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Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary 
cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of 
significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC 
cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, 
and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster 
research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters 
and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences 
between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight 
future directions to advance our current understanding of CTC cluster biology.
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1 � History and clinical significance of CTC 
clusters

The first detection of solitary circulating tumor cells (CTCs) 
in cancer patient’s peripheral blood was made by Thomas 
Ashworth in 1869 [1, 2]. However, clinical detection of 
CTC clusters has only been noted in the last two decades 
with the emergence of improved technologies [3, 4]. In both 
breast and prostate cancer, CTC clusters have been detected 
in patient peripheral blood at low frequency compared to 
solitary CTCs [5, 6]. Moreover, CTC cluster “emboli” could 
also be detected in the lung microvasculature of patients 
with metastatic breast cancer or metastatic cervical carci-
noma [7]. With the development of improved isolation and 
detection methods of CTCs using highly sensitive micro-
fluidic systems [5, 8, 9], the detection of CTC clusters has 
been noted in most cancer types including, but not limited 

to, lung cancer [10–14], prostate cancer [6, 15–18], breast 
cancer [13, 16, 19–22], colorectal cancer [23], liver cancer 
[24], pancreatic cancer [16, 25], melanoma [19, 26], and 
gastric cancer [27]. In pre-clinical models, the first evidence 
of CTC clusters was noted as early as 1954 [28]. Subse-
quently, many studies have shown the existence of these 
“aggregates” metastasizing to the lungs and livers of animal 
models [3, 29–31]. These observations led to the intriguing 
question as to whether CTC clusters would confer advan-
tages in metastatic potential compared to solitary CTCs. 
To this end, studies have shown that CTC clusters not only 
possess higher metastatic potential than solitary CTCs but 
are also independent predictors of poor patient survival and 
prognosis [5, 18, 32–35]. However, our current molecular 
understanding of CTC clusters in terms of metastatic poten-
tial is far from complete.

2 � Distinctive characteristics of CTC clusters

CTC cluster composition can range from approximately 
2–45 cells [3]. Early studies showed that CTC clusters are 
less apoptotic than solitary CTCs suggesting a role for cell-
cell adhesion in protecting the cancer cells from anoikis 
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during the circulation [36, 37]. Different CTCs isolated from 
lung cancer patients (n = 2) show apoptotic cells (evident by 
fragmented and condensed DAPI stained nuclear morphol-
ogy) in solitary CTCs, while little to no evidence of apopto-
sis was detected in CTC clusters [36]. Similar findings were 
reported in an in vivo model of head and neck squamous 
cell carcinoma (HNSCC) suggesting that CTC clusters are 
more resistant to anoikis [38]. Cluster formation may also 
provide protection against the shear stress and turbulent 
fluid dynamics encountered during arterial blood flow. For 
example, CTC clusters (derived from MDA-MB-231-LM2) 
showed reduced apoptosis compared to solitary cells when 
injected via tail-vein to colonize the lungs in a pre-clinical 
model of breast cancer metastasis [5]. Another clear differ-
ence between CTC clusters and solitary CTCs is cell-cell 
adhesion and interaction within the cluster. Many epithe-
lial markers have been detected within CTC clusters that 
support cell anchoring, desmosome, and hemidesmosome 
function such as E-cadherin, plakoglobin (gamma-catenin), 
cytoskeletal keratin -5, -8, and -14 [38–42]. In keeping with 
this observation, cortical dynamics of actomyosin (myosin 
IIA) within tumor clusters isolated from pre-clinical models 
can promote adaptation to fluid shear stress (Fig. 1, Box 3) 
[38]. In addition to physical changes, CTC clusters isolated 
from patients show distinct epigenetic remodeling compared 
to solitary CTCs. For example, CTC clusters isolated from 
breast cancer patients and in vivo models exhibit increased 
hypomethylation in regions controlling pluripotency genes 
like OCT4, SOX2, and NANOG compared to solitary CTCs 
[43]. Other studies in pre-clinical models show stemness 
signatures such as elevated CD44 expression in CTCs 
[44, 45]. The distinction between solitary CTCs and CTC 
clusters is not limited to molecular differences but also to 
the cellular composition and architecture of CTC clusters. 
CTC clusters can be either homotypic (comprised of cancer 
cells only) or heterotypic (mixed with stromal or immune 
cells) [35]. Heterotypic CTC clusters have been observed 
to contain non-cancerous cells within the cluster including 
cancer-associated fibroblasts (CAFs) [46, 47], white blood 
cells [48] like tumor-associated macrophages (TAMs) [49] 
and neutrophils [50], platelets [51, 52], and others [53]. Col-
lectively, these molecular and cellular differences indicate 
that CTC clusters may confer advantages over solitary cells 
in terms of invasion, survival in circulation, dissemination, 
and dormancy in metastatic sites.

3 � CTC cluster invasion

Tumor initiation and progression elicit various changes 
within the tumor microenvironment (TME), which can lead 
to an increased intra-tumor heterogeneity and decreased vas-
culature integrity. Collectively, these changes give rise to the 

shedding and intravasation of cancer cells to vascular and 
lymphatic circulation via passive (through vascular patency) 
or active (via cancer cells with migratory features) mecha-
nisms [54]. The current paradigm explaining the invasion 
of CTC clusters includes aggregation of solitary CTCs in 
the vasculature or the collective migration of CTCs using 
aspects of the epithelial-mesenchymal transition (EMT) 
program [54, 55].

3.1 � Intravascular aggregation of CTCs

Early and current studies on CTC clusters have sometimes 
identified them as “aggregates” of CTCs that form later in 
the vasculature rather than at early stages before intrava-
sation [29, 30, 44, 56, 57]. For instance, studies in 1974 
demonstrated that cancer cell aggregates of the mammary 
cancer cell line C3H metastasized more efficiently to the 
lungs of syngeneic mice after intravenous injection com-
pared to single cells [29]. Similar findings were observed 
in a pre-clinical model of colon cancer liver metastasis, 
where aggregated cancer cells displayed significantly higher 
metastatic efficiency than the equivalent number of single 
cells [30]. The process of cancer cell aggregation within 
the vasculature involves sequential physical steps of bind-
ing to endothelial surface adhesion molecules and various 
molecular interactions including cancer surface integrins 
and extracellular matrix (ECM) degradation [58]. The 
hypothesis that CTC aggregates form within the circulation 
has been tested using suspension culture methods to gener-
ate cancer cell aggregates. Despite the lack of fluid shear 
stress and other factors in this approach, cancer aggregates 
displayed increased metastatic potential when implanted in 
mice compared to single cells [56]. Attachment of cancer 
cells to the microvascular endothelium is suggested to be 
mediated by a sequence of adhesive events governed by T 
antigen/galectin-3 interactions [57].

It should be noted, however, that the theory of vascu-
lar aggregation of solitary CTCs is somewhat controver-
sial. For example, in a mouse model with fluorescently 
tagged mammary cancer cells (GFP or mCherry), CTC 
clusters were shown to be a product of tumor aggregates 
originating in the primary tumor and not intravascularly 
[5]. In support of this, studies where either GFP or RFP 
expressing breast cancer cells (MDA-MB-231-LM2) were 
injected separately into contralateral mammary fat pads 
of the same animal demonstrated that five weeks after 
injection, the majority (96%) of CTC clusters isolated 
from the peripheral blood were of a single color [5]. 
Similarly, lung metastases derived from separate ortho-
topically injected mTomato or CFP expressing PyMT-
MMTV breast cancer cell lines were composed of single 
colors, suggesting again that CTC clusters formed prior to 
entering circulation [39]. Notably, a spontaneous model 
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of pancreatic cancer metastasis using confetti lineage-
labeling system showed that polychromatic micrometasta-
ses were observed largely in peritoneal and diaphragmatic 
metastases (~80%), but minimally in liver and lung metas-
tases (11–14%) which mainly consisted of monochromatic 
metastases [59]. These findings suggest that clusters may 
contribute differently to metastatic outgrowth depending 
on the organ site. Furthermore, multicolor-lineage trac-
ing in pancreatic and breast cancer mouse models also 

confirmed that serial delivery of labeled cancer cells 
two [39] or three days [59] apart results largely in mono-
chromatic micrometastases suggesting that polyclonal 
metastases are likely to emerge from multi-cellular seed-
ing rather than aggregation or sequential seeding of soli-
tary cells [5]. In conclusion, CTC clusters are likely the 
result of collective migration of cancer cells from primary 
tumor, but aggregation of CTCs may also occur in certain 
anatomical locations as well.

Fig. 1   Distinct advantages of CTC clusters during the metastatic cas-
cade. (1) Intravasation of cancer cells as solitary cells or clusters. (2) 
CTC clusters are bigger in size, so they travel slower and closer to the 
endothelium allowing for quicker extravasation. (3) CTC clusters are 
more resistant to shear stress compared to solitary CTCs through cel-

lular (recruiting platelets) and molecular differences (reshaping corti-
cal dynamics of myosin). (4) CTC clusters are structurally dynamic 
and can adapt their morphology in tiny capillaries. (5) CTC clusters 
can bind to other cells like neutrophils enabling extravasation through 
neutrophil extracellular traps
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3.2 � Hybrid EMT and collective invasion of CTC 
clusters

The collective movement of cells can be observed physi-
ologically in keratinocyte cell sheets during wound healing 
via TGFβ-mediated EMT, which downregulates E-cadherin 
at the leading edge [60]. Similarly, the collective move-
ment of cancer cells can be promoted by different EMT 
phenotypes. For instance, the EMT transcription factor 
Snail has been implicated in maintaining cell-cell contact 
within CTC clusters of squamous cell carcinoma by induc-
ing the tight junctional protein claudin-11 [61]. Addition-
ally, CTC clusters, derived from epithelial cancers, express 
cell-surface vimentin (mesenchymal marker) that induces 
invasiveness and migration in cancer [62, 63]. However, 
EMT is not a binary process but rather a spectrum of cell 
phenotypes that allow for adaptation to specific TME con-
texts [4]. CTC clusters can be induced through a hybrid 
EMT phenotype, in contrast to complete EMT in solitary 
cells [37]. The hybrid EMT phenotype combined with epi-
thelial markers enable CTC clusters to maintain cell-cell 
adhesion and promote collective migration. Previous studies 
have noted that CTC clusters, from tumors displaying a par-
tial EMT phenotype, maintained expression of E-cadherin 
at cell-cell junctions, while solitary CTCs from tumors 
that had completed EMT lacked any E-cadherin expression 
[40]. Other epithelial markers have also been implicated in 
maintaining cell-cell interaction in CTC clusters including 
cytoskeletal keratin 5, 8, and 14 [39, 41, 42]. Plakoglobin, 
which is important for desmosome and adhesion complex 
formation, has also been detected in CTC clusters further 
implicating the epithelial features within these clusters in 
collective migration [39]. Interestingly, knocking down pla-
koglobin in lung metastatic breast cancer cells significantly 
reduced CTC cluster formation and lung metastatic nodules 
in NOD-SCID gamma (NSG) mice while having no effect 
on tumor growth [5]. Overall, more studies are required 
to strengthen our knowledge about CTC cluster invasion 
such as the use of intravital imaging and assessing cancer 
cell collective migration next to tumor microenvironment 
of metastasis (TMEM) doorways [64, 65].

4 � CTC cluster survival during circulation

Both solitary cells and CTC clusters have been detected in 
the peripheral blood of cancer patients. However, CTC clus-
ters are detected at a lower frequency in patients, accounting 
for approximately 2–3% of all CTCs [5, 32]. Despite this, 
their detection strongly correlates with poor overall survival 
[5, 32]. In a pre-clinical model of breast cancer, CTC clus-
ters have a shorter circulation half-life (t1/2 6–10 minutes) 
compared to solitary CTCs (t1/2 25–30 minutes) [5]. This 

may be due to the large size and slow velocity of CTC clus-
ters in the circulation, which in turn leads to a higher chance 
of their lodging in small blood vessels [66]. It is also possi-
ble that CTC clusters may be better equipped for preferential 
seeding in certain niches but the factors that govern how 
CTC clusters seed different soils remain unknown.

Metastasis is a highly inefficient process and CTCs 
face rigorous challenges to survive in circulation [67]. 
In addition to anoikis and shear stress, CTCs must also 
evade immune recognition. More evidence is emerging 
as to how CTC clusters may have a greater advantage in 
overcoming these challenges compared to solitary CTCs 
[37]. For instance, CTC clusters have been shown to be 
less apoptotic by measuring condensed or fragmented 
nuclei compared to solitary CTCs using blood filtration 
approach in lung cancer patients [36]. The higher potential 
of CTC clusters to overcome anoikis has been attributed 
to several molecules that regulate cell-cell adhesion. For 
example, interactions between galactoside-binding galec-
tin-3 (in circulation) and the transmembrane mucin pro-
tein MUC1 (on CTC aggregates) can protect clusters from 
anoikis through polarization of MUC1 surface localiza-
tion. The polarization of MUC1 allows other heterotypic 
cell-cell adhesion molecules to be exposed for interac-
tion like E-cadherin [68]. In addition, CTC clusters were 
observed to be adaptive to shear stress in circulation in a 
mouse model of HNSCC through actin/actomyosin cor-
tical dynamic and E-cadherin mediated cell-cell adhe-
sion (Fig. 1, Box 3) [38]. As discussed before, the loss 
of E-cadherin has been implicated in invasion of cancer 
cells and metastasis, but the presence of E-cadherin in 
CTC clusters might suggest a role in preventing anoikis in 
CTC clusters [40, 69]. Additional evidence on epithelial 
features of CTC clusters preventing anoikis is linked to 
the detection of several epithelial markers in CTC clusters 
such as plakoglobin, Keratin 14 (K14), desmosome, and 
hemidesmosome in CTC clusters [41, 42]. Microtentacle 
formation by CTC clusters has also been implicated in 
alleviating shear stress and anoikis. Microtentacles are 
membrane protrusions derived from microtubules yet 
supported by other molecules like vimentin and differ-
ent forms of tubulin [70, 71]. CTC clusters show higher 
levels of microtentacles, which enable them to cluster 
together or with peripheral blood mononuclear cells like 
macrophages [72, 73]. Using a zebrafish model, CTC clus-
ters were found to reorganize their structure while passing 
through tiny capillaries reducing the hydrodynamic pres-
sure applied on them to maintain their viability (Fig. 1, 
Box 4) [74]. Collectively, CTC cluster superiority in sur-
vival during circulation compared to solitary CTCs has 
been noted, and multiple molecular mechanisms have 
been uncovered. Importantly, the identification of these 
mechanisms has allowed for the discovery of potential 
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CTC cluster targeting strategies. For example, sodium-
potassium pump inhibitors can dissociate CTC clusters 
derived from breast cancer patients’ CTCs, which sup-
pressed their metastatic potential [43].

5 � Dissemination of CTC clusters

Once CTC clusters overcome the harsh conditions of cir-
culation, they disseminate to secondary tissues. CTC clus-
ters are larger in volume than solitary CTCs, which make 
their circulation velocity slower [66]. This increases their 
chances of margination (being away from the core of the 
blood vessel lumen (Fig. 1, Box 2)) and attaching to the 
vascular wall, hence facilitating extravasation from the cir-
culation [7]. Moreover, CTC clusters were shown to adhere 
faster than solitary CTCs to E-selectin coated plates in an 
in vitro microfluidic system, which could imply an advan-
tage in extravasation [75]. Additionally, Interleukin 6 (IL-6) 
and tumor necrosis factor-α (TNF α), which are elevated 
in metastatic breast cancer patients, have been shown to 
induce the binding of MDA-MB-231 tumor spheroids to 
E-selectin coated microtube surfaces compared to single 
cells that failed to achieve such binding [76]. Additional 
systemic molecules present in blood can promote CTC clus-
ter binding to the endothelium such as galectin-3, which is 
also elevated in the sera of metastatic cancer patients [68, 77, 
78]. The molecular biology behind solitary and CTC cluster 
dissemination remains elusive due to technical difficulties in 
modeling the circulation or observing CTC dissemination 
within the circulation. However, this obstacle can be over-
come with early dissemination in vivo models of metastasis 
and advanced intravital imaging.

6 � Traveling microenvironment within CTC 
clusters

CTC clusters can contain non-cancerous cells within the 
cluster, and these may provide additional advantages to 
their survival and metastatic potential. For example, CAFs 
in CTC clusters can increase cancer cell viability, while their 
depletion reduces the number of metastases in a pre-clinical 
model of lung cancer. Interestingly, the advantage of cluster 
bound CAFs could not be replicated when cancer cells and 
CAFs were inoculated together as single cells suggesting 
that direct association (clustering) prior to entry into the 
circulation is needed to confer such advantage [47]. As a 
means of physical protection against shear stress, platelets 
have been observed to associate with CTC clusters forming 
thrombi (Fig. 1, Box 3) [3, 51, 55, 79]. Fibrin generated 
by platelets allows for the adhesion of cancer cells through 
their surface ICAM-1 to integrin αΙΙbβ3 on platelets, thus 

providing protection against anoikis in circulation [52]. 
Platelets have been also implicated in inhibiting the anti-
tumor activity of natural killer cells (NK cells) through a 
TGFβ-mediated decrease in natural killer group 2, mem-
ber D (NKG2D) activating immunoreceptor on NK cells 
[80]. This was also reported for breast cancer as CTC clus-
ters were shown to resist NK cell killing better than soli-
tary CTCs. The resistance to NK cell killing for clusters 
was due to the upregulation of NK inhibitory ligands such 
as Qa1b and downregulation of activating ligands such as 
Ulbp1 [81]. Interestingly, induction of EMT in the breast 
epithelial MCF10A cell line by TGF-β resulted in upregu-
lation of NK cell activating NKG2D ligands suggesting a 
protective phenotype of more epithelial cells against NK 
cell-mediated killing [81]. These findings suggest a role of 
cluster-bound platelets in inhibiting immune recognition of 
CTC clusters. Neutrophils have been also observed in asso-
ciation with CTC clusters and can enhance cancer cell cycle 
progression within the circulation [50], which is in agree-
ment with previous studies showing a mix of proliferating 
and quiescent cells within the clusters [43, 82]. Notably, 
neutrophils produce extracellular traps (NETs) during lung-
induced inflammation, which promotes breast cancer meta-
static seeding and awakening in vivo (Fig. 1, Box 5) [83]. In 
addition to immune cells, other cellular components of the 
primary tumor microenvironment can provide advantages 
to CTC clusters during dissemination. For example, CTC 
clusters containing endothelial cells are hypothesized to have 
better angiogenic potential upon dissemination [3, 41, 47]. 
Currently, the role of additional stromal or immune cells 
within the clusters remains to be studied in the context of 
extravasation and dissemination.

7 � Mechanisms controlling dormancy 
and reawakening of disseminated tumor 
cells (DTCs)

Upon arrival and extravasation in their new metastatic set-
ting, DTCs can be identified by immune cells and success-
fully eliminated or survive by avoiding immune recognition. 
However, in response to their intrinsic qualities or micro-
environmental cues within the metastatic site, cancer cells 
can be induced to become senescent, an irreversible growth 
arrest state [84], or enter into dormancy (reversible long 
term growth arrest) [85]. Despite extensive efforts in the 
past few decades, the precise mechanisms controlling DTC 
dormancy and more specifically, whether those mechanisms 
differ in the context of DTC clusters, has not been fully 
established. Like CTCs, DTCs are found to be solitary or 
clusters (also known as micrometastasis) [82, 86]. Whether 
CTC clusters result in micrometastasis or solitary DTCs is 
yet to be investigated.
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One of the most heavily studied pathways in the con-
text of dormancy and reawakening is the TGFβ pathway, 
in which TGFβ1, TGFβ2, BMP4, and BMP7 can regulate 
either dormancy or reawakening in a context and niche 
dependent manner [87, 88]. Moreover, AXL (tyrosine recep-
tor kinase) and its ligand GAS6 have been implicated in 
promoting dormancy, especially in the bone marrow niche 
[89–92]. Similar roles have been demonstrated for leukemia 
inhibitory factor (LIF) and STAT3 [93]. The cell surface 
and cell-cell interaction mediated by β1 integrin may also 
promote reawakening of cancer cells [94, 95]. The micro-
environment can play additional roles in regulating both 
dormancy and reawakening [85, 87, 96, 97], including but 
not limited to mesenchymal stem cells via the expression 
of TGFβ2 [98], macrophages by promoting dormancy and 
stemness genes [99, 100], neutrophils through the emission 
of neutrophil extracellular traps (NETs) [83], CD4 and CD8 
T cells through IRF7 [101, 102], osteoblasts through GDF10 
[103], and ECM remodeling through matrix metalloprotein-
ases (MMPs) [83, 104]. We will highlight the current efforts 
to uncover mechanisms of dormancy and reawakening of 
either solitary or CTC clusters with emphasis on potential 
areas of future research.

7.1 � Cell cycle and circadian mediators

It is important to note that some regulators of senescence 
overlap mechanistically with dormancy such as p16, p21, 
and p53 [105]. Dormancy, however, is defined as reversible 
cell cycle arrest accompanied by survival programs that sup-
port long term viability in the metastatic setting [85]. The 
dormancy program is believed to be responsible for sec-
ondary disease or relapse in patients [84, 106]. DTCs can 
acquire dormancy by different means: cellular dormancy in 
which cells enter a quiescence program, micrometastasis 
dormancy in which tumor cells fail to grow due to a prolif-
eration/ death equilibrium described in the immunoediting 
theory, and angiogenic dormancy where cancer cells fail to 
grow due to the lack of angiogenic potential [85, 96, 107, 
108]. Dormant cancer cells can exit the cellular dormancy 
program upon receiving intrinsic or microenvironmental 
signals to resume their cell cycle progress and proliferate, 
thus establishing macrometastases. If DTCs failed to acquire 
these molecular programs or are recognized by immune 
cells, they will likely be eliminated—an occurrence which 
is hypothesized to happen often, given the inefficiency of 
metastasis and failure of many DTCs to initiate successful 
metastases [109]. The acquired dormancy program can last 
for years with some patients developing metastases more 
than a decade after remission [110]. Many markers have 
been linked to the dormancy phenotype either in patients 
or pre-clinical models. A common noted dormancy marker 
across the literature is G0/G1 cell cycle arrest, which is 

controlled through different signals including p38/MAPK 
pathway that ultimately induces cell cycle inhibitors such 
as p21 and p27. These cell cycle inhibitors act on cyclin 
dependent kinases like CDK4 resulting in cell cycle arrest. 
It is also well accepted that dormant cells are negative or 
low for proliferation markers like Ki-67, p-Ser10 histone-H 
(p-H3), and p-retinoblastoma protein (p-Rb S249/T252) [84, 
85, 96, 103].

Circadian rhythm has been implicated recently in regu-
lating the intravasation and metastatic potential of CTCs in 
breast cancer patients and pre-clinical models. Analysis of 
CTCs from blood samples of patients and several mouse 
models showed enrichment of CTC abundance during rest 
phase (4:00 am for patients) compared to active phase (10:00 
am) with CTC clusters showing higher fold change com-
pared to solitary cells in four different pre-clinical models 
of breast cancer [111]. Injecting solitary or clustered CTCs 
(homotypic or heterotypic), isolated from mice at rest phase, 
via tail vein into mice also at rest phase shows higher tumor 
burden in mice injected with CTC clusters compared to soli-
tary cells [111]. This increase in tumor burden can be the 
result of a faster initiation of proliferation programs, a more 
robust proliferation program, or a specific trait of CTC clus-
ters controlled by circadian rhythm. However, little is known 
about the circadian program during early dissemination of 
CTC clusters including preferential niches, stromal interac-
tions, and mechanisms of dormancy and reawakening.

7.2 � Cell adhesion and ECM regulators

Current studies addressing dormancy and reawakening 
from the perspective of clustered cells are challenged by the 
experimental limitations of being able to model them. Cur-
rent models include mammospheres, spheroids, and orga-
noids. Clusters are conventionally formed using modified 
low attachment culture conditions with growth factor supple-
ments, serum deprivation, Matrigel-coated vessels, fibronec-
tin-coated vessels, or modulating the stiffness of synthetic 
ECM [104, 112–115]. In the murine D2-HAN (hyperplas-
tic alveolar nodule) model of breast cancer dormancy and 
metastasis, cell lines were generated from successful lung 
metastases (D2.A1) and dormant lung micrometastases 
(D2.0R). Several studies demonstrated that β1 integrin is 
key for promoting reawakening. For example, forced expres-
sion of E-cadherin resulted in downregulation of β1 integrin 
and dormancy in D2.A1 cells in vitro and in vivo [94, 116, 
117]. These findings agree with other studies on solitary 
dormant cells highlighting the importance of β1 integrin in 
the reawakening of metastatic cells [94, 95]. Switching from 
quiescence to proliferation in D2.A1 cells required fibronec-
tin production and signaling through β1 integrin [94]. Simi-
larly, successful colonization of D2.A1 cells in the lungs of 
mice was dependent on focal adhesion kinase (FAK) and 
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β1 integrin expression [95]. Furthermore, ex vivo analysis 
of patients’ CTCs that are positive for both β1 integrin and 
urokinase receptor (uPAR) demonstrates higher sphere for-
mation ability, invasiveness, and proliferation compared to 
CTCs negative for these molecules [118]. Urokinase recep-
tor (uPAR) is a GPI-anchored cell membrane receptor impli-
cated in promoting urokinase (uPA) proteolytic activity in 
the ECM [119]. It is also implicated in promoting the switch 
from dormancy to reawakening by interacting with integrins 
and activating ERK1/2 signaling [96, 120]. Clinically, uPAR 
is also found to be expressed by DTCs in the bone marrow 
of patients with solid tumors [121].

The contribution of the ECM is another emerging area 
of CTC cluster research. For example, lysyl oxidase like 
2 (LOXL2) is an integral enzyme for collagen and elastin 
biosynthesis and stabilization as it oxidizes lysine residues 
in collagen or elastin resulting in the crosslinking of these 
ECM components [122]. In MCF-7 mammosphere 3D cul-
tures with basement membrane extract (BME), LOXL2 
induced-expression was shown to promote the reawaken-
ing of these spheres by acquiring a cancer stem cell-like 
and an epithelial to mesenchymal transition (EMT) pheno-
type. Moreover, expression of LOXL2 in MCF-7 cell line 
increased the percentage of proliferating metastatic lesions 
in vivo [123]. The EMT activator ZEB1, which is impli-
cated in regulating dormancy and reawakening of cancer 
cells [124], can upregulate LOXL2 through direct binding 
to its promoter [125]. However, further validation for ZEB1/
LOXL2 signaling is needed in the context of both solitary 
and clustered dormancy.

Physical properties such as ECM stiffness is recognized 
as an important regulator of dormancy as well. In mouse 
models, high ECM stiffness has been shown to promote dor-
mancy of cancer spheroids via a Cdc42-Tet2 epigenetic pro-
gram that regulates cell cycle inhibitors p27 and p21 causing 
cell cycle arrest. Knock-out of Cdc42 or blocking its entry to 
the nucleus resulted in reawakening of dormant melanoma 
B16 tumor-repopulating clusters in 1,050 Pa fibrin gels, 
while having no effect on the proliferation of B16 solitary 
cells in rigid plastic culture [114]. Other studies modulat-
ing ECM stiffness showed that cluster size along with stiff-
ness may be determinants of proliferation versus dormancy 
[126, 127]. For example, a study using biomaterial-based in 
vitro model that mimics brain microenvironment stiffness 
showed that all breast cancer clusters remained dormant in 
low stiffness (∼0.4 kPa mimicking normal brain stiffness 
[128]) irrespective of their size. However, high stiffness 
(∼4.5 kPa corresponding to metastatic brain tumors [129]) 
only maintained dormancy when clusters were below 5000 
cells [126, 130]. In agreement, mathematical modeling of 
prostate cancer colonization using a hybrid cellular automata 
(HCA) model of bone microenvironment showed that colo-
nizing cancer clusters must be within certain size to increase 

the likelihood of establishing a successful metastasis [131]. 
The size of CTC clusters in cancer patients is variable rang-
ing from 2 cells and up to 45 cells or more in some cases [3]. 
However, the effect of cluster size on the successful estab-
lishment of metastasis in patients requires further analysis 
and experimentation.

7.3 � Metabolic control

Metabolism is coming under intense focus in understanding 
cluster dormancy. For example, liver kinase B1 (LKB1) has 
been shown to maintain the survival of dormant spheroids in 
ovarian cancer in vitro via 5′-AMP-activated protein kinase 
(AMPK) pathway [132]. LKB1 (gene name: STK11) is crit-
ical for the phosphorylation and activation of the AMPK 
stress response pathway [133]. Transiently knocking down 
LKB1 with siRNA technology resulted in reduced viabil-
ity in ovarian cancer cells growing as spheroids but not as 
adherent cells [132], providing more context to the possible 
role of LKB1 loss of function in cancer initiation [134]. 
AMPK acts as a sensor for ATP levels in the cell, promoting 
the production of ATP through catabolic pathways [135]. 
AMPK activation has been documented in dormant cells 
in a breast cancer mouse model of estrogen deprivation 
[136]. Moreover, Nuclear Factor Erythroid 2 Like 2 (Nrf2) 
expression has been shown in both residual and recurrent 
breast cancer in vivo [112]. The Nrf2/Keap1 pathway plays 
a major part in resistance to oxidative stress by maintaining 
redox homeostasis [137]. Stable knock-down of Nrf2 via 
shRNA technology resulted in growth impairment of recur-
rent breast cancer tumor at early time points, while tumors 
regained Nrf2 expression at later time points highlighting 
the potential importance of Nrf2 expression in reawakening 
[138]. These studies highlight metabolic pathways utilized 
by solitary or clustered cells that potentially could be thera-
peutically leveraged to target both CTCs and DTCs.

7.4 � Stemness gene control of dormancy

The dormancy phenotype requires plasticity by accessing 
stemness genes to promote long-term survival of quies-
cent DTCs in distant tissues [84]. Multiple stemness genes 
have been studied in the context of dormancy including 
NR2F1, ZEB1, ZEB2, SOX2, SOX9, and ZFP281 [124, 
139–142]. A shift toward mesenchymal phenotype in DTCs 
may correlate with a dormant phenotype. For example, the 
EMT activator ZEB1 was found to promote expression of 
stemness transcription factors like SOX2 and KLF4. ZEB1 
promotes stemness genes by inhibiting miR203, which sup-
presses these stemness genes [124]. Moreover, the ZFP281-
mediated mesenchymal program was recently shown to 
induce long term dormancy of early disseminated cancer 
cells (eDCCs), which are cancer cells escaping the primary 
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tumor early during carcinogenesis [142]. NR2F1, which is 
an orphan nuclear receptor implicated in lineage differentia-
tion, was found to induce head and neck cancer dormancy by 
inducing multiple stemness factors like SOX9 and NANOG 
[139]. Emerging studies are investigating treatment options 
that target the stemness signature of dormant DTCs like 
NR2F1 agonists [143]. DNA methylation profiling of soli-
tary CTCs and CTC clusters from patients or mouse models 
reveals specific CTC cluster signature of hypomethylated 
sites of stemness that allow binding of transcription factors 
like OCT4, SOX2, and NANOG [43]. This unique signa-
ture was found to be dependent on cell-cell adhesion within 
CTC clusters. Disrupting cell-cell adhesion by increasing 
intracellular Ca+2 caused DNA methylation remodeling 
of key stemness genes in CTC clusters, which confers an 
architecture advantage of CTC clusters over solitary CTCs 
in acquiring stemness and long-term survival [43]. Further-
more, CD44, a surface adhesion molecule and marker of 
cancer stem cells, has also been found to mediate tumor 
cell aggregation in a patient-derived breast cancer model 
through homophilic interaction and downstream activation 
of FAK signaling [44]. Similarly, CD44 standard isoform 
(CD44S), which is upregulated in cancer cells, was found 
to protect against anoikis, while CD44 depletion attenuated 
mammosphere formation in vitro [45]. CUL4B, an E3 ubiq-
uitin ligase required for the proteolysis of different DNA 
replication regulators, was implicated in maintaining colo-
rectal cancer stemness by downregulating miR34a. Inhibit-
ing CUL4B in patient derived tumor organoids reduced their 
metastatic capacity and proliferation [144]. Collectively, 
stemness genes have been implicated in metastasis and been 
detected in CTCs from cancer patients [145], CTC clusters 
from patient derived xenografts (PDX) models [146], and 
colorectal tumor-derived organoids [147]. Consequently, 
further investigations are required to confirm the biologi-
cal advantages gained through stemness genes in relation to 
understanding their contribution to the dormancy of solitary 
or CTC clusters.

7.5 � Immune microenvironment control

Recognition and elimination by surveilling immune cells 
often protects against the successful establishment of 
metastases; however, emerging data also suggests that cel-
lular components of the immune system can be co-opted 
to control dormancy entry and reawakening. For example, 
in an orthotopic model of breast cancer using GFP and 
mCherry labeled AT3 cells, the abundance of polyclonal 
lung metastases (resulting from clustering of GFP and 
mCherry cells) was not different between immunocom-
petent, T cell deficient, and T cell and NK cell deficient 
C57BL/6 mice. Conversely, monoclonal lung metastases 
(resulting from single color cells) were higher in T and 

NK cell deficient mice. Interestingly, breast cancer cell 
lines with an ability to form clusters had higher E-cadherin 
expression and lower susceptibility to NK cell killing sug-
gesting a role for the retention of epithelial markers in 
evading immune recognition and a distinct ability of can-
cer clusters to evade NK cell killing [81].

8 � Summary and future directions

Recent advances in technology have yielded numerous 
studies on the identification and interrogation of solitary 
and clustered CTCs revealing new cancer vulnerabilities 
[148]. CTCs clearly harbor biological, structural, molecular, 
and heterotypical differences that can generally be grouped 
in two categories: solitary CTCs and CTC clusters. CTC 
clusters are less abundant in the circulation, yet their detec-
tion correlates with poor survival in patients [5]. There has 
been tremendous effort to study differences between soli-
tary and clustered CTCs, with evidence pointing toward 
the superior efficiency of CTC clusters to disseminate and 
survive compared to solitary CTCs. This may be due in 
part to environmental factors (heterotypic nature), physical 
factors (clustering and cell-cell contact), biological factors 
(differential effect of circadian rhythm), and molecular fac-
tors [32, 35, 64]. However, many areas remain understudied 
such as investigation of the collective intravasation of CTC 
clusters possibly through TMEM doorways, the seeding 
differences among CTCs in different soils, metabolic dif-
ferences in CTC clusters that enable survival during metas-
tasis, cellular and molecular interactions of CTC clusters 
in early dissemination phases of metastasis, and investigat-
ing the role of different cellular compartments within CTC 
clusters using in vitro coculture methods. Another major 
opportunity for future research is to uncover the molecular 
mechanisms controlling dormancy and reawakening of dis-
seminated cells originating from solitary or clustered CTCs. 
This exploration will fuel therapeutic strategies to awaken 
DTCs then eliminate them during treatment of the primary 
disease, manipulate DTCs to remain dormant in distant tis-
sues, or ultimately eliminate DTCs during initial treatment 
rounds, hence extending patient disease free survival and 
preventing relapse.
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