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Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscrip-
tomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations 
share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible 
of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regu-
lation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer 
reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical 
modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, 
and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current 
state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways 
regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on 
these mechanisms could have important clinical implications for the prevention of advanced malignancies and the manage-
ment of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or 
inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
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1 Introduction

Cancer is a disease defined by the uncontrolled prolifera-
tion of cells that have activated oncogenic programs to avoid 
endogenous controls. Initially defined by the affected tissue 
of origin, the development of high-throughput technologies 

to molecularly characterize tumor samples has accelerated 
and expanded our understanding on tumorigenesis, revealing 
a plethora of cancer-specific changes or signatures of poten-
tial use as biomarkers to define diagnosis and prognosis and 
improve treatment decisions [1, 2]. A critical stage in cancer 
progression is the spread of cancer cells to other parts of 
the body through the bloodstream or lymphatic system to 
invade other organs or tissues, termed metastasis. Cancer 
metastasis is a multistep biological process known as the 
invasion-metastasis cascade, and it is a marker of cancer 
progression with poor clinical consequences for patients, 
as at least two-thirds of cancer-related deaths are caused by 
metastasis [3, 4]. Although it was considered that metastasis 
occurs at final steps of tumor progression, recent studies 
have shown that metastasis can arise early in tumorigen-
esis [5–7]. When the clones escape early, there is a higher 
genetic divergence between the primary tumor and metasta-
ses. Also, clones can disseminate as single circulating tumor 
cells (CTC) or in clusters to seed monoclonal and polyclonal 
metastases, respectively [8].
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The epidemiology of metastasis differs among types; for 
example, the incidence of brain metastases is around 20%, 
originated mostly from primary breast, lung, and melanoma 
tumors, and affecting approximately 200,000 patients with 
cancer each year in the USA [9]. For bone metastases, the 
incidence is around 5%, mainly derived from primary lung 
tumors [10]. Regarding lung metastases, the synchronous 
ones, meaning occurring during the 6 months following 
the first diagnostic, mainly originate from primary lung 
cancer, followed by colorectal, kidney, pancreatic, and 
breast primary tumors. The age-adjusted incidence rate of 
synchronous lung metastasis was around 18 per 100,000 
between 2010 and 2015 [11]. The patient survival also dif-
fers depending on primary sites and cancer subtypes. For 
example, the 5-year survival for patients with liver metasta-
ses from colorectal cancer (CRC) is around 63%, but falls at 
5–15% for pancreatic cancer [12–14]. Moreover, in cancers 
of unknown primary (CUP), a term used to describe a het-
erogeneous group of metastatic tumors for which a standard-
ized diagnostic work-up fails to identify the site of primary 
origin at the time of diagnostic work-up [15–17], survival is 
generally worse than in primary cancers with metastasis to 
the same organ where CUP is detected [12]. Regarding can-
cer subtypes, the median survival from time of first distant 
metastasis is 26 months for luminal-A breast cancer subtype 
compared to only 6 months for basal-like subtype [18].

Mechanistically, during cancer progression, external 
negative selective pressures for instance from tumor micro-
environment or cancer treatment shape intratumor hetero-
geneity. This heterogeneity is evidenced by the acquisition 
of not only additional genetic mutations, but also epigenetic 
and epitranscriptomic changes, which can now be dissected 
at unprecedented resolution using novel single-cell tech-
nologies. These mechanisms promote the expression of 
oncogenic programs that can drive aggressiveness through 
phenotypic changes that improve the cellular ability to dis-
seminate and invade distant organs. Strikingly, although 
many genetic mutations have been linked to tumor initiation 
and progression, no specific driver gene mutations exclu-
sive to metastases have been identified to date [8]. A more 
related factor is chromosomal instability, with up to 80% 
of whole genome doubling in metastases for some tumor 
types; nevertheless, chromosomal instability can also be 
found in around 30% of primary tumors [8]. The lack of a 
direct genetic connection to metastasis suggests that other 
mechanisms may play a more significant role in driving the 
decision of cells to engage in this process. Moreover, the 
pattern of affected organs is remarkably variable depending 
on the cancer type, indicating that intrinsic properties of 
the tumor and the composition of host-organ microenviron-
ment are important determinants of the sites of metastasis, 
as well as the organ-specific circulation pattern [19, 20]. 
This observation implies that essential mechanisms control 

the interactions between cancer cells and specific site micro-
environment for induction of metastatic competence. The 
induction of the aforementioned oncogenic program leading 
to the metastatic cascade is usually driven by the repression 
of metastasis suppressor genes. For example, the metasta-
sis suppressor genes CREB3L1 (cAMP-responsive element 
binding protein 3 like 1) and MTSS1 (metastasis suppressor 
1) were recently found repressed in triple-negative breast 
cancer (TNBC) [21]. Also in breast cancer, the metastasis 
suppressor gene SCN4B, encoding for the sodium channel β4 
subunit, has a reduced expression comparing with normal 
tissue, leading to increased RhoA activity, cell migration 
and invasiveness, and metastatic spreading [22]. In order to 
rewire gene expression on an adaptive and selective advan-
tage manner, the plasticity and reversibility of epigenetic and 
epitranscriptomic mechanisms make them ideal orchestra-
tors of the dynamic process of metastasis [23].

Along this review, we first briefly introduce the main 
mechanisms driving metastasis, and next summarize rel-
evant epi-regulations described to date on this process, 
highlighting parallel epigenetic and epitranscriptomic altera-
tions implicated on the same pathways for specific cancer 
metastases. Finally, we briefly comment therapeutic oppor-
tunities, as small molecules against key epi-modifiers have 
been developed and could have the potential to disrupt the 
metastatic process.

1.1  The metastatic cascade

The metastatic cascade is defined by five different steps that 
allow tumor cells to leave the tissue of origin, spread to a 
distant area of the body, and finally colonize and grow in a 
different tissue (Fig. 1) [24, 25]. This process is extremely 
inefficient and can be aborted at several points. Indeed, the 
vast majority of cancer cells never leave the primary tumor, 
and of those that manage to enter into the circulation, most 
fail to colonize distant organs or are recognized by immune 
cells and abolished [26, 27]. Therapies that decrease the sur-
vival of metastatic cells in the vascular system have been 
shown to lower the risk of developing metastasis [28], but 
not all the steps of the metastatic cascade are amenable to 
therapeutic intervention, underlying the importance of iden-
tifying the drivers of the initial steps to develop effective 
interventions against the metastatic process [29].

Mechanistically, the first step, joining invasion and migra-
tion, consists of the separation of the tumor cells from their 
neighborhood cells in the primary tumor. One of the key 
mechanisms involved in the first steps of metastasis is the 
epithelial to mesenchymal transition (EMT), a biologic 
process that enables polarized epithelial cells to acquire a 
mesenchymal phenotype with enhanced migratory capacity, 
invasiveness, elevated resistance to apoptosis, and increased 
production of extracellular matrix components [30]. This 
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process is mediated by transcription factors belonging to 
three distinct families: the Snail family (SNAIL1/SNAIL, 
SNAIL2/SLUG, and SNAIL3/SMUC), the Zeb family 
(ZEB1, ZEB2), and the b-HLH family (TWIST1, TWIST2) 
[31], as well as other factors that enhance cancer cell inva-
sion through the crosstalk with the tumor microenviron-
ment [32, 33]. These EMT transcription factors (EMT-
TFs) repress epithelial markers like E-cadherin, occludins, 
claudins, or ZO-1 and activate mesenchymal markers like 
N-cadherin, vimentin, and fibronectin. EMT is considered 
an essential event in dissemination of cancer clones in epi-
thelial tumors, as breast cancer [34]. Moreover, transforming 
growth factor beta (TGFβ)-induced EMT has been shown 
to promote the dendritic cell-like migration of breast can-
cer cells through the lymphatic vessels [35]. Also, the co-
overexpression of Oct4 and Nanog transcription factors, 
essential to maintain the pluripotency and self-renewal of 
embryonic stem cells, positively regulates the EMT process 
in lung adenocarcinoma (LUAD) and breast cancer, con-
tributing to metastasis and worse prognosis [36, 37]. Oct4/
Nanog co-expression is also a strong independent predictor 
of tumor recurrence and unfavorable outcome in hepatocel-
lular carcinoma (HCC) by promoting EMT through activa-
tion of Stat3/Snail signaling [38]. High expression levels 
of activated Stat3 (p-Stat3) and VEGF are also associated 
with lymph node involvement in esophageal squamous cell 
carcinoma (ESCC), indicating that Stat3/VEGF pathway 
promotes cancer cell lymphatic metastasis and is correlated 
with tumor-node-metastasis (TNM) stage [39]. From a thera-
peutic standpoint, the inhibition of Stat3 has been proposed 

as a relevant strategy to control stem cell-associated EMT 
phenotype. The recent development of small molecules tar-
geting this pathway was deeply reviewed last year [40]. The 
main feature of EMT induction is the loss of cell–cell adher-
ent junctions via inhibition of E-cadherin, encoded by the 
CDH1 gene. EMT inducers of the SNAIL, ZEB, and TWIST 
families act as direct E-cadherin repressors via binding to 
the E-box elements in the promoter region of the CDH1 
gene [41, 42].

Following on the metastatic cascade, the second step is 
the intravasation, the transendothelial migration of cancer 
cells into blood or lymphatic vessels through the basal lam-
ina fenestration. Third, during circulation, cells must survive 
in the circulatory system and deal with coagulation, shear 
stress, and the velocity of blood stream mechanic. Next is 
the extravasation or the second site seeding, through release 
of TGFβ by blood platelets that enable this process by dis-
rupting cell-to-cell endothelial junctions [43]. Finally, dis-
tant tumor cells could undergo a mesenchymal to epithelial 
transition (MET) to settle down at the distant microenviron-
ment and engage proliferation and metastasis outgrowth by 
adaptation to the new environment. This complex process 
is supported by the molecular communication of the tumor 
cells that permit their mobility, plastic transitions, adjacent 
angiogenesis, and immune escape.

It is important to remark that a delay in the metastatic 
outgrowth of disseminated cancer cells (DCCs) that reside 
in metastatic niches can occur, a state known as meta-
static dormancy. This phenomenon could explain the fact 
that a significant proportion of metastatic diseases present 

Fig. 1  Schematic overview of the metastatic cascade. Simplified view 
highlighting the main steps of the metastatic cascade, a complex pro-
cess that involves the inhibition of metastasis suppressor genes and 

the activation prometastatic/oncogenic signaling pathways that con-
trol survival, proliferation, angiogenesis, and invasion. Created with 
BioRender.com
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years-to-decades following initial diagnosis and treatment 
[44]. During metastatic dormancy, the tumor cells stop pro-
liferating and stay in a quiescent state due to unfavorable 
proliferative conditions. This process has important clinical 
implications as dormant cells can be responsible of disease 
recurrence, as non-proliferative cells are more resistant to 
therapies and evade immune attacks. Neophytou and col-
leagues recently reviewed mechanisms that promote or 
impede dormancy, and how drugs could target specifically 
these cells [45]. Metastatic dormancy is dynamically regu-
lated to retain their self-renewal capacity and adopt poten-
tial new phenotypes depending on the environment. Thus, 
dormancy requires extensive crosstalk between DCCs and 
the cells that comprise their microenvironments, including 
endothelial cells, tissue-resident and circulating immune 
cells, mesenchymal stem cells, and stromal fibroblasts [44]. 
Interestingly, epigenetic regulation by DNA methylation and 
histone marks has been implicated in the dormancy of the 
DCCs and could constitute therapeutic options [44], but with 
the risk of reawakening dormant cells and promoting tumor 
progression even after a long latency period [46]. Conse-
quently, a deeper understanding of the interplay between 
dormancy and epigenetic modulations seems crucial to iden-
tify novel targets to prevent and treat metastatic disease.

2  Molecular alterations in cancer metastasis

2.1  Genetic alterations in metastasis

As previously mentioned, no specific genetic mutation 
seems to be determinant in metastatic progression, but some 
mutational combinations could enhance the metastatic abil-
ity. This topic has been reviewed few years ago by Patel et al. 
[8]. Although metastases have similar mutational profiles to 
their respective primary tumors, they commonly bear driver 
alterations at higher frequency than primary tumors. Priest-
ley et al. characterized 2520 samples of metastatic tumors 
from 22 solid cancer types and they found no evidence 
of driver mutations that were specific to metastases [47], 
but they found that alterations in the MLK4 gene (which 
encodes Mixed lineage kinase 4) are frequently associated 
with metastasis. Interestingly, MLK4 upregulation has pre-
viously been linked to migratory and invasive phenotypes 
in breast cancer cells [48]. In addition, germline variants 
of APOE have been shown to be associated with differ-
ent outcomes in melanoma. Mice expressing the human 
APOE4 variant exhibited reduced metastasis compared 
to those expressing APOE2, suggesting that pre-existing 
hereditary genetic variants can modulate progression and 
clinical outcomes due to variations in metastatic compe-
tences [49]. Using mouse models, it has been shown that 
a combination of four mutations in genes commonly found 

in primary human cancers (Apcfl/fl, KrasLSL−G12D, Tgfbr2fl/fl, 
and Trp53fl/fl) promotes metastases, but the lack of one of 
them hinders the metastatic ability [50]. Besides, a study of 
multiregion biopsies of primary and liver metastatic regions 
from colorectal cancers with whole-exome sequencing and 
copy number profiling suggested that the genetic intratu-
moral heterogeneity is a potential driving force to generate 
metastasis-initiating clones [51]. Copy number aberrations 
and concomitant overexpression of MYC, YAP1, or MMP13 
also increased the incidence of brain metastasis from lung 
cancer [52]. This observation suggests that overexpression of 
genes by other mechanisms like gene-promoter hypometh-
ylation or enhanced chromatin accessibility could result into 
similar outcomes. Moreover, genetic aberrations can impact 
central pieces of the epigenetic or epitranscriptomic machin-
eries. To cite one example, gene amplification of the  m6A 
reader YTHDF3 has been described in breast cancer brain 
metastases. Resultant overexpression of YTHDF3 increases 
translation of  m6A-enriched transcripts as ST6GALNAC5 
and GJA1, key brain metastatic genes [53].

2.2  Epigenetic alterations in metastasis

Epigenetic modifications refer to heritable changes in gene 
activity that do not involve changes in the underlying DNA 
sequence. Epigenetic factors fine-tune gene expression pro-
grams and act as master regulators controlling essential bio-
logical functions. The main epigenetic mechanisms are DNA 
methylation, histone modifications, chromatin remodeling, 
and non-coding RNA regulation. In this section, we describe 
relevant epigenetic alterations involved in metastasis, sum-
marized in Table 1.

2.2.1  DNA methylation

DNA methylation is the most extensively studied epigenetic 
modification. This modification involves the addition of a 
methyl group to cytosine nucleotides, almost exclusively at 
cytosines followed by guanine (CpG sites). The methylation 
patterns are precisely regulated by a set of enzymes that 
introduce the modification through either de novo methyla-
tion (DNA methyltransferases DNMT3A and DNMT3B) or 
by full copying and preserving the methylation patterns dur-
ing DNA replication (maintenance DNA methyltransferase 
DNMT1); and DNA demethylases (ten-eleven transloca-
tion enzymes TET1, TET2, and TET3) that actively remove 
the methyl group. DNA methylation can also be passively 
removed through sequential cell divisions in the absence 
of DNA methylation maintenance. Aberrant DNA meth-
ylation is a hallmark of cancer, characterized by a massive 
global loss of DNA methylation (hypomethylation), mainly 
at repetitive sequences, leading to chromosomal instabil-
ity, translocations, gene disruption, and reactivation of 
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Table 1  Summary of relevant epigenetic modifications implicated in cancer metastasis

Gene Cancer type (methylation state) Role in metastasis Ref

DNA methylation
  S100A4, CYTIP ccRCC 

(HypoM)
Promote VHL-HIF downstream gene 

expression for metastasis
[54, 55]

  TBC1D16-47KD Melanoma
(HypoM)

Promotes metastasis by targeting RAB5C [56]

  NR2F2-Iso2 Melanoma
(HypoM)

Promotes metastasis [57]

  CDH11 Melanoma
(HyperM)

Represses lymph node metastases [58]

  TCF21 Melanoma
(HyperM)

Represses metastasis by upregulating 
KISS1

[59]

  TIMP3 Oral cancer, esophageal adenocarcinoma
(HyperM)

Represses metastasis by regulating EMT 
markers through the Ras-ERK pathway

[60, 61]

  TIMP3, THBS1 Gastric cancer (HyperM) Biomarkers for peritoneal metastasis [62, 63]
  IRX1 Osteosarcoma (HypoM) Promotes metastasis via induction of 

CXCL14/NF‐kB signaling
[64]

  GABRP Ovarian cancer
(HypoM)

Promotes metastasis by activating the 
MAPK/ERK pathway

[65]

  SFRP1 NSCLC
(HyperM)

Represses lymph node metastasis [66]

  SFRP1 RCC 
(HypoM)

Promotes metastasis through MMP10-
mediated pathways activation

[67]

  ZNF382, GFRA1 Gastric cancer (HyperM) Represses metastasis [68]
  CST6, BRMS1, SOX17 Breast cancer (HyperM) Represses metastasis [69]
  CST6, ITIH5, RASSF1A Breast cancer (HyperM) Represses metastasis [70]
  RASSF1A Melanoma

(HyperM)
Represses metastasis [71]

  VIM, SFRP2 CRC 
(HyperM)

Represses metastasis by decreasing 
cytoskeleton formation and activating 
Wnt pathway

[72]

  BRMS1 Breast and lung cancer (HyperM) Represses metastasis [73]
  NME1 Breast cancer (HyperM) Represses metastasis [74]
  KAI1 Prostate cancer (HyperM) Represses metastasis [75]
  KAI1, NME1 Lung cancer (HyperM) Represses distant metastasis [76]
  KISS1 ESCC (HyperM) Represses metastasis [77]
  TET2, TET3 Melanoma

(HyperM)
Repress TGFβ1-induced EMT-like process 

and metastasis
[78]

  TET SDH-deficient cancer cells (HyperM) Represses EMT-like phenotype and 
metastasis

[79]

  Nanog Cervical cancer (HypoM) Demethylation driven by RhoC/TET2/
WDR5 that promote EMT and cancer 
progression

[80]

  FOXO4 Gastric cancer (HypoM) Represses Wnt/β-catenin signaling and 
consequently metastasis potential

[81]

  CD147 NSCLC
(HypoM)

Promotes metastasis by TGF-β pathway 
activation

[82]

miRNAs
  miR-135a Osteosarcoma, gastric cancer Represses pulmonary metastasis by target-

ing BMI1 and KLF4. Decreases metasta-
sis. FAK pathway

[83, 84]

  miR-10b Breast cancer Promotes metastasis by targeting HOXD10 [85]
  miR-373,
  miR-503c

Breast cancer Promote migration and invasion by silenc-
ing CD44

[86]
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Table 1  (continued)

Gene Cancer type (methylation state) Role in metastasis Ref

  miR-335 Breast cancer Represses migration, invasion, and coloni-
zation. SOX4, TNC

[87]

  miR-126 Breast, lung, and gastric cancer Represses migration, invasion, adhesion, 
and angiogenesis. VEGFA, CRK

[88–90]

  miR-148a, miR-34b/c, and miR-9 Lymph node metastasis Repress metastasis by downregulating 
MYC, E2F3, CDK6, and TGIF2

[91]

  miR-9 Breast cancer, bladder transitional cell 
carcinoma

Promotes metastasis. E-cadherin, PROX1, 
CBX7

[92, 93]

  miR-200s Breast and colorectal cancer Represses EMT and metastasis by targeting 
ZEB1/2

[94–101]

  miR-22 Breast cancer Promotes metastasis by targeting TET 
demethylases

[102]

  miR-149 Breast cancer Represses migration, invasion, and adhe-
sion by targeting GIT1

[103]

  miR-491-5p Oral and breast cancer Represses migration, invasion, and 
adhesion by targeting GIT1, ZNF-703, 
JMJD2B

[104–106]

  miR-138 Ovarian, kidney, and oral cancer Represses migration and invasion by 
targeting HIF1A, SOX4, RhoC, and 
ROCK2

[107–109]

  miR-138 Cervical cancer Represses EMT, invasion, and metastasis 
by targeting EZH2

[110]

  miR-127 Breast cancer Represses metastasis [111]
  miR-1306–3p HCC Promotes metastasis. FBXL5-Snail [112]
  miR-30d HCC Promotes metastasis by silencing GNAI2 [113]
  miR-206 Melanoma Represses migration by targeting CDK4 

and cyclin C/D
[114]

  miR-181b-3p Breast cancer Promotes EMT and metastasis by targeting 
YWHAG

[115]

lncRNAs
  PINT Thyroid cancer Represses metastasis by downregulating 

miR-767-5p and avoiding repression of 
TET2

[116]

  ANCR Breast cancer Represses metastasis by promoting EZH2 
degradation

[117]

  PHACTR2-AS1 Breast cancer Represses metastasis. Ribosomal genes [118]
  HOTAIR Breast and colorectal cancer Promotes metastasis by modulating PRC2 

deposition
[119, 120]

  NBAT1 Breast cancer Represses metastasis by upregulating 
DKK1 via PRC2

[121]

  LINC02273 Breast cancer Promotes metastasis by regulating AGR2 
expression

[122]

  SChLAP1 Prostate cancer Promotes metastasis by regulating SWI/
SNF chromatin complex

[123]

  LINC00978 Gastric cancer Promotes metastasis by activating TGFβ/
SMAD signaling pathway and EMT

[124]

  lncRNA-ATB Breast cancer Promotes metastasis by competitive bind-
ing of miR-200c sites

[125]

  lncRNA-CTS Cervical cancer Promotes metastasis and TGF-β1-induced 
EMT by competitive binding of miR-505 
sites

[126]

Histone modifiers
  SUZ12 ccRCC Represses metastasis via VHL-HIF down-

stream gene repression of CXCR4
[55]
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endoparasitic sequences [149, 150]. In parallel, promoter-
associated CpG island hypermethylation is a well-recog-
nized mechanism of gene silencing of tumor suppressor 
genes [151, 152]. Extensive characterization of tumors has 
revealed metastasis-specific methylation events in several 
tumor types. For instance, in clear cell renal cell carcinoma 
(ccRCC), promoter hypomethylation-mediated increased 
expression of S100 calcium binding protein A4 (S100A4) 
and cytohesin 1 interacting protein (CYTIP) contribute to 
metastatic colonization [54, 55]. DNA hypomethylation ena-
bles HIF-driven CYTIP expression to protect cancer cells 
from death cytokine signals independently of VHL expres-
sion. Moreover, loss of the repressive histone methylation 
mark H3K27me3 by downregulation of the PRC2 subunit 
SUZ12 activates HIF-driven CXCR4 expression in support 
of chemotactic cell invasion [55]. In melanoma, our group 
has identified isoform-specific epigenetic reactivation events 
involved in metastasis. First, we found that DNA hypometh-
ylation enhances the expression of a cryptic transcript of Rab 

GTPase‐activating protein TBC1D16 (TBC1D16-47KD), a 
short isoform that exacerbates melanoma growth and metas-
tasis [56]. Interestingly, although epigenetic reactivation of 
TBC1D16-47KD is associated with poor clinical outcome in 
melanoma, it confers greater sensitivity to BRAF and MEK 
inhibitors, providing a potential therapeutic option [56]. 
More recently, we described how DNA methylation dynami-
cally controls the expression of an alternative isoform of 
NR2F2, an orphan nuclear receptor essential for neural crest 
cell (NCC) development. We found that the NR2F2-Iso-
form2 (NR2F2-Iso2) becomes hypermethylated and silenced 
during NCC-to-melanocyte differentiation, but demethyla-
tion occurs in the transition from primary to metastasis in 
melanoma. Epigenetic reactivation of NR2F2-Iso2 unleashes 
a metastatic program in melanoma that restores the phe-
notypic plasticity and enables the acquisition of NCC-like 
features [57]. Also in melanoma, we showed that silencing 
of cadherin-11 (CDH11) occurs essentially in the lymph 
node metastases, suggesting a metastasis-specific role of this 

Table 1  (continued)

Gene Cancer type (methylation state) Role in metastasis Ref

  EZH2 Various cancers Promotes metastasis by silencing epithelial 
markers, TIMPs, TSGs

[127–131]

  SETD2 ccRCC, LUAD Represses metastasis by oncogenic 
enhancer repression, STAT1-IL-8 signal-
ing repression

[132, 133]

  SETDB1 LUAD Represses metastasis collaborating with the 
SMAD2/SMAD3 repressor complex

[134]

Breast cancer Represses metastasis by decreasing SNAIL 
expression

[135]

HCC Promotes metastasis [136]
  DOT1L Breast cancer Promotes metastasis by enhancing SNAIL, 

ZEB1, and ZEB2 expression
[137]

  PCAF Lung cancer Promotes metastasis by targeting EZH2 [138]
Cancer cells and HCC Promotes or impedes metastasis by activat-

ing or repressing EMT, respectively
[139, 140]

  HDAC1,
  HDAC2

Pancreatic cancer Promote metastasis by repressing 
E-cadherin

[141, 142]

  SIRT1 Prostate cancer ZEB1-SIRT1 silence E-cadherin, promot-
ing metastasis

[143]

  HDAC1 Breast cancer ZNF827-HDAC1 alter the splicing of EMT 
regulator genes

[144]

  LSD1 Breast cancer LSD1-SNAIL silence epithelial genes 
promoting metastasis

[145]

   KDM5B (JARID1B) HCC Promotes EMT and metastasis via PTEN 
silencing

[146]

  BRD4 Melanoma Promotes metastasis by controlling 
SPINK6 enhancer

[147]

HNSCC Promotes metastasis through super-
enhancer formation at cancer stemness 
genes

[148]

Abbreviations: ccRCC  clear cell renal cell carcinoma; CRC  colorectal cancer; EMT epithelial to mesenchymal transition; HCC hepatocellular 
carcinoma; HNSCC head and neck squamous cell carcinoma; HyperM hypermethylated; HypoM hypomethylated; lncRNAs long non-coding 
RNAs; LUAD lung adenocarcinoma; miRNAs microRNAs; TIMPs tissue inhibitor of metalloproteinases; TSGs tumor suppressor genes
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epigenetic event [58]. Moreover, Arab et al. found that the 
tumor suppressor gene TCF21 is silenced by gene promoter 
hypermethylation, leading to increased risk of metastasis in 
melanoma. Functionally, TCF21 binds the promoter of the 
melanoma metastasis-suppressing gene KISS1 and enhances 
its expression. Thus, epigenetic silencing of TCF21 leads 
to downregulation of KISS1 and promotes metastasis [59].

The tissue inhibitor of metalloproteinase-3 (TIMP3) is 
another example of epigenetically regulated gene involved 
in metastasis. Loss of TIMP3 by promoter methylation 
of Sp1 binding site promotes oral cancer metastasis [60]. 
Interestingly, TIMP3 is able to regulate EMT by increasing 
the expression levels of the epithelial markers (ZO-1 and 
E-cadherin) and reducing the expression levels of the mesen-
chymal markers (vimentin, fibronectin, SNAIL, and TWIST) 
through the Ras-ERK pathway [60]. TIMP3 methylation has 
also been implicated in the development and progression of 
esophageal adenocarcinoma, and reduced TIMP3 expres-
sion has been associated with increased tumor invasive-
ness and poor prognosis [61]. In addition, assessment of 
TIMP3 hypermethylation in body fluids, including serum 
and preoperative peritoneal washes, has been suggested as 
a promising biomarker for monitoring peritoneal metasta-
sis in gastric cancer patients after gastric surgery [62]. In 
the same setting, circulating methylated thrombospondin 1 
(THBS1) has also been described as a potential biomarker 
for predicting peritoneal dissemination in gastric cancer 
[63]. Moreover, hypomethylation of iroquois homeobox 1 
(IRX1) has been involved in osteosarcoma metastasis via 
induction of CXCL14/NF‐kB signaling [64]. In ovarian 
cancer, γ-aminobutyric acid (GABA)A receptor π subunit 
(GABRP) was observed upregulated first in metastatic tis-
sues from a mouse model and after in patients due to gene 
promoter hypomethylation. GABRP expression was associ-
ated with ERK activation, and MAPK/ERK kinase (MEK) 
inhibitor U0126 could suppress the migration and invasion 
of cancer cells [65]. For the secreted frizzled-related protein 
1 (SFRP1), a Wnt antagonist deregulated in several malig-
nancies, dual roles have been described in cancer [153]. In 
non-small cell lung cancer (NSCLC), for instance, the epi-
genetic silencing of SFRP1 is associated with lymph node 
metastasis and disease progression within a year after sur-
gery [66]. In contrast, SFRP1 is hypomethylated and upregu-
lated in metastatic renal cell carcinoma (RCC), playing a 
pro-metastatic role through the activation of matrix metal-
loproteinase MMP10-mediated pathways [67].

Moreover, since early prediction of metastasis could 
improve clinical management and prognosis for early-stage 
patients, the use of DNA methylation biomarkers to predict 
metastasis has also been proposed. In gastric carcinoma, 
presence of methylation in ZNF382 and GFRA1 were found 
significant independent predictors of metastasis for patients 
with  pN0M0 gastric cancer, although with a sensitivity of 

61.5% and specificity of 70.1% [68]. A pilot model to predict 
liver metastasis in early-stage CRC patients using 23 differ-
entially methylated regions (DMRs) has also been developed 
[154]. However, validations in large multi-centric cohorts 
are still needed to support the use of these predictors for 
outcome assessment in cancer patients.

Besides, the intrinsic tissue-specificity of epigenomic 
profiles has also been exploited to develop a DNA methyla-
tion-based predictor (EPICUP) to identify the tumor origin 
in metastasis of unknown primary [155]. The heterogene-
ous group of orphan metastatic tumors diagnosed as CUP 
are characterized by early dissemination, aggressive clinical 
course, unpredictable metastatic pattern, and dismal prog-
nosis, with median survival of 3–6 months in more than 
80% of cases [156, 157]. Considering that cancer treatment 
is currently largely based on the primary tumor, the lack of 
knowledge about the tumor origin seriously hinders clini-
cal management and treatment decision-making in CUP 
patients. Thus, the use of EPICUP and other tumor-type 
classifiers to unmask the biological identity of CUPs are 
valuable tools to guide more precise therapies associated 
with better outcomes in CUP patients [155].

Metastases initiate with the spread from the primary or 
secondary tumor site to distant regions of a single cell or a 
cluster; thus, epigenetic modifications can also be analyzed 
in circulating tumor cells (CTCs), a topic recently reviewed 
by Vasantharajan et al. [158]. To cite some examples, Chi-
monidou et al. detected promoter hypermethylation of two 
metastasis suppressor genes (MSG) (cystatin-M-precursor 
(CST6) and breast cancer metastasis suppressor 1 (BRMS1)) 
and one tumor suppressor gene (TSG) (SRY-box transcrip-
tion factor 17 (SOX17)) in CTCs isolated from peripheral 
blood of breast cancer patients. Moreover, an increase in the 
proportion of patients with methylated CST6, BRMS1, and 
SOX17 was found from operable to metastatic breast can-
cer cases [69]. Later, another study validated CST6 hyper-
methylation and identified two other TSGs, inter-α-trypsin 
heavy chain 5 (ITIH5) and Ras association domain family 
1 isoform A (RASSF1A), hypermethylated in CTCs isolated 
from breast cancer patients when compared to the primary 
tumors [70]. The increased methylation of RASSF1A was 
also observed in melanoma and associated with increased 
metastatic potential [71]. Hypermethylation of EMT-related 
genes has also been detected in CTCs. For instance, in 
CRC, vimentin (VIM) and secreted frizzled-related protein 
2 (SFRP2) were more methylated in CTCs compared to pri-
mary CRC, leading to decrease of cytoskeleton formation 
and increased activation of Wnt signaling pathway, respec-
tively [72]. Downregulation of BRMS1 through DNA meth-
ylation has also been associated with metastatic progression 
in TNBC [73]. The role of BRMS1 as a metastasis suppres-
sor has also been described in NSCLC, where DNA hyper-
methylation is also responsible of its epigenetic silencing. 
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Interestingly, a study in surgically resected lung adenocar-
cinoma has suggested the potential of BRMS1 expression 
to predict future metastases. Authors have shown that low 
intratumoral BRMS1 expression is associated with worse 
overall and disease-free survival [159].

Additional examples of epigenetically regulated metas-
tasis suppressor genes include NME/NM23 nucleoside 
diphosphate kinase 1 (NME1, alias NM23-H1), metastasis 
suppressor kangai-1 (KAI1), and KiSS-1 metastasis suppres-
sor (KISS1). NME1 expression is upregulated upon exposure 
to the DNMTi 5-Aza-2′-deoxycytidine in a dose-dependent 
manner in breast cancer cells disrupting its anti-metastatic 
properties, evidenced by a decreased cell motility [74]. 
Regarding KAI1, DNA methylation-dependent silencing of 
this gene has been described during prostate cancer pro-
gression [75]. Interestingly, co-downregulation of the tumor 
suppressor PTEN and the metastasis suppressors KAI1 and 
NME1 significantly correlates with distant metastasis and 
predicts shortened survival in NSCLC [76]. About KISS1, 
promoter hypermethylation partly contributes to its down-
regulation in ESCC. In this tumor type, KISS1 inhibits the 
metastasis by targeting the MMP2/9/ERK/p38 MAPK axis 
[77].

Opposite to the role of DNMTs, the TET family of 
methylcytosine dioxygenases demethylate cytosine 
nucleotides (5mC) through a succession of oxidization to 
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 
and 5-carboxylcytosine (5caC) [160]. Of note, TETs and 
other α-ketoglutarate-dependent dioxygenases like histone 
demethylases and ALKBH demethylases are sensitive to the 
increase of succinate, fumarate, and D-2-hydroxyglutarate 
that accumulate when SDH, FH, and IDH1/2 enzymes are 
mutated, respectively [161, 162]. This inhibition of activ-
ity leads to a specific hypermethylation phenotype named 
CpG island methylator phenotype (CIMP), characterized by 
the concerted hypermethylation of a large number of genes 
that can drive tumor progression [163–165]. CIMP-high 
(hypermethylation) has been associated with metastasis in 
oral cancer [166], CRC [167], HCC [168], melanoma [169], 
esophageal squamous cell carcinoma [170], gastric cancer 
[171], papillary thyroid carcinoma [172], and inversely asso-
ciated in breast cancer [173]. In prostate cancer, BAZ2A 
(TIP5) was found overexpressed and interacting with EZH2 
to maintain silenced anti-metastatic genes [174]. Of note, 
DNA methylation-induced silencing of TET2 and TET3 in 
melanoma was shown to promote a TGFβ1-induced EMT-
like process and metastasis [78]. Regarding EMT, it has 
shown by Morin et al. that SDH-deficient cells undergo TET 
silencing and hypermethylation of PRC2 target genes, but 
cells required additional HIF-2α activation for driving EMT-
like phenotype and metastasis [79]. In melanoma, global 
hydroxymethylation of DNA cytosine nucleotides, driven by 
TET activity, was observed decreased and low 5hmC level 

was associated with the presence of metastasis. Interestingly, 
TET1 level was decreased in WNT subgroup while TET3 
level was decreased in SHH subgroup with worse prognosis 
[175]. In cervical cancer, PRMT5 (protein arginine N-meth-
yltransferase 5) forms a complex with Snail, HDAC1/2, 
MTA1, Mep50, and NuRD, and represses the expression 
of TET1 and E-cadherin by histone methylation on their 
promoter regions, leading to EMT initiation and increased 
risk of metastasis [176]. Also in this cancer type, Thomas 
et  al. have shown that the pro-metastatic protein RhoC 
associates with TET2 and WDR5 to drive demethylation of 
some pluripotency genes such as Nanog to drive EMT and 
cancer progression [80]. In gastric cancer metastasis, the 
expression of TET1 was shown to be reduced and predicted 
poor survival. The authors have shown that TET1 targets 
FOXO4 gene-promoter methylation, leading to increased 
FOXO4 expression that negatively regulates Wnt/β-catenin 
signaling and consequently represses metastasis potential 
[81]. Concerning upregulation of TET level associated with 
metastasis, it was shown in NSCLC that CD147 expres-
sion is controlled by active demethylation of its promoter, 
leading to increased expression comparing with normal tis-
sues. Treatment with TGFβ triggers active demethylation of 
CD147 by the loss of the KLF6/MeCP2/DNMT3A complex 
and recruitment of Sp1, TET1, TDG, and SMAD2/3 to the 
CD147 promoter [82]. Interestingly, authors successfully 
inhibited invasion and metastasis in NSCLC mouse models 
by using a targeted methylation system to silence CD147 
expression [82], providing a promising therapeutic target for 
NSCLC. An example involving various epigenetic regula-
tions is depicted in thyroid cancer where long non-coding 
RNA (lncRNA) PINT is downregulated, leading to upregula-
tion of the microRNA miR-767-5p and repression of TET2. 
This regulation was significantly associated with advanced 
TNM stage and lymph node metastasis [116]. These selected 
examples demonstrate how cancer cells regulate pro-meta-
static gene expression by gene-promoter demethylation to 
enhance metastasis potential. Regarding factors involved 
in stemness-like features and EMT, it has been shown that 
Nanog expression, controlled by OCT3/4 and SOX2, can be 
regulated by DNA methylation and correlates with different 
states of germ cell tumors [177].

2.2.2  Non‑coding RNAs

Different players of the epigenetic machinery can interplay 
to generate a meaningful biological outcome. For instance, 
some microRNAs (miRNAs), small non-coding RNAs that 
regulate gene expression by binding to the 3′-untranslated 
regions (3′-UTRs) of specific mRNAs [178], directly repress 
enzymes of the epigenetic machinery, including DNA meth-
yltransferases (DNMTs), histone deacetylases (HDACs), and 
histone methyltransferases (HMTs). Few years ago, Liu et al. 
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have shown that miR-135a combined with SMYD4 activates 
Nanog expression inducing the switch of non-cancer stem 
cells into cancer stem cells [179]. They described that miR-
135a lowers the methylation of Nanog promoter by target-
ing DNMT1 [179]. Of note, although miR-135a mostly 
promotes cellular proliferation and cancer progression, it 
can play opposite roles depending on the cancer type [180]. 
For example, miR-135a has been described as a tumor sup-
pressor in osteosarcoma pulmonary metastasis by targeting 
BMI1 and KLF4 [83], and in gastric cancer by downregulat-
ing focal adhesion kinase (FAK) pathway, suggesting FAK 
inhibition as a potential therapeutic strategy [84].

On the other hand, DNA methylation can also regulate the 
expression of non-coding transcripts, including miRNAs. In 
gastric cancer, it was shown that miR-10b is silenced by gene 
promoter methylation and it leads to increased expression of 
the oncogene microtubule-associated protein, RP/EB family, 
member 1 (MAPRE1), meaning a tumor suppressive role in 
this context [181]. Strikingly, a pivotal study in the field of 
miRNAs involved in metastasis described a pro-metastatic 
role of miR-10b in breast cancer. Mechanistically, Twist 
induces miR-10b expression, which directly targets and 
inhibits HOXD10, resulting in increased expression of the 
pro-metastatic gene RHOC [85]. Also in breast cancer, miR-
373 and miR-520c promote metastasis through suppression 
of CD44 [86]. Other examples of epigenetically regulated 
miRNAs include miR-126 in CRC and cancer cell lines, 
where it was shown that inhibitors of DNA methylation and 
histone deacetylation can restore its expression [182, 183], 
and miR-335 in breast cancer [87]. Of note, miR-126 was 
found downregulated in breast, gastric, and lung cancer, 
promoting metastasis [88–90]. Our group also described 
a miRNA DNA methylation signature for metastasis that 
involves the epigenetic silencing of miR-148a, miR-34b/c, 
and miR-9, mediating the upregulation of oncogenic target 
genes such as MYC, E2F3, CDK6, and TGIF2 [91]. Of note, 
expression of these miRNAs could be restored by treatment 
with DNA-demethylating agent. Regarding miR-9, although 
it was found hypermethylated in metastases, and metasta-
sis suppressor features were revealed in in vitro and in vivo 
assays [91], a pro-metastatic role has been described in other 
studies, suggesting a context-dependent function. In breast 
cancer, miR-9 increases cell mobility and invasiveness by 
directly targeting E-cadherin [92]. In CRC cells, miR-9 is 
regulated by PROX1 that bound its promoter and trigger 
its expression to suppress E-cadherin and promote EMT 
[184]. In bladder transitional cell carcinoma, the CBX7 is 
another target silenced by miR-9 [93], and it has been shown 
that CBX7 suppresses metastasis of basal-like breast cancer 
through Twist1/EphA2 pathway [185].

Thus, the induction of EMT is accompanied by a dynamic 
reprogramming of the epigenome involving changes in 
DNA methylation and several post-translational histone 

modifications, not only in protein-coding but also in non-
coding genes [186, 187]. A family of miRNAs particularly 
relevant in EMT and metastasis is miR-200, considering its 
role as a master regulator of the epithelial phenotype by 
targeting ZEB1 and ZEB2, transcriptional repressors of 
E-cadherin [94]. Our group and others described that the 
miR-200b/200a/429 (miR-200ba429) and miR-200c141 
polycistronic transcripts (miR-200s) undergo hypermeth-
ylation-associated silencing linked to EMT in tumor pro-
gression and metastasis in several tumor types [95–98]. 
Moreover, we have shown that the epigenetic regulation 
of miR-200s is a dynamic process that mediates the shifts 
between EMT and MET phenotypes [95]. Considering the 
aberrant expression in various cancers, miR-200 family 
members have been proposed as diagnostic and prognostic 
biomarkers, including the assessment of the circulating miR-
NAs in serum as a non-invasive approach [99]. In addition, 
the epigenetic regulation of this family led to the hypothesis 
that epigenetic drugs like HDAC inhibitors could restore 
miR-200s expression and constitute a potential therapeutic 
strategy in triple-negative breast cancer [99–101]. Impor-
tantly and in the same line, it was observed that miR-22 
can increase metastasis potential of breast cancer cells by 
silencing the anti-metastatic miR-200 via targeting of the 
TET (ten-eleven translocation) family of methylcytosine 
dioxygenases, thereby inhibiting demethylation of the miR-
200 promoter [102].

Interesting examples include also miR-149. In gas-
tric cancer, the epigenetic silencing of miR-149 has been 
observed in cancer-associated fibroblasts (CAF), where 
the miR-149 links PGE2 and IL-6 signaling to mediate the 
crosstalk between tumor cells and CAFs [188]. Particularly, 
miR-149 inhibits fibroblast activation by targeting IL-6. In 
glioblastoma, miR-149 was shown epigenetically silenced 
and its restoration suppressed the expression of AKT1 and 
cyclin D1 and reduced the proliferative activities of glioma 
cells, without being correlated with metastasis potential 
[189]. In breast cancer, miR-491-5p gene is hypermethyl-
ated, leading to decreased expression. miR-491-5p directly 
targets JMJD2B/KDM4B, a histone demethylase with onco-
genic features, suggesting a possible downstream epigenetic-
mediated tumor suppressor effect [104]. In breast cancer, 
miR-149 also acts as a suppressor of metastasis by targeting 
GIT ArfGAP 1 (GIT1) to inhibit integrin signaling [103]. 
In oral squamous cell carcinoma (OSCC), miR-491-5p 
decreased expression was observed in invasive cells and it 
was also shown to target GIT1 [105]. miR-491-5p overex-
pression reduced GIT1 expression and inhibited migration 
and invasion of OSCC cells and GIT1 overexpression was 
sufficient to invert this process [105]. In breast cancer, miR-
491-5p suppresses metastasis through ZNF-703 to regulate 
AKT/mTOR pathway, suggesting miR-491-5p and ZNF-703 
as potential therapeutic targets for this tumor type [106]. 
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miR-138 has also been found dysregulated in various tumor 
types, notably RCC [107], ovarian cancer [108], and oral 
cancer [109]; targeting HIF-1α, SOX2 and HIF-1α, or RhoC 
and ROCK2, respectively. miR-138 can also inhibit MYC 
expression and suppress tumor growth of CRC and HCC 
cell lines [190]. Interestingly, intravenous administration of 
miR-138 significantly impedes MYC-driven tumor growth 
in vivo [190]. In cervical cancer, CpG hypermethylation-
associated decreased expression of miR-138 has been 
detected in tumors from patients with lymph node positivity 
in comparison with the non-metastatic tumor tissues [110]. 
Interestingly, the authors demonstrated that miR-138 sup-
presses tumor progression by targeting the histone methyl-
transferase EZH2 [110]. miR-127 is downregulated in breast 
cancer by Tudor-SN protein and contributes to metastasis 
[111], although treatment with DNA-demethylating agents 
and HDAC inhibitors is able to induce miR-127 expression 
in T24 cells, suggesting epigenetic regulation as a possi-
bly mechanism in other cancer types [191]. In HCC, miR-
1306–3p plays a pro-metastatic role where it was found 
upregulated and targeting FBXL5 and consequently reduce 
Snail degradation [112], and miR-30d promotes tumor 
metastasis by silencing Galphai2 (GNAI2) [113].miRNAs 
can also influence metastasis by targeting cell cycle-related 
genes. Indeed, miR-206 has a metastasis suppressor activity 
by targeting CDK4 and cyclin C/D in melanoma [114]. A 
functional role of miR-206 has been shown in HeLa cells 
where miR-206 acts as pro-apoptotic activator by directly 
targeting Notch3 impairing tumor formation [192]. A role 
in EMT and breast cancer metastasis has been described for 
miR-181b-3p by downregulating YWHAG, which induces 
Snail stabilization and EMT phenotype [115]. Of note, 
YWHAG has been shown upregulated and promoting gastric 
cancer progression through EMT [193], and the YWHAG 
inhibitor curcumenol in combination with cisplatin has been 
recently proposed as a therapeutic strategy in gastric cancer 
[194]. Altogether, these examples highlight the key role of 
miRNA in controlling EMT and metastasis, by targeting 
critical genes involved in tumor progression and invasive-
ness. However, further studies are encouraged to unravel 
the molecular mechanisms behind miRNA and metastasis 
correlative data.

Another type of non-coding RNAs with important func-
tions in regulating gene expression in metastasis is the long 
non-coding RNAs (lncRNAs). This topic has been largely 
reviewed [195–199] and only some examples are described 
below. The lncRNAs can play different regulatory roles as 
they can serve as guides for epi-regulators, change chroma-
tin architecture, or have enhancer-like function (lncRNAs 
called eRNAs) [195]. In breast cancer, the lncRNA ANCR 
decreases metastasis by facilitating the degradation of EZH2, 
the catalytic subunit of the polycomb repressive complex 2 
(PRC2). ANCR potentiates the interaction between CDK1 

and EZH2, increasing EZH2 phosphorylation and degrada-
tion by ubiquitination. ANCR was observed downregulated 
in breast cancer, and its overexpression reduced lung metas-
tases in a mouse model [117]. Interestingly, EZH2 can also 
target a lncRNA, PHACTR2-AS1, that represses ribosomal 
gene expression. The authors observed that EZH2 silenced 
PHACTR2-AS1 and it led to instability of ribosomal DNA, 
which promoted cancer cell proliferation and metastasis in 
breast cancer [118]. Apart direct interactions with proteins or 
genes, lncRNAs can also modulate chromatin conformation. 
This is the case for HOTAIR that is overexpressed in primary 
breast cancer and metastasis. Its increased expression induced 
genome-wide re-targeting of PRC2 to a pattern resembling 
more embryonic fibroblasts. This PRC2 dysregulation led 
to altered H3K27 methylation and gene expression, driving 
cancer invasiveness and metastasis [119]. Importantly, these 
results were later validated in CRC, further supporting the 
role of this lncRNA in metastasis [120].

Another example is NBAT1, a lncRNA with metastasis 
suppressive functions, downregulated in breast cancer and 
associated with poor survival and increased risk of metasta-
sis. NBAT1 increases the expression of DKK1, an inhibitor 
of Wnt signaling pathway, by suppressing EZH2-induced 
H3K27me3 of DKK1 [121]. Another example of gene 
promoter regulation by lncRNA in this tumor type is the 
increased expression of LINC02273, stabilized by hnRNPL 
protein. This complex was shown to increase the levels of 
two histone modifications associated with active expres-
sion (H3K4 trimethylation and H3K27 acetylation) at the 
AGR2 gene promoter, leading to AGR2 upregulation [122]. 
In prostate cancer, Prensner et al. have found that SChLAP1 
lncRNA also regulates the SWI/SNF chromatin modifying 
complex. SchLAP1 antagonizes the genome-wide localiza-
tion and the tumor suppressor regulatory function of the 
SWI/SNF complex, increasing cancer cell invasion and met-
astatic spread [123]. Regarding EMT, Fu et al. have found 
in gastric cancer that lncRNA LINC00978 expression is 
elevated and correlates with tumor size, lymphatic metasta-
sis, and TNM stage. LINC00978 activates the TGF-β/SMAD 
pathway and EMT by increasing the expression of Twist1 
and Slug (Snail2), leading to the upregulation of N-cadherin 
and vimentin, but the downregulation of E-cadherin in gas-
tric cancer cells [124]. Interestingly, lncRNAs can also 
regulate some miRNAs to promote metastasis. For exam-
ple, lncRNA-ATB in breast cancer promotes metastasis and 
tastuzumab resistance by competitively binding miR-200c 
sites, upregulating ZEB1 and ZNF-217, and then inducing 
EMT [125], and lncRNA-CTS in cervical cancer promotes 
metastasis and TGFβ1-induced EMT by competitive binding 
of miR-505 sites, consequently upregulating ZEB2 [126]. 
Many other lncRNAs regulate metastasis through different 
pathways. A recent review from Ming et al. is recommended 
for further details [196].
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2.2.3  Histone modifications

Another epigenetic mechanism driving gene expression is 
through histone modifications (Fig. 2). The most common 
histone post-translational modifications (PTMs) are methyla-
tion, acetylation, ubiquitination, and phosphorylation. The 
crosstalk among the different marks configures the so-called 
histone code that dictates the chromatin structure in which 
DNA is packaged and can orchestrate the ordered recruit-
ment of enzyme complexes to wrap the DNA. This histone 
code is written by histone-modifying enzymes that catalyze 
the introduction of chemical modifications in a residue-spe-
cific manner (e.g., histone lysine methyltransferases or his-
tone lysine acetyltransferases), and erased by enzymes that 
remove the marks (e.g., histone lysine demethylases or his-
tone lysine deacetylases). This code is interpreted by reader 
or effector proteins that specifically bind to a certain type, 
or a combination, of histone modifications and translate the 
histone code into a meaningful biological outcome, whether 
it is transcriptional activation or silencing, or other cellular 
responses [200]. In addition to this recruitment mechanism, 
histone marks can modulate the chromatin conformation 
per se based on steric or charge interactions. For instance, 
neutralization of the positive charges of histones by acetyla-
tion of lysines weakens the histone tail—DNA interactions 
that lead to chromatin decompaction, which facilitates DNA 
accessibility [200, 201].

Disturbance of the histone code leads to deregulated gene 
expression and perturbation of cellular identity, and is there-
fore a major contributor to cancer initiation, progression, 

and metastasis. Miswriting, misinterpretation, and mis-
erasing of histone modifications are linked to tumorigenesis 
[201–203]. Moreover, EMT transcription factors, such as 
SNAIL, SLUG, TWIST, ZEB1, and ZEB2, recruit histone-
modifying complexes to chromatin to mediate epigenetic 
silencing of genes involved in metastasis [187, 204]. During 
EMT, together with DNA methylation, histone modifications 
orchestrate the repression or activation between epithelial 
and mesenchymal genes.

Deregulated expression of histone modifiers is a com-
mon event in cancer. To cite some examples involved in 
metastasis (Table 1), the histone methyltransferases (HMTs) 
enhancer of zeste homolog 2 (EZH2), SET domain contain-
ing 2 (SETD2), SET domain bifurcated histone lysine meth-
yltransferase 1 (SETDB1), and DOT1 like histone lysine 
methyltransferase (DOT1L); the histone demethylases 
(HDMs) lysine demethylases 1A (KDM1A/LSD1) and 5B 
(KDM5B/JARID1B); the histone acetyltransferases (HATs) 
CREB1-binding protein (CBP)/p300 and p300-CBP-asso-
ciated factor (PCAF); and histone deacetylases (HDACs) 
(Fig. 2).

EZH2, the enzymatic subunit of PRC2 that trimethyl-
ates histone H3 lysine 27 (H3K27me3) to promote tran-
scriptional silencing, is aberrantly expressed in cancer. 
Overexpression of EZH2 is a marker of advanced and 
metastatic disease in many solid tumors, including pros-
tate and breast cancer [127]. EZH2-mediated silencing of 
several genes through H3K27me3 (e.g., E-cadherin and 
tissue inhibitors of metalloproteinases) favors cell inva-
sion and metastatic spreading [128–130]. EZH2 also 

Fig. 2  Relevant histone modifiers implicated in metastasis. Note that 
only histone modifiers discussed in this review are depicted, includ-
ing enzymes that introduce (writers), recognize (readers), and remove 
(erasers) epigenetic marks to the histone tails. Abbreviations: ac, 

acetylation; H3, histone 3; H4, histone 4; K, lysine; me, methylation; 
me3, trimethylation. *HDACs also deacetylate other histones and 
non-histone proteins. Created with BioRender.com
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negatively regulates the transcription of the metastasis 
suppressor gene RKIP in breast and prostate cancer by 
regulating H3K27 and H3K9-me3 modifications, leading 
to negative association of EZH2 expression with relapse-
free survival in breast cancer [131]. EZH2 can also induce 
the gene silencing of tumor suppressors like DAB2IP to 
regulate EMT and metastasis in CRC [205]. EZH2 inhibi-
tors could be interesting as a potential treatment to reduce 
metastasis potential in these cases. Remarkably, in addi-
tion to the classical repressor role of EZH2 by trimeth-
ylating H3K27, EZH2 is able to methylate non-histone 
substrates, such as JARID2, STAT3, GATA4, FOXA1, 
RORα, or PLZF, to regulate their transcriptional activi-
ties or protein stability [206]. Related to metastasis, for 
instance, EZH2-dependent methylation of p38α enhances 
its stability and function; and the cooperation between 
EZH2 lysine methyltransferase and p38 kinase activities 
promotes breast cancer growth and metastasis. Interest-
ingly, the dual inhibition of EZH2 and p38 decreases 
cancer progression in mouse models of TNBC [207]. 
Besides, EZH2 also performs relevant methyltransferase-
independent functions, and it can act as transcriptional 
co-activator by forming complexes with other proteins or 
acts as a transcription factor via direct binding to the target 
gene promoters. To cite some metastasis-related examples 
of non-canonical functions of EZH2 beyond the polycomb 
complex, EZH2 promotes the transcriptional activation 
of the non-canonical NF-κB subunit RelB to drive self-
renewal contributing to the maintenance of TNBC tumor 
initiating cells (TICs), cancer stem cells involved in tumor 
recurrence and metastasis [208]. Moreover, a recent study 
has revealed the cooperation between EZH2 and TGFβ 
signaling in promoting bone metastasis of breast cancer 
also through a methyltransferase-independent manner 
[209]. Mechanistically, EZH2 acts as a transcriptional co-
factor of RNA Pol II to facilitate its binding to the ITGB1 
promoter, triggering its transcription. Increased ITGB1 
activates FAK that phosphorylates TGFβRI and enhances 
its binding to TGFβRII, thereby activating TGFβ signal-
ing [209]. This finding has critical clinical implications, 
underlining that targeting EZH2 methyltransferase activity 
by EZH2 inhibitors might not yield inhibitory efficacies 
in this setting, whereas targeting the downstream effector 
FAK with a clinically applicable kinase inhibitor could 
block EZH2-induced breast cancer bone metastasis, as was 
shown in mouse models [209]. Thus, EZH2 behaves as a 
bifunctional molecule that could act as a transcriptional 
inhibitor or a transcriptional activator in a context-depend-
ent manner. Altogether, the interplay between the EZH2 
PRC2-dependent and EZH2 PRC2-independent functions 
contributes to its overall impact on metastasis. Through 
these mechanisms, EZH2 can regulate the expression of 

genes involved in metastasis, such as those associated with 
cell adhesion, migration, invasion, and angiogenesis.

Regarding SETD2, the HMT responsible of trimethylat-
ing H3K36, it is mutated in a range of tumor types, including 
13% of cases in ccRCC [210, 211]. Mechanistically, a study 
in ccRCC has described that the loss of SETD2-mediated 
H3K36me3 activates enhancers to drive oncogenic tran-
scriptional output through regulation of chromatin accessi-
bility [132]. In LUAD, SETD2 inhibits metastasis via regu-
lation of STAT1-IL-8 signaling-mediated EMT [133]. Other 
SET domain containing protein, SETDB1, which mediates 
the incorporation of the repressive H3K9me3 mark and 
inhibits gene transcription, suppresses EMT and controls 
cancer cell motility, invasion, and metastatic dissemination. 
SETDB1 cooperates with SMAD2/SMAD3 repressor com-
plex in TGFβ-mediated lung cancer metastasis [134]. Also, 
SMAD3-mediated recruitment of SETDB1 to the SNAI1 
promoter region to decrease Snail1 expression and EMT 
has been described in breast cancer [135]. In hepatocellular 
carcinoma, conversely, SETDB1 activating mechanisms at 
the chromosomal (copy gain at 1q21), transcriptional, and 
post-transcriptional levels result in SETDB1 upregulation 
that promotes metastasis [136]. About the H3K79 meth-
yltransferase DOT1L, an example that clearly illustrates 
the crosstalk between several epigenetic players to acti-
vate EMT regulators has been described in breast cancer. 
H3K79me-induced and H3ac-induced epigenetic derepres-
sion of SNAIL, ZEB1, and ZEB2 is accomplished by the 
recruitment of the HMT DOT1L and the HAT CBP/p300 to 
the E-box regions of gene promoters together with c-Myc. 
Moreover, DOT1L enhanced activity in human breast cancer 
leads to dissociation of HDAC1 and DNMT1 proteins from 
promoters, which inhibits HDAC activity and DNA meth-
ylation. The resulting epigenetic activation of EMT tran-
scription factors promotes EMT-induced cancer stem cell 
properties and enhances the invasive and metastatic abilities 
in breast cancer, possibly reversed by the use of DOT1L 
inhibitor [137].

Epigenetic reactivation of metastasis-promoting genes 
also involves histone acetylation mediated by other HATs 
as PCAF. Besides, other than its HAT activity, PCAF is 
able to introduce post-transcriptional modifications to other 
substrates. For instance, acetylation of EZH2 at K348 by 
PCAF regulates its stability and promotes lung cancer cell 
migration and invasion [138]. PCAF-mediated acetylation 
of the transcription factor ISX promotes translocation of 
ISX-BRD4 to the nucleus, where the ISX–BRD4 complex 
unpacks chromatin and activates the expression of EMT 
regulators through acetylation of histone H3, subsequently 
promoting EMT and metastasis [139]. However, it has been 
described that PCAF suppresses metastasis and EMT in 
HCC by targeting the EMT regulator Gli1 [140].



1084 Cancer and Metastasis Reviews (2023) 42:1071–1112

1 3

Regarding HDACs, considering their crucial role of 
removing acetyl groups from lysine residues to drive gene 
silencing, dysregulation of HDACs disrupts gene expres-
sion and is involved in disease. Several examples that 
demonstrate the role of HDACs in metastasis have been 
described. Class I HDACs (HDAC1, 2, 3, and 8) are often 
overexpressed in cancer. EMT-related factors form transcrip-
tional repressor complexes with HDACs to downregulate 
E-cadherin. For instance, HDAC1 and HDAC2 are recruited 
to the E-cadherin promoter by ZEB1/2 or SNAIL in pancre-
atic cancer [141, 142]. ZEB1 can also recruit the class III 
HDAC SIRT1 to silence E-cadherin and promote EMT and 
metastasis in prostate cancer cells, and the authors suggested 
the use of SIRT1 inhibitor as therapeutic strategy against 
metastasis cascade [143]. Another intriguing mechanism 
promoting EMT in brain development and breast cancer 
metastasis involves the recruitment of HDAC1 by the zinc 
finger protein ZNF827 that slows RNA polymerase II pro-
gression and alters the splicing of genes encoding key EMT 
regulators [144]. On the other hand, EMT transcription fac-
tors also recruit HDMs to orchestrate the remodeling of the 
transcriptomic landscape. SNAIL, for instance, recruit LSD1 
to epithelial gene promoters, leading to H3K4me2 demeth-
ylation and subsequent silencing of target genes to enhance 
tumor metastasis [145]. Other HDMs as KDM5B/JARID1B 
promote EMT and metastasis in HCC cells through modula-
tion of H3K4me3 at the PTEN gene promoter, inactivating 
PTEN transcription. Importantly, PI3K and AKT inhibitors 
could benefit to these patients [146].

As previously commented, epigenetic mechanisms, 
including histone modifications, are also key to support the 
phenotypic plasticity of disseminated cancer cells within 
metastatic niches [44]. Recent studies have shown that chro-
matin remodeling and transcriptional reprogramming control 
onset and escape from dormancy. To cite a key example, 
the retinoid-responsive gene NR2F1 has been identified as a 
master regulator of tumor cell dormancy. NR2F1 induces not 
only a global chromatin-repressive state, but also local active 
chromatin changes in its own promoter and SOX9 and RARβ 
promoters [212]. Importantly, an agonist of NR2F1 that spe-
cifically activates dormancy programs in malignant cells has 
been recently described [213]. More relevant, the treatment 
with this agonist resulted in inhibition of lung metastasis in 
head and neck squamous cell carcinoma (HNSCC) mouse 
models, supporting the use of NR2F1 agonists to induce dor-
mancy as a therapeutic strategy to prevent metastasis [213]. 
In addition, combined use of DNA-demethylating agent 
(5-azacytidine, AZA) and activation of retinoic acid signal-
ing (all-trans retinoic acid, atRA) is sufficient to recapitu-
late the quiescence program and induce chromatin changes 
linked to a durable dormant state. Recent data suggest that 
AZA + atRA reprogramming therapy is able to suppress 
metastasis via induction of a dormancy-like program by 

TGFβ-SMAD4-dependent mechanisms (NR2F1 independ-
ent or NR2F1 complementary) [214]. Further studies in this 
field are guaranteed to exploit the therapeutic opportunities 
in the clinical setting.

An additional layer of complexity is defined by the read-
ers or effector proteins that recognize histone modifications. 
Among them, the BET family of chromatin readers (BRD2, 
BRD3, BRD4, and BRDT) contains a bromodomain that 
recognizes acetylated lysine residues in histones H3 and H4, 
triggering chromatin remodeling and transcriptional activa-
tion via recruitment of other proteins. BET proteins act as 
key regulators of oncogene expression by controlling super-
enhancers that regulate critical oncogenic drivers, including 
MYC [215]. In melanoma, BRD4 directly interacts with the 
enhancer of SPINK6 and mediates its expression. SPINK6 
plays an important role in melanoma migration, invasion, 
and metastasis. SPINK6 bounds and activates EGFR lead-
ing to an interplay between EGFR and EphA2 that caused 
increased phosphorylation of both receptors as well as AKT 
and ERK activation, promoting metastasis. Of note, BRD4 
inhibitor NHWD-870 strongly reduced the invasion and 
metastasis of melanoma both in vivo and in vitro [147]. In 
HNSCC, BRD4 recruits mediators and NF-κβ p65 to form 
super-enhancers at cancer stemness genes such as TP63, 
MET, and FOSL1, instead of MYC. Interestingly, the use 
of BET inhibitors disrupts the super-enhancers, eliminates 
cancer stem cells, and inhibits HNSCC invasive growth and 
metastasis [148]. As discussed at the end of this review, 
development of epidrugs, drugs that target enzymes involved 
in epigenetic regulation of genome function, is an active 
field of research as a strategy for tackling cancer.

2.3  Epitranscriptomic alterations in metastasis

Chemical modifications deposited in RNA molecules shape 
another layer of biological complexity, the epitranscriptome. 
More than 170 modifications have been identified [216], 
most of them originally described in highly abundant non-
coding RNAs, including ribosomal RNAs (rRNAs), transfer 
RNAs (tRNAs), and small nuclear RNA (snRNAs), but later 
also found in messenger RNAs (mRNAs). The functional 
significance of RNA modifications has begun to be uncov-
ered in the last few years, and increasing evidences are sup-
porting their role in diseases, including cancer [217]. In this 
section, we describe epitranscriptomic events particularly 
related to metastasis, summarized in Table 2 and depicted in 
Fig. 3. Moreover, considering the interplay between molecu-
lar mechanisms controlling gene expression, we highlight 
those targets impacted by both epitranscriptomic and epige-
netic modifications. Also, epitranscriptomic modifications 
can regulate epigenetic modifiers like microRNAs or lncR-
NAs that will regulate downstream gene expression, a topic 
recently reviewed by Bove et al. for  m6A modification [218].
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Table 2  Summary of relevant RNA modifications implicated in cancer metastasis

RNA modifiers (function)a Target
(effect on the target)b

Role in cancer Ref

m6A
  METTL3 (w) miR-1246 (up),

SPRED2 mRNA (down)
Promotes metastasis in CRC [219, 220]

KRT7-AS mRNA (up) Promotes lung metastasis in breast cancer, induction of 
EMT

[221]

lncRP11 (up) Promotes liver metastasis in CRC by increasing Siah1 
and Fbxo45 mRNA degradation and preventing ZEB1 
mRNA decay

[222]

HDGF mRNA (up) Promotes liver metastasis in gastric cancer [223]
STEAP2 mRNA (up) Decreases PTC progression [224]
UCK2 mRNA (up) Promotes metastasis in melanoma by enhancing the 

Wnt/β-catenin pathway
[225]

MALAT1 lncRNA (up) Promotes metastasis in breast cancer [226]
miR-143-3p (up) Promotes brain metastasis by silencing VASH1 in lung 

cancer
[227]

  METTL3 (w)
  IGF2BP2 (r)

SOX2 mRNA (up) Promotes stem cell phenotype and metastasis in breast 
cancer

Promotes metastasis in CRC 

[228, 229]

  METTL3 (w)
  YTHDF1 (r)

HK2 mRNA (up) Promotes cervical cancer [230]
SNAI1 mRNA (up) Promotes EMT in cancer cells [231]

  METTL3 (w)
  YTHDF2 (r)

SOCS2 mRNA (down) Promotes lung metastasis in HCC [232]
PTEN mRNA (down) Promotes metastasis in gastric cancer. Linc00470-

METTL3
[233]

miR-1915-3p (down) Promotes NSCLC migration and invasion [234]
RRAS, SETD7, KLF4 mRNAs (down) Promote bladder cancer [235, 236]
YPEL5, USP4, DUSP5, IFFO1 mRNAs (down) Promotes metastasis in colon, prostate, gallbladder, and 

other cancer types
[237–240]

  METTL3 (w) YTHDF3 (r) EGR1 mRNA (up) Promotes EMT and metastasis in ESCC by increasing 
activation of EGR1/SNAIL signaling

[241]

  METTL14 (w) YTHDF2 (r) NEAT1 lncRNA (down) Represses metastasis in RCC [242]
ITGB4 mRNA (down) Represses metastasis in RCC [243]
SOX4 mRNA (down)
XIST lncRNA (down)

Represses metastasis in CRC [244, 245]

  YTHDF1 (r) eIF3C mRNA (up) Promotes metastasis in ovarian cancer [246]
EGFR, ATG2A, ATG14 mRNAs (up) Promotes metastasis in HCC [247, 248]
USP14, ARHGEF2, FOXM1,
PKM2, PLK1, SLP2, ANLN, DDX23, HRAS mRNAs 

(up)

Promotes metastasis in gastric, colorectal, breast, prostate, 
liver, pancreas, and other cancer types

[249–257]

  YTHDF2 (r) OCT4 mRNA (up) Promotes lung metastasis in HCC [258]
FYN mRNA (up) Promotes metastasis in HCC with PA2G4 upregulation [259]
AXIN1 mRNA (down) Promotes metastasis in LUAD by activating the Wnt/β-

catenin pathway
[260]

GAS5 mRNA (down) Promotes metastasis in cervical cancer [261]
FGF14-AS2 lncRNA (down) Promotes osteolytic metastasis in breast cancer [262]
circ_SFMBT2 (down) Promotes metastasis in NSCLC [263]
IL-11, SERPINE2 mRNAs (down) Represses metastasis in HCC [264]

  YTHDF3 (r) ST6GALNAC5, GJA1, EGFR, VEGFA mRNAs
(up)

Promotes brain metastasis and angiogenesis in breast 
cancer

[53]

ZEB1 mRNA (up) Promotes metastasis in HCC and TNBC [265, 266]
DICER1-AS1 lncRNA (down) Promotes pancreatic cancer progression [267]
LOXL3 mRNA (up) Promotes metastasis in melanoma [268]
PFKL mRNA (up) Promotes metastasis in HCC [269]

  FTO (e) miR‐181b‐3p (down) Promotes metastasis in breast cancer by upregulating 
ARL5B

[270]

TEAD2 mRNA (down) Represses ICC progression [271]
  FTO (e)
  YTHDF1 (r)

KRT7 mRNA (up) Promotes lung metastasis in breast cancer, induction of 
EMT

[221]
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Table 2  (continued)

RNA modifiers (function)a Target
(effect on the target)b

Role in cancer Ref

  FTO (e)
  YTHDF2 (r)

BNIP3 mRNA (down) Promotes metastasis in breast cancer [272]

HOXB13 mRNA (up) Promotes metastasis in endometrial cancer by activating 
Wnt signaling pathway

[273]

HSF1 mRNA (up) Promotes metastasis in multiple myeloma [274]
  ALKBH5 (e) YAP mRNA (down) Represses growth and metastasis in NSCLC [275]

KCNK15-AS1 lncRNA (up) Inhibits mobility and invasion of pancreatic cancer cell [276, 277]
TGFβR2, SMAD3 mRNA (down), SMAD6 mRNA (up) Represses metastasis in NSCLC [278]

  ALKBH5 (e)
  IGF2BP1 (r) 

NANOG, KLF4 mRNA (up) Promotes stem cell phenotype in breast cancer [279, 280]

  ALKBH5 (e)
  YTHDF2 (r)

KCNQ1OT1 lncRNA (up) Promotes LSCC tumorigenesis and metastasis via upregu-
lation of HOXA9

[281]

UBE2T mRNA (up) Promotes metastasis in HCC
lncRNA CASC11- ALKBH5

[282]

circCPSF6 (up) Promotes metastasis in HCC by activating YAP signaling [283]
  ALKBH5 (e)
  YTHDF3 (r)

circ3823 (down) Represses metastasis in CRC [284]

m5C
  NSUN2 (w) PIK3R1, PCYT1A mRNAs

(up)
Promotes metastasis in gastric cancer [285]

  NSUN2 (w)
  YBX1 (r)

HDGF mRNA (up) Promotes metastasis in bladder urothelial carcinoma [286]
NKILA lncRNA (up) Promote growth and metastasis in cholangiocarcinoma [287]
LRRC8A lncRNA (up) Promotes metastasis in cervical cancer [288]

  NSUN3 (w) mtRNAs of subunits of the oxidative phosphorylation 
complex

Promotes metastasis in HNSCC [289]

  NSUN7 (w) CCDC9B mRNA (up) Prevents liver cancer. Epigenetic loss is associated with 
worse clinical outcome in HCC

[290]

m1A
  ALKBH1 (e) METTL3 mRNA (up) Promotes metastasis in CRC by METTL3-mediated down-

regulation of SMAD7
[291]

ac4C
  NAT10 (w) COL5A1 mRNA (up) Promotes metastasis in gastric cancer [292]

FSP1, KIF23 mRNA (up) Promotes metastasis in CRC [293, 294]
HSP90AA1 mRNA (up) Promotes ER stress-mediated metastasis in HCC [295]
CTC-490G23.2 lncRNA (up) Promotes metastasis in ESCC [296]

m7G
  METTL1/WDR4 (w) tRNAs Promotes metastasis in nasopharyngeal carcinoma through 

Wnt/β-catenin pathway
[297]

tRNAs Promotes metastasis in HCC by enhancing the translation 
of SNAIL and SLUG

[298]

tRNAs Promotes progression of HNSCC through regulating 
global mRNA translation, including the PI3K/AKT/
mTOR signaling pathway

[299]

miR-760 (up) Promotes metastasis in bladder cancer by indirectly 
degrading the tumor suppressor ATF3 mRNA via 
miR-760

[300]

  WBSCR22/
  TRMT112 (w)

ISG15 mRNA (down) Represses tumorigenesis in pancreatic cancer [301]

mcm5s2U
  ELP3 (w)
  CTU1/2

tRNAs Promote metastasis in breast cancer by enhancing transla-
tion of DEK oncoprotein

[302]

Ψ
  Dyskerin (w) HIF-1α promoter (up)c Promotes metastasis in CRC by directly bound to the 

HIF-1α promoter to enhance its transcription
[303]

Nm
  FBL (w)
  SNORD89

BIM mRNA (down) Involved in endometrial carcinoma lymph node metastasis [304]
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The most known epitranscriptomic modification is 
certainly the N6-methyladenosine  (m6A) deposition on 
mRNAs. The catalytic activity of  m6A deposition is driven 
by METTL3 and assisted by METTL14, WTAP, RBM15, 
KIAA1429, and ZC3H13. The three described erasers are 
FTO, ALKBH3, and ALKBH5, and the known readers that 
bind to the  m6A mark and mediate cellular outcomes are 
YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and HNRNPC/
A2B1.

Starting with the  m6A writer, METTL3 has been found 
upregulated in late stages of breast cancer and associated 
with worse prognosis [228]. Mechanistically, the authors 
have shown that METTL3-mediated  m6A modification of 
SOX2, one of the regulators of Nanog, promotes stemness 
and malignant progression of breast cancer [228]. This 
example highlights that epitranscriptomic regulations of 
transcription factors (like SOX2) can control EMT effectors 
(like Nanog) potentially regulated by epigenetic events. In 

CRC, METTL3 also stabilizes SOX2 mRNA, and promotes 
drug resistance and lung metastasis [229]. Another METTL3 
role in CRC is by downregulating SPRED2 and targeting the 
miR-1246/SPRED2/MAPK signaling pathway [219]. More-
over, Yin et al. have found that  m6A methylation can regulate 
cancer growth and metastasis via macrophage reprogram-
ming [220]. Strikingly, ablation of METTL3 in myeloid 
cells promoted tumor growth and metastasis, associated 
with decreased YTHDF1-mediated translation of SPRED2 
and increased activation of NF-kB and STAT3 through 
the ERK pathway, leading to increased tumor growth and 
metastasis [220]. In a breast cancer lung metastasis model, 
upregulated METTL3 methylates KRT7-AS to enhance its 
expression, which then forms duplex with KRT7 mRNA to 
increase its stability and expression through recruitment of 
the IGF2BP1/HuR complex [221]. Moreover, YTHDF1/
eEF-1 is involved in FTO-regulated translation elongation 
of KRT7 mRNA [221]. Of note, KRT7 has been described 

Table 2  (continued)

RNA modifiers (function)a Target
(effect on the target)b

Role in cancer Ref

A-to-I editing
  ADAR1 (w) ITGA2 mRNA (up) Promotes metastasis in HCC [305]

Not determined Promotes metastasis in gastric cancer via mTOR/p70S6K/
RPS6 ribosomal protein signaling axis

[306]

AZIN1 mRNA (editing) Promotes metastasis in colorectal and gastric cancer [307, 308]
KPC1 mRNA (editing) Promotes distant metastasis in ICC [309]
GLI1 mRNA (editing) Promotes metastasis in gastric cancer [310]
miR-455-5p, miR-378a-3p (editing) Prevents metastasis in melanoma [311, 312]
ITGB3 mRNA
(down)d

Represses invasion and metastasis in melanoma [313]

GABRA3 mRNA (editing) Represses metastasis in breast cancer [314]
circRBMS3 (down) Represses metastasis in osteosarcoma by sponging miR-

424-5p and protecting YRDC/eIF4B
[315]

  ADAR2 (w) miR-200s secretion Represses lung metastasis in CRC. ADAR2-PKCζ [316]
SLC22A3 mRNA (down) Promotes metastasis in esophageal cancer [317]
circRNA-51217 (down) Represses metastasis in prostate cancer [318]
circFNTA (down) Represses bladder cancer invasion. ADAR2-AR [319]

C-to-U editing
  APOBEC3G (w) miR-29 (down)d Promotes hepatic metastasis in CRC through inhibition of 

miR-29-mediated suppression of MMP2
[320]

KLF4 mRNA (down)d Promotes oncogenic transformation of cancer cells [321]

The RNA modifications shown are  m6A, N6-methyladenosine;  m1A, N1-methyladenosine;  m5C, 5-methylcytosine;  ac4C, N4-acetylcytidine; 
 m7G, N7-methylguanosine;  mcm5s2U, 5-methoxycarbonylmethyl-2-thiouridine; Ψ, pseudouridine; Nm, 2′-O-methylation; A-to-I, adenosine-to-
Inosine editing, and C-to-U, cytidine-to-uridine editing
Abbreviations: circ circular RNA; CRC  colorectal cancer; EMT epithelial to mesenchymal transition; ESCC esophageal squamous cell carci-
noma; HCC hepatocellular carcinoma; HNSCC head and neck squamous cell carcinoma; ICC intrahepatic cholangiocarcinoma; lncRNA long 
non-coding RNA; LSCC laryngeal squamous cell carcinoma; LUAD lung adenocarcinoma; miRNA microRNA; mRNA messenger RNA; NSCLC 
non-small cell lung cancer; PTC papillary thyroid cancer; RCC  renal cell carcinoma; TNBC triple-negative breast cancer
a  w, writer; r, reader; e, eraser
b up, upregulation; down, downregulation
c Unrelated with RNA-modifier function of Dyskerin
d Unrelated with the editing function of ADAR1 or APOBEC3G
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to promote EMT in ovarian cancer via the TGFβ/Smad2/3 
signaling pathway [322]. Interestingly, it has been reported 
in breast cancer that BRCA1 promoter methylation is cor-
related strongly and specifically with both BRCA1 gene 
expression in ER − tumors and KRT7 promoter methylation 
with KRT7 gene expression in ER + tumors [323]. The same 
authors also reported differential KRT7 protein expression in 
luminal cell populations associates with survival [324]. This 
example underlines that some epigenetically regulated genes 
can co-participate in tumorigenesis in a way like BRCA1.

Back to METTL3, its oncogenic activity has also been 
linked to tumor formation in CRC where  m6A methyla-
tion of lncRP11 increases its nuclear accumulation, drives 
Siah1 and Fbxo45 mRNA degradation, and prevents ZEB1 
mRNA decay, thus, regulating EMT and liver metastasis 
[222]. In HCC, METTL3 decreases SOCS2 mRNA stabil-
ity (through an  m6A-YTHDF2-dependent mechanism) and 
promotes lung metastasis [232]. Interestingly, epigenetic 
downregulation of SOCS2 has been described in AML cells 
carrying NRAS mutation, driven by a reduction of the active 
enhancer marker H3K27ac at the SOCS2 locus [325]. In 
gastric cancer, METTL3 stabilizes hepatoma-derived growth 
factor (HDGF) that activates GLUT4 and ENO2 expression 
and subsequent angiogenesis and glycolysis that promote 
liver metastasis [223]. Of note, concomitant upregulation of 
HDGF and PRKCA has been associated with poor progno-
sis in lung adenocarcinoma [326]. Conversely, in a study in 

papillary thyroid cancer (PTC), low level of STEAP2 corre-
lated with aggressiveness, and METTL3-mediated STEAP2 
mRNA stabilization decreased PTC progression [224]. In 
cervical cancer, METTL3 is upregulated, promoting tum-
origenesis and Warburg effect, and correlates with lymph 
node metastasis and poor prognosis [230]. Mechanistically, 
METTL3 targets the 3′UTR of the hexokinase HK2 mRNA, 
and recruits YTHDF1 to enhance its stability [230]. In hepa-
toblastoma, a rare liver cancer usually diagnosed during the 
first 3 years of life, the upregulation of METTL3, YTHDF2, 
and FTO has been correlated with poor clinical outcomes. 
METTL3 knockdown in hepatoblastoma cells could sup-
press proliferation, invasion, and migration [327]. In mela-
noma, METTL3-mediated stabilization of the uridine cyti-
dine kinase 2 (UCK2) by  m6A modification plays a role in 
melanoma metastasis by enhancing the Wnt/β-catenin path-
way [225]. Of note, LINC00470 recruits METTL3 to drive 
 m6A methylation of PTEN mRNA, leading to YTHDF2-
dependent PTEN mRNA decay and finally promoting metas-
tasis in gastric cancer [233]. In NSCLC, Pan et al. found that 
the METTL3/YTHDF2  m6A axis also downregulates miR-
1915-3p that has tumor suppressor function by targeting 
SET nuclear proto-oncogene (SET) [234]. In a more func-
tional study, Li et al. suggested that METTL3 regulates EMT 
by modulating β-catenin expression and subcellular locali-
zation [328]. Moreover, by studying TGFβ-mediated EMT 
in cancer cell lines, a significant increase of  m6A levels in 

Fig. 3  Relevant RNA modifiers involved in metastasis. Note that 
only RNA modifiers discussed in this review are depicted, including 
enzymes that introduce (writers), recognize (readers), and remove 
(erasers) the epitranscriptomic marks. The different RNA modifi-
cations are shown  (m1A, N1-methyladenosine;  m6A, N6-methyl-
adenosine;  m5C, 5-methylcytosine;  ac4C, N4-acetylcytidine;  m7G, 
N7-methylguanosine; Ψ, pseudouridine;  mcm5s2U, 5-methoxycar-

bonylmethyl-2-thiouridine; Nm, 2′-O-methylation; A-to-I, adeno-
sine-to-inosine editing, C-to-U, cytidine-to-uridine editing) with the 
implicated RNA modifiers and the type of RNA molecules targeted 
in metastasis: messenger RNA (m), microRNA (mi), long non-coding 
RNA (lnc), circular RNA (circ), and transfer RNA (tRNA). Created 
with BioRender.com
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cells undergoing EMT has been described. Particularly,  m6A 
deposition in SNAI1 mRNA triggers its YTHDF1-mediated 
translation to promote EMT [231]. Interestingly, the micro-
biota can also exert a strong influence on the host  m6A epi-
transcriptome. A recent study has shown that gut microbes 
Fusobacterium nucleatum reduce the  m6A levels of CRC 
cells through the YAP/FOXD3/METTL3 axis, resulting 
in upregulation of KIF26B, enhanced aggressiveness, and 
metastasis [329]. From a therapeutic standpoint, the screen-
ing of a library of small molecules identified Elvitegravir, 
originally developed to treat human immunodeficiency virus 
(HIV) infection, as a drug able to repress the invasion and 
metastasis of ESCC cells by enhancing the proteasomal 
degradation of METTL3 mediated by STUB1. The authors 
have shown that METTL3-mediated  m6A modified EGR1 
mRNA is stabilized by YTHDF3, leading to increased acti-
vation of EGR1/Snail signaling [241]. In breast cancer cells, 
METTL3 mediates methylation of the lncRNA MALAT1 
that promotes metastasis. MALAT1 acts as a decoy for 
miR-26b, which targets and downregulates HMGA2. Thus, 
 m6A methylation of MALAT1 indirectly increases HMGA2 
expression, with an effect on EMT. Notably, high expression 
of METTL3 and MALAT1 in breast cancer has been associ-
ated with poor prognosis [226]. In lung cancer, Wang et al. 
have shown that METTL3 targets miR-143-3p to enhance its 
biogenesis, leading to the silencing of vasohibin-1 (VASH1) 
and subsequent increased angiogenesis and blood–brain bar-
rier invasion capability, finally promoting brain metastasis 
[227]. Conversely, METTL14 acts as a metastasis suppressor 
by mediating the decay of its targets via recognition by  m6A 
readers. Examples include  m6A-dependent degradation of 
NEAT1 lncRNA [242] and ITGB4 mRNA [243] in RCC; 
or SOX4 mRNA [244] and XIST lncRNA [245] in CRC, all 
of them via recognition by YTHDF2. Moreover, METTL14 
was found downregulated in CRC, and decreased expression 
correlates with poor overall survival [244].

Regarding  m6A readers, YTHDF1 expression correlates 
with lymph node metastasis and worse clinical stages in 
CRC. The oncogene c-MYC promotes the YTHDF1 expres-
sion in CRC cells [330]. YTHDF1 has been directly impli-
cated in EMT by controlling Snail mRNA modification and 
translation rate [231]. YTHDF1 promoted tumorigenesis and 
metastasis in ovarian cancer by augmenting the translation 
of  m6A-modified eIF3C mRNAs [246]. eIF3C upregulation 
has been associated with tumorigenesis in RCC [331] and 
HCC, in the later by increasing the secretion of extracel-
lular exosomes to promote angiogenesis [332]. Moreover, 
simultaneous high expression of EIF3C and S100A11 is 
associated with poor HCC patient survival [332]. In HCC, 
a clinically relevant  m6A-YTHDF1-EGFR axis has been 
described. Radiofrequency ablation (RFA) is recommended 
as a minimally invasive curative therapy in this tumor type. 
However, a recurrent rate of 50% is observed within 3 years, 

mainly attributed to metastasis due to sublethal heat stress 
from insufficient RFA. A recent study has shown that out 
of the ablation center, sublethal heat treatment in the sur-
rounding transitional zone results in cellular stress that pro-
motes YTHDF1 expression and could contribute to HCC 
metastasis. Mechanistically, YTHDF1-mediated recognition 
of  m6A-modified EGFR mRNA enhanced its translation, 
supporting the rationale for targeting m6A machinery in 
combination with EGFR inhibitors to prevent metastasis in 
HCC after RFA [247]. Also in HCC, HIF1α-induced expres-
sion of YTHDF1 drives ATG2A and ATG14 translation, 
two autophagy-related genes, promoting tumor progression 
[248]. Other examples of the pro-metastatic role of YTHDF1 
by promoting gene translation have been described, includ-
ing YTHDF1-mediated increased translation of USP14 in 
gastric cancer [249], ARHGEF2 in CRC [250], FOXM1 and 
PKM2 in breast cancer [251, 252], PLK1 in prostate can-
cer [253], SLP2 and ANLN in HCC [254, 255], DDX23 in 
pancreatic ductal adenocarcinoma [256], and HRAS in vari-
ous cancers [257]. In breast cancer, YTHDF1 and YTHDF3 
are frequently amplified and consequently overexpressed, 
and significant correlations with intrinsic subclasses and 
nodal metastasis have been described, suggesting their use 
for prognosis stratification and therapeutic intervention in 
breast cancer [333]. Regarding regulation, YTHDF1 can be 
targeted by miRNAs, including miR-136-5p in CRC [334] 
and also miR-1285-3p in lung cancer, where Linc00337 is 
upregulated and acts an miR-1285-3p sponge enhancing 
YTHDF1 expression [335]. The study in lung cancer also 
has shown that Linc00337 silencing represses tumor pro-
gression in vitro and in vivo [335].

About YTHDF2, the METTL3/YTHDF2  m6A axis pro-
motes tumorigenesis in bladder cancer by mediating deg-
radation of RRAS [235], SETD7, and KLF4 [236]. Also, 
METTL3 depletion suppressed metastasis [236]. In HCC, 
YTHDF2 expression has been correlated with poor survival, 
and it drives the translation of OCT4 [258]. Moreover, the 
loss of YTHDF2 led to reduction of tumor burden and lung 
metastasis in mice [258]. Also in HCC,  m6A-modified FYN 
mRNA bound YTHDF2 and the proliferation associated 
protein 2G4 (PA2G4). Thus, PA2G4 upregulation in HCC 
promotes EMT, and plays a pro-metastatic role by increasing 
FYN expression through binding with YTHDF2 [259]. In 
lung adenocarcinoma, YTHDF2 is upregulated and drives 
AXIN1 mRNA decay, activating the Wnt/β-catenin sign-
aling pathway that finally promotes tumorigenesis [260]. 
In cervical cancer, YTHDF2-mediated degradation of the 
tumor suppressor GAS5 enhances growth and metastasis, 
and inversely, the lncRNA GAS5-AS1 has the opposite 
effects [261]. In breast cancer, YTHDF2 downregulates 
FGF14-AS2, promoting osteolytic metastasis by enhancing 
RUNX2 mRNA translation [262], and in NSCLC, it down-
regulates circ_SFMBT2 to promote metastasis [263]. Other 
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examples supporting the role of the METTL3/YTHDF2  m6A 
axis in metastasis include the decay of targets with tumor 
suppressor functions, as YPEL5 (associated with decrease of 
CCNB1 and PCNA expression) in CRC [237], USP4 in pros-
tate cancer [238], DUSP5 in gallbladder cancer [239], and 
IFFO1 in different types of cancer [240]. Nevertheless, there 
are also examples associating a decrease in YTHDF2 expres-
sion with poor prognosis, tumor progression, and metastasis 
in HCC [264]. YTHDF2 degrades  m6A-containing IL-11 
and SERPINE2 mRNAs, two mediators of hypoxia-induced 
cancer cell survival and vascular reconstruction. Thus, HIF-
2α-mediated inhibition of YTHDF2 in HCC promotes can-
cer-associated inflammation. Importantly, the use of HIF-2α 
antagonist restored YTHDF2-programed epigenetic machin-
ery and repressed liver cancer [264]. Also, in lung adeno-
carcinoma, YTHDF2 was found to inhibit migration and 
invasion, and high expression correlated with better overall 
survival [336].

The third member of the YTH family, YTHDF3, 
has also been implicated in metastasis. In HCC, ZEB1 
mRNA is upregulated by circ_KIAA1429 in a YTHDF3 
 m6A-dependent manner, leading to enhanced invasion and 
metastasis [265]. Moreover, in TNBC, increased expression 
of YTHDF3 correlated with worse prognosis, and YTHDF3 
positively regulated cell migration, invasion, and EMT by 
also stabilizing ZEB1 mRNA [266]. As previously com-
mented, YHTDF1 and YTHDF3 are amplified and over-
expressed in breast cancer, correlating with poor overall 
survival and nodal metastasis [333]. In breast cancer brain 
metastasis, YTHDF3 overexpression due to increased copy 
number has been also described [53]. YTHDF3 induces the 
translation of ST6GALNAC5, GJA1, EGFR, and VEGFA 
mRNAs in an  m6A-dependent manner [53]. In pancreatic 
cancer, YTHDF3 increased expression correlates with 
poor overall survival, and YTHDF3 regulates the lncRNA 
DICER1-AS1 that promotes glycolysis through inhibition of 
miR-5586-5p [267]. The pro-metastatic effect of YTHDF3 
was also observed in melanoma, where it increases the trans-
lation of LOXL3 mRNA [268]. In HCC, YTHDF3 expres-
sion was found upregulated and related to worse prognosis, 
and it promotes aerobic glycolysis by increasing the transla-
tion of PFKL [269].

About  m6A erasers, the FTO demethylase is upregulated 
in breast cancer and associated with poor overall survival 
[272]. The study demonstrated that FTO targets  m6A in the 
3′UTR region of the pro-apoptotic BNIP3 mRNA, suggest-
ing FTO as a potential therapeutic target to enhance BNIP3 
expression and decrease tumor growth and metastasis [272]. 
In RCC, BNIP3 is epigenetically silenced by histone dea-
cetylation [337], and treatment with the HDAC inhibitor 
(HDACi) trichostatin A restores BNIP3 expression and led 
to cell growth inhibition and apoptosis [337], suggesting a 
potential therapeutic strategy in that setting. This strategy 

was also proposed in TNBC, where the combination of the 
HDACi YCW1 with radiation induced autophagic cell death 
by downregulation of BNIP3 [338]. This combination has 
also been proposed to tackle breast cancer lung metasta-
sis [339]. Also in breast cancer, FTO upregulates ARL5B 
by inhibiting miR‐181b‐3p [270]. In endometrial cancer, 
FTO demethylates HOXB13 mRNA, promoting metastasis 
by activating Wnt signaling pathway [273]. In this cancer 
type, FTO was upregulated in metastases, and demethyla-
tion of HOXB13 mRNA led to a decreased decay by lack of 
YTHDF2 recognition [273]. In multiple myeloma (MM), 
FTO has also a pro-metastatic role by targeting HSF1, 
enhancing HSF1 mRNA stability and translation [274]. 
Importantly, FTO inhibition combined with bortezomib 
treatment synergistically inhibited myeloma bone tumor 
formation [274]. Nevertheless, a tumor suppressor role of 
FTO has been described in intrahepatic cholangiocarcinoma 
(ICC) by controlling different pathways, including EGFR, 
and by decreasing the stability of the oncogene TEAD2 
[271].

Regarding the ALKBH5  m6A eraser, exposure to hypoxia 
induced the HIF-1α and HIF-2α-dependent expression of 
ALKBH5 that demethylates and stabilizes Nanog mRNA, 
leading to the acquisition of a cancer stem cell phenotype 
in breast cancer cells [279]. Moreover, inhibitions of either 
ALKBH5 or HIF factors were effective strategies to decrease 
Nanog expression. The same authors observed that hypoxia 
also leads to the overexpression of Nanog and another pluri-
potency factor, KLF4, in a ZNF217-dependent and HIF-
dependent manner in breast cancer cells [280]. Interestingly, 
ALKBH5 knockdown in a breast cancer cell line decreased 
metastasis from breast to lung in vivo [280]. In laryngeal 
squamous cell carcinoma (LSCC), increased expression of 
ALKBH5 can promote tumorigenesis in an  m6A‐YTHDF2‐
dependent manner by promoting the lncRNA KCNQ1OT1‐
HOXA9 signaling axis [281]. In HCC, the lncRNA CASC11 
is upregulated and associated with poor survival and metas-
tasis [282]. CASC11 stabilizes UBE2T mRNA by recruit-
ing ALKBH5  m6A activity and also by inhibiting UBE2T 
mRNA association with YTHDF2 [282]. Also in HCC, 
YAP activation via the ALKBH5-mediated  m6A demeth-
ylation of circCPSF6 has been associated with malignancy, 
as circCPSF6 sustains the stability of YAP1 mRNA [283]. 
 m6A-modified circCPSF6 is recognized and destabilized by 
YTHDF2, but circCPSF6  m6A demethylation by ALKBH5 
facilitates the proliferation and metastasis of HCC cells via 
competitive interaction of circCPSF6 with PCBP2, activat-
ing the YAP1 signaling [283]. In CRC, another circRNA 
involved in progression and metastasis is circ3823. The 
authors have shown that circ3823 could be targeted by 
YTHDF3 and ALKBH5 to promote its degradation; mean-
while, these modifiers are downregulated in CRC, leading 
to increased expression of circ3823. Circ3823 repressed 
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miR-30c-5p that normally impedes transcription factor 7 
(TCF7) mRNA translation, leading to increased TCF7 pro-
tein level and promoting proliferation, angiogenesis, and 
metastasis [284]. However, in NSCLC, ALKBH5 inhib-
ited growth and metastasis by reducing YTHDF-mediated 
YAP expression [275]. In pancreatic cancer cells, ALKBH5 
also inhibits cell motility and invasion by demethylation-
dependent increase of KCNK15-AS1 expression [276, 277]. 
Mechanistically, KCNK15-AS1 is able to recruit MDM2 to 
promote REST ubiquitination, thus transcriptionally upregu-
lating PTEN to inactivate AKT pathway [277]. In NSCLC, 
ALKBH5 overexpression decreases the mRNA stability and 
expression of TGFβR2 and SMAD3 but enhances those of 
SMAD6, leading to a reduction of metastasis in vivo [278]. 
About the ALKBH3 eraser, one study linked its overexpres-
sion to metastasis and poor progression-free and overall sur-
vival in HCC [340].

Another epitranscriptomic modification that has been 
implicated in metastasis is 5-methylcytosine  (m5C). This 
modification is written by the NOP2/Sun RNA methyl-
transferase family members NSUN1 to NSUN7, the DNA 
methyltransferase DNMT2, or the TRNA aspartic acid meth-
yltransferase 1 TRDMT1, depending on the RNA target. 
Thus, for example, NSUN1 and NSUN5 modify rRNAs; 
NSUN2, NSUN6, and DNMT2 methylate tRNAs; NSUN3 
and NSUN4 modify mitochondrial RNAs (mtRNAs), 
whereas NSUN2, NSUN6, and DNMT2 methylate mRNAs 
[341–343]. In addition, our group has recently shown that 
NSUN7 is also able to deposit the  m5C mark in mRNA, 
characterizing the transcript of coiled-coil domain contain-
ing 9B (CCDC9B) gene as a relevant target in HCC. Interest-
ingly, we have shown that the epigenetic-mediated inactiva-
tion of NSUN7 in liver cancer decreases CCDC9B mRNA 
half-life and is associated with poor overall survival [290]. 
Few years ago, we also described the epigenetic silencing of 
NSUN5 by gene-promoter methylation in glioma. NSUN5 
methylates cytosine at position C3782 of 28S rRNA and its 
loss drives an adaptive translational program. In contrast to 
NSUN7, NSUN5 silencing is a hallmark of glioma patients 
with long-term survival [344]. These examples further sup-
port the crosstalk between epigenomic and epitranscrip-
tomic mechanisms as a key player in cancer. Regarding  m5C 
readers, the first identified was the Aly/REF export factor 
(ALYREF) [345]. Also, Y-box binding protein 1 (YBX1) 
recognizes and enhances the stability of  m5C-modified 
mRNA by recruiting ELAVL1 [286].

In breast cancer, NSUN2 is overexpressed by gene pro-
moter hypomethylation and correlates with clinical stages 
[346]. In gastric cancer, NSUN2 overexpression has been 
shown associated with metastasis and regulated by SUMO-
2/3 that stabilized and mediated its transport into the 
nucleus. PIK3R1 and PCYT1A expression correlated with 
prognosis and NSUN2 expression, and they could be the 

target genes that participate in gastric cancer progression 
[285]. In bladder cancer, NSUN2 methylates and stabilizes 
HDGF mRNA 3′UTR (also stabilized by METTL3 in gas-
tric cancer) promoting cancer metastasis [286]. Moreover, a 
high co-expression of NUSN2, YBX1, and HDGF predicts 
poor survival in this tumor type [286]. NSUN2 overexpres-
sion and NSUN6 downregulation were associated with 
poor prognosis in TNBC by upregulating monocytes/mac-
rophages and Tregs in the tumor immune microenvironment 
[347]. Recently in cholangiocarcinoma, Zheng et al. have 
shown that NSUN2 targets the NF-kB interacting lncRNA 
NKILA enabling the recognition by YBX1. They also 
showed that NKILA targets YAP1 via miR-582-3p and the 
upregulation of NKILA was correlated with lymph node and 
distant metastasis [287]. LRRC8A is another lncRNA that 
has been demonstrated targeted by NSUN2 and stabilized by 
YBX1 in cervical cancer. In this context, NSUN2 expression 
was associated with metastasis [288]. Regarding NSUN3, 
considering its function as mtRNA modifier, and the meta-
bolic flexibility and plasticity during cancer progression 
[348], NSUN3 could play a role in the metabolic adaptabil-
ity required for metastasis formation. Indeed, a pivotal study 
in the field has recently shown that  m5C in mtRNAs is essen-
tial for the dynamic regulation of mitochondrial translation 
rates, and thereby shapes metabolic reprogramming during 
metastasis [289]. The authors have shown that the transla-
tion of mitochondrially encoded subunits of the oxidative 
phosphorylation complex depends on the formation of  m5C 
at position 34 in mitochondrial  tRNAMet. Importantly, this 
modification was required for efficient tumor metastasis, but 
not for primary tumor development and growth [289]. This 
study also identified an NSUN3-driven gene signature that 
predicts metastasis in patients with HNSCC. Remarkably, 
these findings support the inhibition of  m5C formation in 
mitochondria as a therapeutic opportunity to prevent the 
dissemination of tumor cells from primary tumors [289]. 
Also in HNSCC, NSUN5 and ALYREF expression corre-
lated with TNM stages [349], underlying again the differ-
ent routes cancer cells can exploit to increase the metastatic 
competence. Moreover, the tRNA  m5C methyltransferase 
TRDMT1 has been positively associated with tumor size, 
histological grade, invasion depth, lymph node metastasis, 
and TNM stage in gastric cancer [350].

Regarding other RNA modifiers, TRIT1 (tRNA isopen-
tenyltransferase 1) is the enzyme responsible for the hyper-
modification of the A37 position in the anticodon region 
of human tRNAs containing serine and selenocysteine to 
N6-isopentenyladenosine  (i6A). A TRIT1 polymorphism and 
a haplotype were associated with lymph node metastasis in 
gastric cancer [351]. Moreover, our group has found that 
TRIT1 undergoes gene amplification-associated overexpres-
sion in small cell lung cancer (SCLC) that promotes tumor 
growth [352]. SCLC is a disease characterized by aggressive 
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dissemination and poor prognosis. In most of the cases, the 
cancer has already metastasized by the time of diagnosis. 
Another modification affecting adenine is N1-methyl-
adenosine  (m1A). Like other modifications, its deposition 
is dynamically regulated by several proteins: the tRNA 
methyltransferases TRMT61A, TRMT61B, and TRMT10C 
assisted by TRMT6 that introduce  m1A, and the demethyl-
ases ALKBH1 and ALKBH3 that remove the modification. 
Moreover, YTHDF1, YTHDF2, YTHDF3, and YTHDC1 
recognize  m1A sites and induce downstream effects. In 
CRC, it has been recently shown that MFAP2 mRNA was 
overexpressed and highly  m1A modified, and its expression 
was related to lymph node metastasis and distant metastasis, 
leading to poor prognosis. Nevertheless, the authors did not 
elucidate the TRMT writer implicated in this process [353]. 
TRMT6 non-catalytic subunit is overexpressed and associ-
ated with the TNM stage in HCC, through the PI3K/AKT/
mTOR axis, and it has been suggested as potential thera-
peutic target for this tumor type [354]. Moreover, a recent 
study has found that the demethylase ALKBH1 is overex-
pressed in CRC and associated with metastasis and poor 
prognosis. The study showed that ALKBH1-catalyzed  m1A 
demethylation is essential for CRC cell migration and inva-
sion, suggesting that ALKBH1 accelerates CRC metastasis 
by downregulating SMAD7 expression. Mechanistically, 
the authors described that ALKBH1-mediated  m1A dem-
ethylation of METTL3 mRNA inhibits SMAD7 expression 
by METTL3-mediated  m6A modification [291]. YTHDC2 
is an  m1A reader that has been related to regulation of EMT 
effectors and metastatic ability of breast cancer cells [355].

NAT10, the writer of N4-acetylcytidine  (ac4C), is another 
epitranscriptomic player that has been implicated in vari-
ous types of cancer. As previously commented, a role of 
NAT10 as metastasis suppressor has been found in CRC, 
where miR-6716-5p-dependent downregulation of NAT10 
enhances metastasis [356]. Nevertheless, several studies 
have described an opposite role. For instance, in gastric 
cancer, NAT10 promotes metastasis and EMT by targeting 
COL5A1 mRNA and increasing its stability [292]. Also, 
NAT10 is upregulated in colon cancer and associated with 
poor overall survival. In this setting, NAT10 inhibits fer-
roptosis through N4-acetylation and stabilization of the fer-
roptosis suppressor protein 1 (FSP1) mRNA [293]. Addi-
tional roles of NAT10 include  ac4C modification of targets 
as the HSP90AA1 mRNA in ER stress-mediated metastasis 
and lenvatinib resistance in HCC [295], the CTC-490G23.2 
lncRNA that interacts with PTBP1 to increase CD44 alterna-
tive splicing in primary ESCC [296], and the KIF23 mRNA 
to regulate the Wnt/β-catenin signaling pathway in colorec-
tal cancer [294].

N7-methylguanosine  (m7G) is another epitranscriptomic 
modification with critical roles in the regulation of gene 
expression that is dysregulated in several diseases, including 

cancer.  m7G was originally identified in mRNAs, but later 
found at defined internal positions within multiple types of 
RNAs, including tRNAs, rRNAs, and miRNAs [357]. The 
most common  m7G writer is METTL1, in complex with the 
non-catalytic subunit WDR4. In nasopharyngeal carcinoma 
(NPC), METTL1/WDR4 promotes tumorigenesis via regu-
lation of Wnt/β-catenin, and their upregulation has been 
associated with poor prognosis [297]. Moreover, as previ-
ously commented for YTHDF1 [247], the same team found 
that insufficient radiofrequency ablation of HCC also results 
in a significant upregulation of METTL1/WDR4 and  m7G 
levels in tRNAs that could promote metastasis by enhancing 
the translation of SLUG/SNAIL EMT regulators [298]. In 
addition, METTL1/WDR4-mediated  m7G modification of 
tRNAs could promotes tumor progression and metastasis by 
enhancing the translation of a subset of oncogenic transcripts 
in HNSCC, including genes related to the PI3K/AKT/mTOR 
signaling pathway [299]; or by promoting the processing 
of miR-760 in an  m7G modification-dependent way and 
indirectly degrading the tumor suppressor ATF3 mRNA 
via miR-760 in bladder cancer [300]. Besides,  m7G modi-
fications in 18S rRNA are introduced by the WBSCR22/
TRMT112 methyltransferase complex. Decreased expres-
sion of WBSCR22 has been observed in inflammatory and 
neoplastic lung pathologies [358]. WBSCR22 enhances 
glucocorticoid receptor (GR) function through binding to 
the GR co-activator GRIP1. Its expression is decreased 
by cytokines TNFα and IFNγ by driving ubiquitination of 
two conserved lysine residues [358]. In pancreatic cancer, 
WBSCR22/TRMT112 negatively regulates the transcription 
of ISG15, diminishing proliferation, migration, invasion, 
and globally tumorigenesis [301]. Nevertheless, WBSCR22 
overexpression has been described in glioma and correlates 
with poor prognosis [359].

Another methylation event that provides tRNA stabil-
ity and enhance translation occurs at position 10 in tRNA, 
the N2-methylguanosine  (m2G), introduced by TRMT11. 
Interestingly, TRMT11 gene fusion with GRIK2 (TRMT11-
GRIK2) has been identified as a frequent event in several 
tumor types, including primary and lymph node metastatic 
cancer from breast, colon, and ovary [360]. GRIK2 encodes 
a glutamate receptor with tumor suppressor features. Chro-
mosomal recombination between TRMT11 and GRIK2 
destroys the open-reading frames of both genes and produces 
functional knockouts of these two proteins. Consequently, 
lack of TRMT11 may produce less efficient and unstable 
translation due to tRNA defects, or protein translation 
repression [360]; plus the loss of GRIK2 tumor suppressor 
activity. Further investigations are guaranteed to unravel the 
functional consequences of this genetic lesion.

Regarding modifications in uridine, the wobble uridine 
of specific tRNAs is transformed to 5-methoxycarbon-
ylmethyl-2-thiouridine  (mcm5s2U), which is critical for 
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proper mRNA decoding and protein translation. ELP3 is 
the enzymatic core of the elongator complex that promotes 
this modification [361]. DNA hypermethylation-mediated 
decrease of ELP3 has been detected in invasive ductal 
breast cancer [362]. In contrast, examples of pro-metastatic 
roles of ELP3 have also been described. ELP3 expression 
has been correlated with lymph node metastasis in endo-
metrioid adenocarcinoma [363]. In breast cancer, ELP3 
together with its partners CTU1/2 are upregulated and sus-
tain metastasis by driving the translation of the oncoprotein 
DEK in a  mcm5s2-tRNA-dependent manner. Furthermore, 
DEK promotes the IRES-dependent translation of the pro-
invasive transcription factor LEF1 [302]. Of note, DEK has 
been shown regulated by gene promoter hypomethylation 
in HCC [364]. Also, CTU1 was one of the nine genes used 
to generate a risk score model in prostate cancer that recog-
nize patients with worse prognosis and higher proportions of 
lymph node metastasis [365]. CTU1 has also been included 
in two analogous risk score models of bladder cancer [366, 
367].

Uridines are also target of pseudouridylation. Pseudou-
ridine (Ψ) is the most abundant RNA modification and the 
first to be discovered, more than 70 years ago. DKC1 gene 
codes for Dyskerin, the catalytic subunit of H/ACA small 
nucleolar ribonucleoprotein (H/ACA snoRNP) complex, 
which catalyzes pseudouridylation of rRNA. Dyskerin also 
plays a role in telomerase stabilization. DKC1 expression 
has been related to unfavorable TNM stages in ccRCC [368]. 
In CRC, Dyskerin facilitates angiogenesis and metastasis via 
increased expression of HIF-1α and VEGF by a mechanism 
unrelated to its RNA-modifier role. Dyskerin directly bound 
to the HIF-1α promoter and enhance its transcription and 
promote CRC progression [303]. Moreover, a recent meta-
analysis of nine studies confirmed the link between Dyskerin 
overexpression and metastasis [369]. In pancreatic ductal 
adenocarcinoma, SNORA23, an H/ACA-box type small 
nucleolar non-coding RNA participating on pseudouridyla-
tion, was found upregulated and associated with metastasis 
formation by increasing the expression of spectrin repeat-
containing nuclear envelope 2 (SYNE2) [370]. In addition, 
in gastric cancer, Liu et al. found that the overexpression 
of SNORA21 was associated with increased lymph node 
metastasis and distant metastasis [371]. However, these 
studies did not determine if SNORA23 pseudouridylation 
activity was involved in SYNE2 expression or the potential 
targets of SNORA21. In ovarian cancer, SNORA70E pro-
motes tumorigenesis through pseudouridylation of RAP1B 
but direct correlation with metastasis was not established 
[372]. Thus, further studies are needed to uncover a potential 
deregulation of pseudouridylation in metastasis.

About 2′-O-methylation (Nm, where N stands for any 
nucleotide), it is an abundant and highly conserved modifica-
tion found at multiple locations in tRNAs, rRNAs, mRNAs, 

and small non-coding RNAs [373]. Fibrillarin (FBL) is a 
2′-O-methyltransferase that binds to box C/D snoRNAs, like 
SNORD89, to form a snoRNP complex and targets rRNA, 
tRNA, and other RNAs. For instance, a recent study has 
shown that SNORD89 combined with FBL increased the 
level of 2′-O-methylation of BIM mRNA, affecting the com-
plementary base pairing of BIM mRNA, thus reducing the 
pro-apoptotic BIM protein [304]. Moreover, SNORD89 is 
overexpressed in endometrial carcinoma with lymph node 
metastasis [304]. Also, FBL is highly expressed in HCC 
and correlates with lung metastasis and poor prognosis 
[374]. In NSCLC, SNORD88C was observed upregulated 
and associated with metastasis. The authors have shown 
that SNORD88C guides 2′-O-methylation of 28S rRNA that 
increases SCD1 translation and consequently upregulates 
MUFA expression, leading to autophagy inhibition and pro-
moting growth and metastasis [375].

RNA editing is another epitranscriptomic event that 
affects RNA molecules. RNA editing changes the RNA 
sequence, and consequently it can dramatically alter the 
amino acid composition and properties of the mRNA-
derived protein. Recent studies indicate that many thousands 
of transcripts are affected by RNA editing, including not 
only mRNAs but also non-coding RNAs. Two families of 
proteins carry out editing by deamination: the adenosine 
deaminases acting on RNA (ADARs), which convert aden-
osine to inosine (A-to-I); and the apolipoprotein B mRNA 
editing (APOBECs), which convert cytosine to uracil (C-to-
U) [376].

Regarding the A-to-I editing, it is catalyzed by ADAR1, 
ADAR2, and ADAR3. Inosines are read as guanosines dur-
ing translation, which has important functional implica-
tions. Pro-metastatic roles for ADAR1 have been described 
in several studies. In HCC, ADAR1 upregulates integrin 
ITGA2 and drives metastasis by enhancing adhesion of 
tumor cells to the extracellular matrix [305]. Moreover, 
aberrant overexpression of ADAR1 in gastric cancer pro-
motes metastasis via mTOR/p70S6K/RPS6 axis activation 
[306]. In TNBC, ADAR1 high expression and low tumor-
infiltrating lymphocytes define worse disease-free survival 
in patients with lymph node metastasis [377]. In CRC, high 
ADAR1 expression increases editing of AZIN1. Impor-
tantly, elevated level of AZIN1 editing has been identified 
as an independent risk factor for lymph node and distant 
metastasis, and as a prognostic factor for overall survival 
and disease-free survival in CRC patients [307], later con-
firmed in gastric cancer by the same group [308]. Also, it 
has been shown that CPEB3 interacts with the 3′UTR of 
ADAR1 mRNA and inhibits its translation by localizing it 
to processing bodies (P bodies). CPEB3 is downregulated in 
gastric cancer. Remarkably, CPEB3 re-expression inhibited 
gastric cancer growth and metastasis by decreasing ADAR1 
expression, opening a therapeutic opportunity [378]. In 
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intrahepatic cholangiocarcinoma, ADAR1 overexpression 
and concomitant KPC1 overediting lead to distant metas-
tasis [309]. ADAR1 has also been linked to circular RNAs. 
In gastric cancer, hsa_circ_0004872 circRNA was down-
regulated by ADAR1 and associated with tumor size and 
local lymph node metastasis [379]. Next, the circNEIL3, 
upregulated in PDAC, enhances ADAR1-mediated editing 
of GLI1 by sponging the miR-432-5p that targets ADAR1 
[310]. This mechanism promoted cell cycle progression 
and EMT. Moreover, high circNEIL3 levels were associ-
ated with poor prognosis or TNM stage [310]. ADAR1 has 
also been suggested as a therapeutic target against gastric 
cancer metastasis, since ADAR1 knockdown suppressed 
peritoneal metastasis of gastric cancer in mouse models par-
tially by inhibiting Wnt/β-catenin pathway and EMT [380]. 
Very recently, Ding et al. designed a nanovesicle as RNA 
interference tool to overcome resistance to immune check-
point blockade therapies [381]. The vesicle with siADAR1 
silenced tumor cell ADAR1 expression and increased type 
I/II interferon production, making cells more sensitive to 
secreted effector cytokines such as IFN-γ with significant 
cell growth arrest [381].

Although most of the studies have described pro-tumo-
rigenic and metastatic roles for ADAR1, a low expression 
of ADAR1 has been observed in melanoma metastasis. In 
this setting, ADAR1-mediated editing of miR-455-5p inhib-
its metastasis, while unedited miR-455-5p form promotes 
melanoma metastasis through inhibition of the CPEB1 
tumor suppressor gene [311]. Also in melanoma, ADAR1-
mediated editing of miR-378a-3p prevents melanoma pro-
gression by targeting the PARVA oncogene [312]. Moreover, 
the same group described a role of ADAR1 in melanoma 
cell invasion by controlling ITGB3 expression independently 
of RNA editing [313], regulated by miR-30a and miR-30d 
[382]. In breast cancer, it was shown that GABAA receptor 
alpha3 (GABRA3), normally expressed in brain, is upregu-
lated and drives cancer progression and metastasis. Interest-
ingly, the A-to-I edited form of GABRA3 had opposite prop-
erties [314]. ADAR1 could also downregulate circRBMS3, 
a circRNA that promotes osteosarcoma progression by 
sponging miR-424-5p and protecting YRDC/eIF4B [315]. 
Thus, ADAR1 downregulation in osteosarcoma could be at 
least partially responsible for circRBMS3 overexpression, 
enhancing proliferation and metastasis [315].

Regarding ADAR2, in liver metastasis of CRC, ADAR2 
has been identified as a direct substrate of the tumor sup-
pressor protein kinase PKCζ [316]. The authors showed 
that PKCζ-mediated ADAR2 phosphorylation activates its 
gene editing activity, which is required to maintain miR-200 
steady-state levels. Remarkably, loss of PKCζ in metastasis 
is associated with lower ADAR2 activity, which promotes 
the loading of miR-200s into extracellular vesicles, thereby 
decreasing the intracellular steady-state levels of miR-200s 

promoting an EMT/stemness phenotype and metastasis 
[316]. ADAR2 has also been described as driver of invasion 
and metastasis in esophageal cancer by editing and down-
regulating the tumor suppressor SLC22A3 [317]. Moreover, 
the role of androgen receptor (AR) in prostate and bladder 
cancer invasion linked to ADAR2 has been identified [318, 
319]. In prostate cancer, R-2HG accumulation in IDH1 
mutated cells increases cell invasion via enhancing TGFβ1/
p-Smad2/3 signaling, and AR can reverse this mechanism. 
AR expression increases ADAR2 expression and negatively 
regulates circRNA-51217 production and TGFβ1/p-Smad2/3. 
Restoring AR in cancer cells increases ADAR2 expression 
and diminishes circRNA generation, which finally resulted 
in interruption of R-2HG effect [318]. Moreover, this study 
highlights a therapeutic potential of bipolar androgen ther-
apy (BAT) for patients with IDH1 mutation and low AR 
expression [318]. In bladder cancer, AR increases the levels 
of circFNTA to promote cancer cell invasion and cisplatin 
chemoresistance [319]. In this case, AR strikingly downregu-
lates ADAR2 by binding its 5′ promoter region to increase 
circFNTA levels, which sponges miR‐370‐3p and increased 
expression of its host gene FNTA. High level of FNTA acti-
vates KRAS to promote cell invasion and chemo‐resistance. 
Thus, depletion of circFNTA suppressed cancer cell invasion 
and increased cisplatin chemo‐sensitivity [319].

The C-to-U editing process, driven by APOBEC 
enzymes, is also relevant in metastasis. APOBEC3G pro-
motes CRC hepatic metastasis through inhibition of miR-
29-mediated suppression of MMP2 [320]. Overexpression 
of APOBEC3G also correlates with worse prognosis and 
increased risk of hepatic metastasis in patients with CRC 
[383], and might be a risk factor for HCC progression [384]. 
Interestingly, it has been shown that APOBEC3G increased 
expression in cancer cells repressed the expression of the 
tumor suppressor KLF4 by binding to its mRNA [321]. In 
parallel, SP1 was seen overexpressed and controlling the 
increased expression of c-myc, Bmi-1, BCL-2, and MDM2, 
and decreased of p53, supporting its oncogenic role [321]. 
Moreover, Zhou and Guo observed that APOBEC3G is 
increased in CRC metastasis by copy number variation 
[385]. In melanoma, APOBEC3G was recently identified 
within a signature of genes modulated by combined inhi-
bition of PLK1 and NOTCH [386], providing a potential 
therapeutic opportunity. Finally, the Apobec-1 complemen-
tation factor (A1CF) promoted progression of RCC through 
DKK1-MEK/ERK signaling pathway [387], without assess-
ing RNA edition. The same group also described that A1CF 
promotes RCC cell migration by promoting nuclear trans-
location of SMAD3 [388]. A1CF overexpression correlated 
positively with SMAD3, Snail1, and N-cadherin expression 
[388]. These two studies investigated the role of a co-factor 
of APOBEC1, suggesting that complementary studies are 
needed to determine if edition is altered in RCC.
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3  Final remarks and future perspectives

Metastasis is a threatening progression of cancer, a Damo-
cles sword that hangs over patients. Massive efforts are 
done to better understand the molecular mechanisms gov-
erning tumor progression, aimed to develop better strate-
gies to tackle metastasis, the cause of a great majority of 
cancer-associated deaths. Metastasis is a dynamic process 
that requires a rapid phenotypic adaptation to support every 
stage of the process. As outlined above, the plasticity and 
reversibility of epigenetic and epitranscriptomic mechanisms 
make them ideal orchestrators of this dynamic process.

Cancer cells can exploit several strategies to reprogram 
the expression landscapes to acquire the features that facili-
tate escape from the primary tumor, migration to distant 
sites, and invasion of new organs. For instance, cells can 
exploit epigenetic or epitranscriptomic mechanisms to con-
trol core transcription factors such as the EMT regulator 
ZEB1, modulated by not only miR-200s [94], HDAC1/2 in 
pancreatic cancer [141, 142], and SIRT1 in prostate cancer 
[143], but also METTL3 that promotes liver metastasis in 
CRC [222], or YTHDF3 that promotes metastasis in HCC 
and TNBC [265, 266]. Why pre-metastatic cells use one 
or another regulatory mechanism is not fully understood, 
but we can speculate that intrinsic tumor cell biology, as 
well as external pressures including microenvironment and 
treatments, could be major determinants. Moreover, different 
levers are actioned in specific settings and can have oppo-
site effects depending on the context, like SETDB1 anti-
metastatic or pro-metastatic role in breast cancer [135], or 
in HCC [136], respectively.

As herein reviewed, epigenetic and epitranscriptomic 
changes play a crucial role in cancer metastasis. Epigenetic 
alterations regulate key players of the metastatic process 
(Table 1). For example, promoter-associated DNA meth-
ylation silences the expression of several tumor or metas-
tasis suppressor genes, whereas DNA hypomethylation of 
pro-metastatic genes leads to their upregulation. Together 
with DNA methylation, histone modifications can modu-
late gene expression by altering the chromatin accessibility 
to transcription factors and other regulatory proteins. Non-
coding RNAs, such as microRNAs and lncRNAs, can regu-
late the expression of metastasis-related genes, including 
those involved in cell migration and invasion. Furthermore, 
epigenetic changes also impact the TME, including immune 
cells and stromal cells like CAFs, which can promote or sup-
press metastasis [188, 389, 390]. More recently, the boom-
ing epitranscriptomic field is uncovering the significance of 
RNA modifications and RNA modifiers in cancer progres-
sion and metastasis (Table 2). Furthermore, a recent finding 
describing that RNA modifications can influence CAFs to 
promote metastasis of neighborhood cells [391], supports 

the importance of epitranscriptomic alterations in tumor cell 
fate, not only by inner but also by outer influences from the 
TME. Altogether, these epi-regulations control the func-
tion of the genome, by modulating transcription activation, 
enhancers, transcript stability, translation rate, or molecular 
interactions. Post-translational modifications (e.g., acetyla-
tion, glycosylation, ubiquitination, SUMOylation, meth-
ylation) can also regulate EMT effectors affecting their sta-
bility and activity, offering also therapeutic opportunities 
[392–394]. Moreover, during the metastatic cascade, tumor 
cells interact with the immune system and must escape from 
recognition. Strikingly, although out of the scope of this 
review, recent studies have started to unveil how cancer cells 
communicate with immune cells to promote their metastatic 
potential [395, 396].

Over the past decade, giant leaps have been made in 
the field of epitranscriptomics. Improvement of detection 
technologies has allowed the characterization of the global 
landscape of several RNA modifications, as well as its 
dynamic nature across different cellular scenarios. How-
ever, several findings are still missing independent valida-
tion by different teams. Moreover, further efforts should 
be made to develop novel strategies for orthogonal valida-
tion of RNA modification profiles. Importantly, research 
approaches focused on identifying the molecular mecha-
nisms upstream and downstream of dysregulated DNA and 
RNA modifiers, as well as comprehensive assessment of 
clinical implications, are needed to unravel novel clinical 
opportunities.

It is also essential to take advantage of recent single-cell 
technologies to disentangle intratumoral heterogeneity also 
from an epigenetic and epitranscriptomic perspective. Strong 
evidences support the relevance of epigenetic reprogram-
ming as a driving force in the dynamic transcriptomic het-
erogeneity in cancer [397]. Using these strategies, we could 
zoom in on to the cancer epigenome and epitranscriptome 
and explore the epi-players that regulate different aspects 
of tumor heterogeneity and the intricate mechanisms gov-
erning metastasis or drug response at the highest resolu-
tion. Single-cell approaches could be useful, for example, 
to detect metastatic clones and identify therapeutic vulner-
abilities that can be tackled to improve the clinical benefits 
of current therapies or to develop novel strategies. Recently 
developed methodologies for studying the epigenome at sin-
gle-cell resolution include multiplexed single-cell reduced-
representation bisulfite sequencing (scRRBS) to assess DNA 
methylation [398, 399], and the transposase-accessible chro-
matin sequencing assay at single-cell level (scATAC-seq) 
to measure DNA accessibility [400, 401]. Also, combining 
scATAC-seq with single-cell RNA sequencing (scRNA-seq), 
dynamic cell states modulated by epigenetic mechanisms 
could be defined.
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Finally, the fundamental role of epigenetic mechanisms 
in shaping genome function, coupled with the epigenetic 
dysregulation that occurs in cancer, has made the epigenetic 
machinery an attractive target for drug development, par-
ticularly given the plasticity of the epigenetic modifications. 
Thus, development of epidrugs, drugs that target enzymes 
involved in epigenetic regulation of genome function, as a 
strategy for tackling cancer is an active field of research. 
The rationale behind the use of epigenetic drugs lies in the 
possibility of restoring a balanced transcriptional landscape 
by modifying the chromatin states. Current epigenetic drugs 
target enzymes that introduce (writers), recognize (readers), 
and remove (erasers) epigenetic marks to DNA or core his-
tones, a topic recently reviewed by our group [402]. Some of 
these drugs are already used in the clinical practice, such as 
the DNMT inhibitors (DNMTi) azacitidine and decitabine 
for the treatment of acute myeloid leukemia (AML) and 
myelodysplastic syndrome (MDS); and the HDAC inhibi-
tors (HDACi) belinostat for peripheral T-cell lymphoma 
treatment (PTCL), or vorinostat and romidepsin to treat 
cutaneous T-cell lymphoma (CTCL) (Fig. 4). However, 
despite the significant benefits of DNMTi and HDACi in 
the clinical management of several hematological malignan-
cies, lack of target selectivity and off-target effects of these 
inhibitors and unfavorable pharmacokinetic and pharmaco-
dynamics have been detected. More recently, the power of 
epidrugs as modulators of sensitivity to other antineoplastic 
therapies is being explored, opening new opportunities for 
using them in solid tumors. In this regard, the ability of 
the epigenetic drugs to reverse many processes that tumors 

engage to evade immune-mediated destruction has promoted 
the development of clinical trials that combine immune 
checkpoint inhibitors with epidrugs to overcome some of 
the current limitations of immunotherapy and improve the 
clinical benefits [402]. Interestingly, in gastric cancer, it has 
been shown that the natural compound peperomin E exhibits 
DNMTi activities and drives hypomethylation of metastasis 
suppressor genes, leading to cell migration and metastasis 
inhibition [403].

In addition to these broad epigenetic reprogrammers 
such as DNMTi and HDACi, the identification of muta-
tions in EZH2, IDH1, or IDH2 in specific tumor types 
opened new opportunities for precision medicine and 
boosted the interest in the development of EZH2 and IDH 
inhibitors. Successful examples include the EZH2 inhibi-
tor tazemetostat that has been approved for the treatment 
of follicular lymphoma and epithelioid sarcoma (Fig. 4), 
the IDH1 inhibitor ivosidenib indicated for the treatment 
of AML or cholangiocarcinoma patients harboring IDH1 
mutations, and the IDH2 inhibitor enasidenib approved as 
therapeutic agent for IDH2-mutated AML patients [402]. 
As previously commented, inhibition of TET demethylat-
ing catalytic activity in IDH1/IDH2‐mutant cells disrupts 
the epigenome and promotes cancer by altering global 
DNA methylation; thus, synergistic inhibition of IDH 
and DNMT has been assessed in clinical trials to restore 
DNA methylation landscape, leading to the recent approval 
of the use of ivosidenib in combination with azacitidine 
in newly diagnosed IDH1-mutated AML patients [402]. 
Another example of the use of epidrugs in the context of 

Fig. 4  Key drugs against DNA, histone, and RNA modifiers. *Only 
drugs approved by the Food and Drug Administration (FDA) are 
depicted. For RNA modifiers, STC-15 is the first molecule specifi-
cally targeting an RNA methyltransferase enzyme to enter clinical tri-
als (NCT05584111). Abbreviations: Ac, acetylation; DNMTs, DNA 

methyltransferases; EZH2, enhancer of Zeste 2 polycomb repressive 
complex 2 subunit; H3K27me3, histone H3 lysine 27 trimethylation; 
HDAC, histone deacetylase;  m6A, N6-methyladenosine; Me, methyl-
ation; METTL3, N6-adenosine-methyltransferase 3; TETs, ten-eleven 
translocation 1/2/3. Created with BioRender.com
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precision oncology is the inhibitors of the histone dem-
ethylase LSD1. This is a promising therapy for Ewing sar-
coma, since LSD1 is a critical functional partner of EWS/
FLI, the driver fusion protein in this tumor type that arises 
from the characteristic t(11;22) translocation. The LSD1 
inhibitor seclidemstat is currently under study in patients 
with Ewing sarcoma or Ewing-related sarcomas with FET-
family translocations. Moreover, considering that several 
studies have demonstrated that the demethylase function 
of LSD1 is not restricted to histones, and DNMT1 is one 
of these non-histone targets, several clinical trials are 
testing the combination of LSD1 inhibitors and DNMTi 
for the treatment of hematological malignancies [402]. 
Importantly, synergy between epigenetic drugs and other 
anticancer therapies, as well as their potential to reverse 
acquired therapy resistance by modulating the sensitivity of 
cancer cells to other treatments (including not only immu-
notherapy, but also chemotherapy, radiation therapy, hor-
mone therapy, and molecularly targeted therapy), are also 
giving rise to new possibilities for maximizing the efficacy 
of cancer treatments. For instance, cancer cells that have 
acquired resistance to targeted therapies or chemotherapy 
often exhibit specific epigenetic changes, and by targeting 
these alterations, epigenetic drugs may sensitize resistant 
cells to previously ineffective treatments. Additionally, 
considering that epigenetic alterations can cooperate with 
genetic mutations or signaling pathway dysregulation in 
driving cancer progression, combining epigenetic drugs 
with targeted therapies that address these genetic abnor-
malities can have synergistic effects and improve patient 
outcomes. Remarkably, the contribution of epigenetics to 
precision oncology is not only limited to the epidrug field. 
Epigenetic characterization of human tumors has revealed 
a plethora of cancer-specific epigenetic marks or signatures 
of potential use as biomarkers along the course of the dis-
ease. Several DNA methylation-based assays of clinical 
utility are already commercially available to aid precise 
diagnosis, monitor disease recurrence, or predict therapy 
response to further support clinical decision-making and 
ultimately improve patient clinical management and out-
comes [402].

The epitranscriptomic field has started to be also explored 
with therapeutic purposes. Dysregulation in cancer and 
reversibility of the epitranscriptomic marks are also the 
two features that have drawn the attention of pharmaceuti-
cal companies. The most advanced example is the devel-
opment of METTL3 inhibitors, with multiple compounds 
disclosed by Accent Therapeutics and STORM Therapeu-
tics. In November 2022, the oral METTL3 inhibitor STC-15 
(STORM Therapeutics) was the first molecule specifically 
targeting an RNA methyltransferase enzyme to enter clinical 
development (Fig. 4). The phase I study (NCT05584111) 
will assess safety and tolerability, pharmacokinetics, 

pharmacodynamics, and anti-tumor efficacy of STC-15 in 
adult patients with advanced solid tumors.

Although advances in the field are tremendous, there are 
still many challenges to overcome in the development of 
effective epi-based therapies for cancer (and metastasis). 
One of the major obstacles is the above commented intratu-
moral heterogeneity, as different cell populations could have 
different metastatic potential and/or sensitivity to treatment; 
and then pre-existing non-target populations could persist 
after treatment and result in treatment resistance or disease 
relapse. Thus, considering on the one hand the effects of 
epi-based therapies in reshaping the landscape of DNA and 
RNA modifications, and on the other the critical role of 
tumor heterogeneity in drug response, the multiomic analy-
sis of malignant cells and the TME at single-cell resolution 
will be key to deciphering and understanding the biological 
effects of drugs targeting epigenetic and epitranscriptomic 
enzymes, and consequently to improving therapeutic strat-
egies. Most of the epi-modifications/epi-modifiers herein 
described are potential clinical biomarkers for diagnosis or 
prognosis, but understanding better the role of RNA and 
DNA modifications in cancer metastasis will be crucial for 
developing effective therapies to prevent or treat metastatic 
disease.
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