutamine-dependent tumors such as PDAC [16].

Although the combination of genipin with chemothera-
pies in PDAC has not been extensively explored beyond 
these few studies, recent exploration into combination 
therapy with genipin in other cancers provides insight that 
can be translated to PDAC. In most cases, UCP2 inhibi-
tion increases ROS, which improves therapeutic outcomes. 
For instance, uterine leiomyosarcoma (ULMS) upregulates 
UCP2 and has limited therapeutic options. However, treat-
ment with the cardiac glycosides proscilla A and lanatoside 
downregulated UCP2 expression, resulting in antitumor 
effects via increased ROS, unveiling the opportunity for 
novel combination strategies with ROS-inducing therapies 
[147]. In breast cancer, UCP2 inhibition combined with cis-
platin and tamoxifen [130], or trastuzumab [148] resulted in 
antitumor effects via increased oxidative stress, ROS genera-
tion, and apoptosis promotion. The combination of genipin 
and elesclomol synergistically increased ROS in lung cancer, 
while also reducing mitochondrial membrane potential and 
glucose uptake [149].

Given the ability of UCP2 inhibition to increase ROS, 
it is reasonable to assume that combining genipin with 
ROS-inducing chemotherapies would be a potent way to 
induce cancer cell death, which would be useful in pancre-
atic cancer. Indeed, chemotherapies such as topoisomer-
ase inhibitors and platinum agents generate high levels of 
ROS [150]. There are two standard of care chemotherapy 
combinations used in PDAC: FOLFIRINOX and gemcit-
abine-nab-paclitaxel [151]. High ROS-inducing chemo-
therapies are central components of FOLFIRINOX, which 
utilizes irinotecan, a topoisomerase I inhibitor, and oxipl-
atin, a platinum agent. On the other hand, nucleotide ana-
logues, such as 5-FU in FOLFIRINOX and gemcitabine in 

gemcitabine-nab-paclitaxel, may generate less ROS [150, 
152]. Thus, given the known literature of ROS generation 
and genipin, the combination of FOLFIRINOX might be 
expected to synergize with genipin, while gemcitabine-nab-
paclitaxel might not.

In addition, a role for Ucp2 in immunotherapy has 
recently been posited. In melanoma, the induction of Ucp2 
expression promoted immune cell infiltration of the tumor 
and improved response to checkpoint inhibitor therapy. The 
Ucp2 expression levels correlated with CD8A mRNA, estab-
lishing a possible connection between Ucp2 and  CD8+ T 
cell recruitment. It also correlated with interferon gamma 
expression which stimulated the tumor microenvironment, 
dendritic cell migration, and T cell recruitment. In vivo, 
Ucp2 induction with rosiglitazone prolonged the response 
to anti-PD1 immunotherapy [153]. While melanoma is a 
relatively “hot” tumor with high immune cell infiltration, it 
also upregulates UCP2, like PDAC [154]. PDAC is a charac-
teristically “cold” tumor, with little immune cell infiltration 
[155], but further induction of UCP2 levels in the tumor may 
allow for increased infiltration of immune cells and better 
response to immunotherapy treatment.

An unexplored area in UCP2 biology in PDAC is the 
potential for combination therapy with genipin and radia-
tion, as both modalities have been shown to increase ROS 
alone and radiation is one of the few treatment options 
available to PDAC patients. Thus it would be beneficial to 
explore if synergism occurs with these treatments together. 
Currently, very few studies have explored UCP2 and radia-
tion, and none have been in PDAC. Cervical cancer cells 
had increased radiosensitivity upon UCP2 loss, resulting in 
reduced membrane potential, increased ROS levels, and cell 
cycle arrest, leading to apoptosis [156]. However, the impact 
of UCP2 loss or inhibition via genipin combined with radia-
tion in PDAC cells has not been elucidated.

6  UCP2 in mitochondrial dynamics

Mitochondria are physically and metabolically dynamic 
organelles that alter their shape to optimize energy produc-
tion for both normal and cancer cells via OXPHOS. Changes 
in mitochondrial morphology and function are enacted via 
the complementary processes of fission and fusion (Fig. 3). 
Mitochondrial fusion brings together two or more mito-
chondria, often during times of cellular stress [157] and 
is vital for mitigating this stress by mixing mitochondria 
content, providing a template to repair damaged mitochon-
drial DNA [158, 159]. On the other hand, mitochondrial 
fission involves the breakdown of larger mitochondria into 
smaller organelles. This process of fission is important for 
organelle quality control by removing damaged mitochon-
dria via mitophagy and maintaining proper distribution 
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of mitochondria throughout the cell during cell division 
[160–162]. There is specific machinery involved in both 
fusion and fission to maintain the proper balance of each 
process. In fusion, transmembrane GTPase proteins such as 
mitofusin (MFN) 1 and 2 [163–167], as well as optic atrophy 
protein 1 (OPA1) [168–171] work to fuse the outer and inner 
mitochondrial membranes, respectively, forming a syncyt-
ium of connected mitochondria [172, 173]. The main protein 
involved in fission is another GTPase known as dynamin-
related protein 1 (DRP1) [174]. DRP1 is normally located 
in the cytosol but translocates to the mitochondria upon acti-
vating phosphorylation. At the mitochondria, DRP1 binds 
FIS1 and other receptors [175] on the outer mitochondria 
membrane. This induces DRP1 oligomerization and inter-
action with actin [176, 177] and the endoplasmic reticulum 
[178], resulting in GTP hydrolysis and complete mitochon-
drial membrane division [179].

The balance of fusion and fission is driven by the rapid 
and ever-changing needs of cells and is disrupted in a mul-
titude of pathological conditions, including PDAC [180, 
181]. In normal pancreatic cells, fusion is dominant, result-
ing in long and tubular mitochondrial morphology, while in 
PDAC the balance tips towards fission [182], resulting in 
a plethora of small, punctate mitochondria. However, the 
survival advantage that this grants PDAC cells is not entirely 
understood, especially considering that the loss of fusion or 

fission alone results in severe cellular defects [160, 183], and 
fission is normally a marker of cell stress [157].

Chemical uncouplers that result in unregulated and unre-
strained depolarization of the inner mitochondrial mem-
brane result in inhibition of fusion and the degradation of 
OPA1, leading to smaller mitochondria via unrestrained 
fission. In addition, fission was found to associate with a 
depolarized mitochondrial membrane state and increased 
ROS in pancreatic β cells [161]. Membrane depolarization 
also results in stabilization and cleavage of OMA-1, which 
cleaves OPA1, resulting in the inhibition of fusion in HeLa 
cells [184]. Thus, UCP2, with controlled and regulated 
uncoupling, may have a role in mitochondrial dynamics. 
Determining how two processes are linked together to drive 
the pathogenesis of disease will open avenues of therapeutic 
targeting. In neurons, UCP2 is required for glucose-induced 
Drp1-mediated fission, and UCP2 loss resulted in the loss 
of Drp1 phosphorylation and subsequent activation [185]. 
Loss of UCP2 in microglia also prevented the changes in 
mitochondrial dynamics usually see in high-fat diet feed-
ing [186]. Deletion of UCP2 in ischemic mice resulted 
in increased ROS, elevation of fission proteins, and sup-
pression of fusion proteins [187]. Acute kidney injury is 
associated with a high level of UCP2 expression and mito-
chondrial fission [188]. UCP2 loss exacerbated the fission 
and severity of kidney injury, and UCP2 overexpression 

Fig. 3  The process of mitochon-
drial dynamics is demonstrated 
by A mitochondrial fission: it 
is known that ER interacts with 
actin and mitochondria at divi-
sion points. This results in the 
constriction of the mitochondria 
and facilitates DRP1 dephos-
phorylation and recruitment. 
DRP1 hydrolyzes GTP resulting 
in DRP1 tightening and the 
division of both mitochondrial 
membranes and B mitochon-
drial fusion: MFN1/2 coordi-
nation work to fuse the outer 
mitochondrial membrane, while 
OPA1 joins the inner mitochon-
drial membrane
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protected against injury, shifting the cells back towards 
the proper mitochondrial dynamic balance with increased 
fusion [188]. After heat stroke, UCP2 was upregulated, and 
mitochondrial fission was induced in HUVECS [189]. This 
was recapitulated both with Drp1 pharmacological inhibi-
tion and UCP2 knockdown [189]. Thus, UCP2 and its con-
nection to mitochondrial dynamics have been explored in 
multiple diseases. This connection has yet to be explored 
in PDAC but could potentially provide targeted therapy 
options for PDAC patients.

7  Conclusion

In summary, UCP2’s integral roles in cellular metabolism, 
ROS regulation, and mitochondrial dynamics underscore its 
significance in the pathophysiology of PDAC and other can-
cers. Further elucidation of its precise functions and regula-
tory mechanisms can pave the way for combined targeted 
therapeutic strategies utilizing UCP2 inhibitors such as geni-
pin (Fig. 4) with radiation therapy to increase the treatment 
options for PDAC patients.
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