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Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling 
events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and 
functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides 
into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. 
Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint mol-
ecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the 
ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, 
we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside spe-
cies have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor 
and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
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1 Introduction

Glycosylation is the most abundant covalent modification 
that proteins and lipids undergo in living organisms [1]. Gly-
cosylation occurs post-translationally in case of proteins, 
and post-synthesis for lipids and is highly diverse, in terms 
of glycan structures, and also varies with cell type, cellular 
activation, and during disease. Also, malignant transforma-
tion leads to an aberrant glycosylation profile [2]. One of 
the most frequently observed glycosylation changes in can-
cer is an increased expression of sialic acids, which nega-
tively correlates to disease outcome and patient survival [3]. 
Sialic acids are terminal nine-carbon sugar residues present 
on mammalian glycoproteins and glycolipids. Sialylated 

glycosphingolipids, or gangliosides, are expressed through-
out the entire human body, but are most abundant in the 
brain and nervous system. Due to their location in the outer 
leaflet of the plasma membrane, gangliosides participate in 
cell-cell and cell-matrix interactions and are able to modu-
late signal transduction of receptor tyrosine kinases (RTKs) 
through their association with lipid rafts. For example, 
tyrosine phosphorylation of epidermal growth factor recep-
tor is inhibited by a variety of gangliosides [4]. In addition, 
certain pathogens, including malaria parasite Plasmodium 
falciparum, employ gangliosides to gain entry into the host 
cell and initiate infection [5, 6]. Gangliosides are likewise 
crucial in the protection of host structures against the autolo-
gous immune system by protecting host cells and tissues 
from complement attack and autoimmune responses [5, 7]. 
Even under healthy conditions, gangliosides are released and 
taken up by neighboring cells, possibly to coordinate signal-
ing responses across cells and tissues [8].

Altered ganglioside expression has been linked to sev-
eral pathological processes and is known to promote tumor 
initiation and progression [9]. Gangliosides are abundantly 
present in the tumor microenvironment (TME), as they 
are secreted by tumor cells in the form of micelles, mono-
mers, and membrane vesicles [10]. Their glycan profiles 
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are frequently disturbed during cancer progression and 
can therefore be used as tumor biomarkers [11]. Already 
in the 1980s, the shedding of tumor gangliosides was evi-
dent, showing a clear immunosuppressive activity in vitro 
and in vivo [12]. Tumor gangliosides are considered to have 
tumor-promoting properties and to stimulate tumor pro-
gression in vivo [13] by promoting cell motility, angiogen-
esis, and metastasis [11, 14]. Moreover, gangliosides are 
key modulators of signaling through tyrosine kinases and 
suppressors of immune surveillance against the tumor [15]. 
Therefore, the shedding of gangliosides by tumor cells has 
been strongly correlated to disease progression and lower 
survival rates [16]. Nevertheless, some gangliosides show 
anti-tumorigenic properties and differences in ganglioside 
function appear to vary between different tumor types [17]. 
In this review, we summarize the current state-of-the-art 
on ganglioside-mediated immune modulation in the tumor 
microenvironment, focusing on the expression and shedding 
of gangliosides by tumors, as well as their interactions with 
different immune cell subsets.

2  Healthy synthesis of gangliosides

Glycosphingolipids are formed through the stepwise addi-
tion of sugars by glycosyltransferases, first to ceramide 
and subsequently to the growing glycan structures, thereby 
generating a wide range of glycolipids. Gangliosides are a 
specific class of glycosphingolipids characterized by the 
addition of one or more sialic acids. Their synthesis starts 
in the endoplasmic reticulum and the further elongation 
occurs in the Golgi [18]. Gangliosides are classified into 
groups according to the number of sialic acid residues 
attached (mono, di, tri) and the order of migration of the 
gangliosides on thin layer chromatograms (GM3 > GM2 
> GM1). The addition of one sialic acid to the precursor 
of most gangliosides, lactosylceramide (LacCer), generates 
GM3 and after addition of other sialic acids also GD3 and 
GT3. Each of these gangliosides then becomes an acceptor 
for another N-acetylgalactosamine (GalNAc) residue, gen-
erating the GM2, GD2, and GT2 lipids. Once the GalNAc 
is added, further addition or removal of sialic acid residues 
no longer occurs, thus committing the gangliosides to the 
“a-series” (one sialic acid), “b-series” (two sialic acids), or 
“c-series” (three sialic acids) (Fig. 1) [14]. After comple-
tion, the gangliosides are transferred to the outer leaflet of 
the plasma membrane, via vesicular delivery, where they are 
positioned facing the extracellular environment. Ganglio-
sides are present in all cells; however, the exact ganglioside 
expression patterns differ per cell type and are dependent on 
the expression and intracellular distribution of the specific 
glycosyltransferases required for their biosynthesis [20].

3  Shedding and expression of gangliosides 
in cancer

An altered ganglioside metabolism contributes to patho-
logical conditions, such as cancer, autoimmune disease, 
and inflammatory disorders, especially if these diseases 
originate in the neurological system. For example, muta-
tions in GM3 synthase have been identified as the cause of 
an autosomal recessive infantile-onset epilepsy syndrome 
[21]. The formation of anti-ganglioside antibodies has 
been related to Alzheimer’s disease, Parkinson’s disease, 
and Guillain-Barré syndrome [22–24].

During malignant transformation, the ganglioside reper-
toire is distinctly changed, due to alterations in the expres-
sion levels of glycosyltransferases involved in ganglioside 
synthesis [11]. These alterations vary from overexpres-
sion of certain gangliosides, loss of expression for others, 
truncated structures, accumulation of precursors, and, very 
rarely, the appearance of novel structures [14]. Very few 
gangliosides are truly tumor-specific, as many of these 
altered gangliosides are also found in healthy cells, albeit 
at a different expression level [25]. Ganglioside expres-
sion in tumor cells even seems to vary according to the 
tumor stage, as metastatic tumors tend to have a different 
ganglioside profile compared to primary tumors [26, 27]. 

Fig. 1  Schematic overview of the ganglioside structure and bio-
synthesis. Gangliosides are generated from the precursor LacCer or 
GalCer after addition of sialic acids by different sialyltransferases. 
Cer, ceramide; Lac, lactosyl; Gal, galactose; Glc, glucose; Gal-
NAc, N-acetylgalactosamine; Neu5Ac, N-acetylneuraminic acid 
(sialic acid); ST3Gal5, ST3 βgalactoside α-2,3-sialyltransferase 5 
(GM3 synthase); ST8Sia1, ST8 α-N-acetyl-neuraminide α-2,8-
sialyltransferase 1 (GD3 synthase); ST8Sia5, ST8 α-N-acetyl-
neuraminide α-2,8-sialyltransferase 5 (GT3 synthase); β4GalNAcT1, 
β-1,4-N-acetylgalactosaminyltransferase 1 (GM2/GD2 synthase); 
β3GalT4, β-1,3-galactosyltransferase 4 (GM1/GA1/GD1 synthase). 
Adapted from Inokuchi et al. [19]
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Besides that, gangliosides are also shed into the TME in 
much larger quantities than under healthy conditions (an 
overview is given in Table 1). Gangliosides can even be 
detected in the blood circulation of cancer patients, as 
first detected in the plasma of neuroblastoma patients [28, 
29], potentially providing a clinically useful biomarker 
for diagnosis and/or prognosis of tumor recurrence and 
progression [30].

The expression level of gangliosides in different tissues 
and tumor types mainly depends on the level of expression 
of glycosyltransferases involved in their biosynthesis, such 
as the ST3 β-galactoside α2-3 sialyltransferase 5 (ST3Gal5) 
which is the enzyme generating monosialylated gangliosides 
(Fig. 1). ST3Gal5, also named GM3 synthase, is differen-
tially expressed in multiple tumor types compared to adja-
cent healthy tissue, and associated with beneficial or poor 
prognosis, depending on the type of tumor. [64–68]. Also, 
ST8Sia I, which synthesizes disialylated ganglioside species, 
plays a role in proliferation, invasion and survival of tumor 
cells in vitro [69–71]. ST8Sia1 is highly expressed in mela-
noma and breast cancer, and is correlated with increased bio-
synthesis of the downstream gangliosides and poor clinical 
outcome [72–74]. Inhibition of GD3 synthase (ST8Sia1) in 
vivo suppressed tumor growth and angiogenesis by down-
regulating vascular endothelial growth factor (VEGF) [75]. 
For additional information on the synthesis and degrada-
tion of tumor-associated gangliosides in tumors, we refer 
the reader to Groux-Degroote et al. [16].

The role that gangliosides play in the tumor context is 
quite diverse as several gangliosides promote tumor cell 
growth, whereas others stimulate angiogenesis and metas-
tasis [66, 76]. These effects may be for a large part due to 
the ability of gangliosides to modulate RTK signaling [77]. 
RTKs often bind growth factors, which upon engagement of 
the receptor stimulate cell survival, proliferation, differentia-
tion, and migration. Gangliosides can directly engage RTKs 
within glycolipid-enriched microdomains in the plasma 

membrane [78]. An aberrant ganglioside profile will thus 
alter the structure of the glycolipid-containing microdomains 
and the interaction with RTKs, often resulting in receptor 
dysregulation, favoring tumor progression. In addition, the 
shed gangliosides have been shown to influence anti-tumor 
immunity [79]. In the next sections, we will highlight the 
immune modulatory effects of gangliosides in the TME.

4  Immunomodulatory properties 
of gangliosides in the tumor 
microenvironment

The shedding of gangliosides by tumor cells is mainly sup-
pressive to allow tumor cells to escape immune recogni-
tion, although the opposite effect has been observed as well, 
depending on the type and concentration of individual gan-
gliosides [80]. To date, our knowledge regarding immune 
modulatory properties of the gangliosides shed by cancer 
cells is still mainly based on in vitro studies. The impact 
of gangliosides on individual immune cell subsets will be 
further specified below. Of note, in most studies, “soluble” 
gangliosides are added to the cells; therefore, the observed 
effects are mainly representative of gangliosides shed by 
tumor cells, likely forming micelles or vesicles, and does 
not necessarily reflect how tumor-associated gangliosides 
modulate anti-tumor immunity.

4.1  T cells

CD8+ cytotoxic T lymphocytes (CTLs) are crucial cells in 
the anti-tumor immune response, because of their direct 
cytotoxic action on cancer cells. However, CD4 T helper 
cells are gaining attention for their direct anti-tumor action 
as well as their ability to license and sustain CTLs for killing 
[81]. How gangliosides affect T cell immunity is described 
below and summarized in Table 2 and Fig. 2.

Table 1  Overview of gangliosides expressed and shed by different tumor types

Cancer type Gangliosides Refs

Tumors of the central nervous system (glioblastoma, neuroblas-
toma, medulloblastoma, retinoblastoma)

GM3, GM2, GM1, GD3, GD2, GD1a [9, 25, 30–40]

Melanoma GM3, GD3, GD2, GM1 [9, 41–44]
Breast cancer GM3, GD3, GD2, GD1a, GD1b, GT1b, GQ1b [9, 45–47]
Lung cancer GM3, GD3, GM2, GD2, (fucosyl-)GM1 [16, 48–51]
Ovarian cancer GD3, GD1a [52, 53]
Renal carcinoma GM3, GM2 [54, 55]
Colorectal cancer GM3, GM1, GD1a [56, 57]
Leukemias GM3, GD3 [58, 59]
Pancreatic cancer GM2 [60]
Hepatocellular carcinoma GM3, GM2, GD3 [61–63]
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Table 2  Ganglioside effects on the immune system

Ganglioside Tumorigenic effect Impact on immune cell/response References

T cells
 GM3 Pro-tumor Inhibition of T cell proliferation by blocking the interaction of IL-2 with IL-2R

Generation of a Th2 bias through induction of IL-10, limiting a Th1 response
Down-regulation of CD4 expression on T cells

[82–84]

 GM2 Pro-tumor Stimulation of T cell proliferation by enhancing the IL-2 response
Generation of a Th2 bias by inhibiting Th1 cytokine production and by inducing IL-4 

secretion
Induction of T cell apoptosis

[54, 83, 85, 86]

 GM1 Pro-tumor Inhibition of T cell proliferation by blocking the interaction of IL-2 with IL-2R
Generation of a Th2 bias through induction of IL-10, limiting a Th1 response
Induction of T cell apoptosis by inhibiting NF-kB
Down-regulation of CD4 expression on T cells

[83, 86–88]

 GD3 Pro-tumor Inhibition of T cell proliferation by neutralizing IL-2
Inhibition of T cell activation through TCR arrest
Generation of a Th2 bias by inhibiting Th1 cytokine production
Suppression of Th17 activity and IL-17A production
Induction of (activated) T cell apoptosis by inhibiting NF-kB, stimulating ROS produc-

tion, and through induction of caspase-3 and -9

[82, 86, 89–92]

 GD2 Anti-/pro- tumor
(tumor type dependent)

Stimulation of T cell proliferation by enhancing the IL-2 response
Generation of a Th2 bias by inhibiting Th1 cytokine production

[82, 86]

 GD1a Pro-tumor Inhibition of T cell proliferation by depleting IL-2
Generation of a Th2 bias by inhibiting Th1 cytokines, through induction of IL-10, and by 

increasing apoptosis of Th1 cytokine-producing cells
Induction of T cell apoptosis by inhibiting NF-kB

[83–85, 87, 93]

 GD1b Anti-/pro-tumor (tumor type 
dependent)

Inhibition of T cell proliferation by depleting IL-2
Generation of a Th1 response by stimulating Th1 cytokine secretion and reducing Th2 

cytokines

[83, 93–96]

 GT1b Anti-/pro-tumor (tumor type 
dependent)

Inhibition of T cell proliferation by binding and blocking IL-2, and interfering with IL-4
Generation of a Th1 response by stimulating Th1 cytokine secretion and reducing Th2 

cytokines

[94–97]

B cells
 GM2 Pro-tumor Inhibition of Ig production by inhibiting IL-10 and TNF-α production [98]
 GD1a Anti-tumor Enhancement of Ig production through increased IL-6 and IL-10 production [99]
 GD1b Pro-tumor Inhibition of Ig production through reduced IL-6 and IL-10 production [100]
 GT1b Pro-tumor Inhibition of Ig production through reduced IL-6 and IL-10 production [101]
NK/NKT cells
 GM3 Pro-tumor/ anti-tumor Inhibition of NK cell cytotoxicity (in serum)

Cell-associated gangliosides may activate NK cells
[102, 103]

 GM2 Pro-tumor Inhibition of NK cell cytotoxicity [102]
 GM1 Pro-tumor Inhibition of interferon responsiveness [104]
 GD3 Pro-tumor/ anti-tumor Reduction of NK cell cytotoxicity (in serum) in a Siglec-7 dependent manner

Cell-associated gangliosides may activate NK cells
Induction of NK cell immunosuppression
Prevention of NKT cell activation

[52, 103, 105–108]

Dendritic cells
 GM3 Pro-tumor Diminished expression of costimulatory molecules

Reduced production of pro-inflammatory cytokines upon LPS stimulation
Impaired ability to stimulate allogenic T cell responses
Blunted maturation and migration of LC
Increased DC and LC apoptosis

[41, 109–111]

 GM2 Pro-tumor Impaired moDC differentiation from monocytes
Reduced endocytic capacity
Impaired ability to stimulate allogenic T cell responses

[112]

 GM1 Pro-tumor Inhibition of TLR signaling
Reduced production of pro-inflammatory cytokines
Impaired ability to induce (murine) Th1 responses

[93, 113]
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4.1.1  Inhibition of T cell proliferation

Gangliosides can inhibit T cell function in multiple ways to 
promote tumor progression [79]. Most studies demonstrate 
that gangliosides can interfere with lymphocyte prolifera-
tion by depleting IL-2 in a dose-dependent manner, pre-
venting it from binding to the IL-2 receptor (IL-2R) on the 
surface of activated T cells [82, 83, 125, 126]. However, 
there is also evidence that gangliosides can bind to IL-2 
directly, thus neutralizing free IL-2 without blocking the 

interaction between IL-2 and the IL-2R [127]. Neverthe-
less, the presence and position of the sialic acids on the 
gangliosides seem to be relevant, as GM3 and GD3 have 
an inhibitory effect on IL-2, while GM2 and GD2 stimu-
late T cell proliferation by enhancing the response to IL-2 
[82]. Moreover, the ability of gangliosides to induce immu-
nosuppression via the IL-2/IL-2R axis appears to be most 
effective in low protein conditions, since they are known 
to interact with various serum components like albumin. 
Therefore, gangliosides will be more immunosuppressive 

Table 2  (continued)

Ganglioside Tumorigenic effect Impact on immune cell/response References

 GD3 Pro-tumor Diminished expression of costimulatory molecules
Reduced production of pro-inflammatory cytokines upon LPS stimulation
Impaired ability to stimulate allogenic T cell responses
Blunted maturation and migration of LC
Increased DC and LC apoptosis

[41, 109, 111]

 GD2 Pro-tumor Compromised DC differentiation form murine bone marrow precursor or human  CD34+ 
cells

Impaired ability to stimulate allogenic T cell responses

[114]

 GD1a Pro-tumor Inhibition of TLR signaling
Diminished expression of costimulatory molecules
Reduced production of pro-inflammatory cytokines upon LPS stimulation
Impaired ability to induce (murine) Th1 responses
Impaired ability to stimulate allogenic and TT-specific T cell responses

[93, 113, 115, 116]

Macrophages
 GM3 Pro-tumor Inhibition of Fc receptor expression to reduce phagocytosis of tumor cells

Suppression of RNI and NO production
Inhibition of IL-1β, IL-6, and TNF-α production stimulating tumor growth

[117–120]

 GM2 Pro-tumor Inhibition of Fc receptor expression to reduce phagocytosis of tumor cells
Inhibition of TNF-α production stimulating tumor growth

[117, 120]

 GM1 Pro-tumor Inhibition of IL-1β production to counteract cytotoxicity to tumor cells
Inhibition of TNF-α production stimulating tumor growth
Stimulation of an M2 macrophage bias to support angiogenesis and anti-inflammatory 

conditions

[117, 120, 121]

 GD3 Pro-tumor Inhibition of IL-1β production to counteract cytotoxicity to tumor cells
Inhibition of TNF-α production  stimulating tumor growth

[117, 120]

 GD1a Pro-tumor Suppression of RNI and NO production
Suppression of pro-inflammatory cytokine production, including TNFα, IL-1α and IL-1β

[120, 122]

Monocytes
 GM3 Pro-tumor Inhibition of Fc receptor expression [117, 123]
 GM2 Pro-tumor Inhibition of Fc receptor expression [117]
 GM1 Pro-tumor Decreased TLR signaling

Suppression of IL-1 production
[93, 117]

 GD3 Pro-tumor Suppression of IL-1 production [117]
 GD1a Pro-tumor Downregulation of CD80 and CD40

Impaired production of IL-12 and TNFα
Decreased TLR signaling

[93, 124]

Abbreviations: Th1 T helper cell 1, Th2 T helper cell 2, Th17 T helper cell 17, DC dendritic cell, LC Langerhans cell, IL interleukin, TNF 
tumor-necrosis factor, NF-kB Nuclear Factor kappa B, ROS reactive oxygen species, NO nitric oxide, RNI reactive nitrogen intermediates, 
Ig immunoglobulin, IFNγ interferon γ, TLR toll-like receptor, LPS lipopolysaccharide, TT tetanus toxoid  
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in the local TME where the overall protein concentration is 
lower than in an in vitro setting [126]. In addition, GD1b, 
and to a lesser extent GM2 and GD3, also inhibit T cell 
proliferation by interfering with IL-4 signaling even though 
this effect is much weaker compared to IL-2 [94].

4.1.2  Induction of T cell apoptosis

Several studies have demonstrated that depriving proliferat-
ing T cells from IL-2 results in T cell apoptosis [128, 129]. 
In consequence, if gangliosides are able to deplete IL-2, 
they might indirectly induce T cell death. Moreover, IL-4 is 
able to trigger apoptosis in an IL-2 dependent manner; thus, 
a Th2 bias could also result in increased T cell apoptosis 
[130]. Yet gangliosides are also capable of inducing T cell 
apoptosis directly.

Even at relatively low concentrations, GM2 is able to 
induce apoptosis in human T cells in vitro. This T cell 
death was partially blocked by anti-GM2 antibodies, 
suggesting that GM2 may not be the only ganglioside or 
the factor involved [54]. Indeed, glioblastoma cell lines 
expressing both CD70 as well as elevated levels of both 
GM2 and GD1a are especially prone promotors of T cell 

apoptosis [85]. The renal cell carcinoma-derived ganglio-
sides and GD3 can enhance apoptosis of human activated 
T cells in vitro through inhibition of the NF-kB pathway, 
resulting in reduced expression of anti-apoptotic genes, 
but also through an increase in mitochondrial permeabil-
ity, accumulation of ROS and cytochrome c release [55, 
87, 89, 90]. GD3-containing exosomes, isolated from 
human ovarian tumor ascites, mediated arrest of T cell 
activation after a short exposure to the ganglioside, but did 
not result in T cell apoptosis, suggesting that a prolonged 
exposure to gangliosides is needed to induce T cell death. 
Also, this GD3-mediated arrest appeared to be depend-
ent on the sialic acid groups, as their enzymatic removal 
reversed the inhibitory effect [91].

4.1.3  Downregulation of CD4 expression

Another mechanism through which gangliosides modu-
late T cell functionality is by downregulating the sur-
face expression of CD4. Gangliosides GM3 and GM1 
inhibit the expression of CD4 in murine and human T 
lymphocytes, especially in naive T cells, by changing the 
molecular orientation of CD4 within the cell membrane, 

Fig. 2  Immunomodulatory effects of gangliosides on lymphoid cells. 
Gangliosides modify T cell function by different pathways, promot-
ing T cell apoptosis and skewing to a Th2 phenotype. They can also 
suppress the cytotoxicity of NK cells via Siglec-7 binding and by 
blocking the interaction between IFN-β and its receptor. In the case 

of B cells, gangliosides can either stimulate or inhibit the secretion 
of IgA, IgM, and IgG, depending on the type of ganglioside. General 
ganglioside structures are depicted in the figure. Please refer to the 
main text and tables for the action of individual gangliosides. Created 
with Biore nder. com

http://biorender.com
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which renders CD4 epitopes inaccessible [88, 131, 132]. 
After this redistribution, CD4 molecules are endocytosed 
and degraded, resulting in a persistent low level of CD4 
expression on the cell surface [133]. Nevertheless, the 
internalization of CD4 seems to be reversible, since its 
expression is restored after removal of gangliosides [131]. 
CD4 modulation appears to be a general characteristic of 
gangliosides as both the lipid and the sialylated moieties 
are key in regulating this change in CD4 redistribution 
[88]. Nevertheless, downregulation of CD4 in the TME 
could be a long-lasting effect induced by tumor cells to 
promote tumor progression.

4.1.4  Switch from Th1 to Th2

While generally Th1-type responses are favorable in anti-
tumor immunity, gangliosides shed by tumors strongly 
induce Th2 skewing through several mechanisms. They 
can downregulate Th1 responses by initiating apoptosis of 
IFNγ-producing cells and thereby inducing a type 2 bias 
[128]. Furthermore, the presence of gangliosides during 
T cell activation blocks IL-2 and IFNγ gene transcrip-
tion without inhibiting the production of Th2-associated 
cytokines in a human and murine setting [86, 134]. This is 
possible due to the ability of gangliosides to interfere with 
NF-κB activation, a transcription factor for pro-inflam-
matory cytokines, such as IFNγ and IL-2 [134]. Inter-
estingly, the ganglioside-mediated enhancement of IL-4 
production in vivo was independent of IFNγ, suggesting 
multiple mechanisms disturbing Th1/Th2 skewing [86]. 
However, Rayman et al. report that GD1a inhibits IFNγ 
secretion without affecting secretion of type 2 cytokines 
after human T cell stimulation in vitro [128]. Besides, gan-
gliosides GD1a and GM3 strongly induce IL-10 secretion 
in human T cells, which in turn suppress the production 
of Th1 cytokines [84].

Even though the majority of gangliosides appears respon-
sible for creating a Th2 bias, some gangliosides seem to 
induce the opposite. Kanda et al. demonstrated that GD1b, 
and other gangliosides containing even more sialic acids, 
enhanced the production of IL-2 and IFNγ, while reducing 
the production of IL-4 and IL-5 in human T cells [95]. This 
suggests that the ganglioside composition, and specially the 
sialic acid content, determines whether T cell skewing is 
towards a Th1 or Th2 type immune response.

4.1.5  Th17 interference

The role of Th17 cells in cancer still remains controversial 
since they exhibit both pro- and anti-tumorigenic activities. 
Not much is known about how gangliosides modulate Th17 

responses in cancer, but GD3 has been shown to suppress 
the Th17 activity of benign T cells in cutaneous T cell lym-
phoma [92].

4.2  B cells

Even though T cells are considered to be the most effective 
immune cells mediating the anti-tumor immune response, 
there is increasing evidence that B cells play an impor-
tant role in tumor control. Besides producing antibodies, 
tumor-infiltrating B cells can present antigens to T cells 
and secrete a variety of cytokines [135]. However, tumor-
infiltrating B cells are also able to promote angiogenesis or 
secrete immunoregulatory cytokines, including TGFβ and 
IL-10, that suppress the anti-tumor immune response and 
its effector cells [136].

4.2.1  Immunoglobulin production

Gangliosides have been shown to modulate immunoglobulin 
(Ig) secretion of B cells (Table 2; Fig. 2). For example, GM2 
can inhibit the production of IgM, IgA and IgG in human 
B cell lines. This effect was counteracted by the addition 
of both IL-10 and TNFα, suggesting that GM2 inhibits Ig 
production through the inhibition of IL-10 and TNF-α secre-
tion [98]. Similarly, GD1b and GT1b also suppress IgM, 
IgG, and IgA production from human PBMCs by reduc-
ing IL-6 and IL-10 release of  CD4+ T cells and monocytes, 
respectively [100, 101]. In contrast, the ganglioside GD1a 
enhances IgG, IgM, and IgA production of human PBMCs 
by increasing IL-6 and IL-10 secretion of monocytes [99]. 
In all these in vitro studies, the effect of gangliosides on Ig 
production was reversible and did not affect the proliferation 
nor the viability of the B cells [98–101]. So, gangliosides 
may be involved in regulating humoral responses, but how 
they modulate B cells in the TME remains unclear.

4.3  NK and NKT cells

Natural killer (NK) cells are important players in the overall 
immune responses against tumors. Their functions are simi-
lar to that of cytotoxic T cells, considering they induce anti-
viral and anti-tumor immunity by producing IFNγ, gran-
zyme B, and perforin, resulting in cell lysis. They are able 
to recognize and eliminate MHC-I deficient cells (missing-
self) or through engagement of tumor-specific antibodies 
with their CD16 Fc receptor, triggering antibody-dependent 
cell-mediated cytotoxicity (ADCC) [137]. Gangliosides can 
actively suppress NK cell function, decreasing their cyto-
toxic response and cytokine production (Table 2; Fig. 2).



948 Cancer and Metastasis Reviews (2023) 42:941–958

1 3

4.3.1  Inhibition of NK cell cytotoxicity

GM3 and GM2 gangliosides isolated from human brain 
tissue were able to inhibit NK cell activity in vitro, in 
contrast to other gangliosides containing more sialic 
acids. GM3 and GM2 are present in high concentrations 
in neuroblastoma and gliomas, supporting the hypoth-
esis that shedding of these gangliosides promotes tumor 
progression [102]. Also, tumor cells containing GD3 
decreased the cytotoxic ability of NK cells in an in vitro 
model [105]. Interestingly, incubation of lymphoma 
cells with gangliosides prior to NK cell co-culture, 
resulted in increased NK cell activity towards tumor 
cells. This suggests that tumor-bound gangliosides 
function as target structures recognized by NK cells, 
while shed gangliosides actually contribute to NK cell 
inhibition during tumor development [103]. One pos-
sible explanation might be the insertion of gangliosides 
into the plasma lipid bilayer of tumor cells, leading to 
new binding sites for NK cells, thereby increasing their 
capacity to kill tumor cells.

One of the mechanisms used by gangliosides to modu-
late NK cell cytotoxicity could be via the binding of sialic-
acid binding immunoglobulin-like lectins (Siglecs). Siglecs 
are a family of sialic acids receptors expressed on immune 
cells, most of them containing an immunoreceptor tyrosine-
based inhibitory motif (ITIM). Nicoll et al. demonstrated 
that GD3-expressing cells strongly bind to Siglec-7 on NK 
cells, thereby downregulating NK cell cytotoxicity [106] 
(Fig. 2). In another study, blocking Siglec-7 binding with 
an anti-GD2 antibody also sensitized tumor cells to mac-
rophage-mediated phagocytosis resulting in tumor eradica-
tion in vivo [138].

4.3.2  Inhibition of interferon production

Several interferons, including IFN-β, have been shown to 
enhance the cytotoxic activity of NK cells, and are therefore 
important in anti-tumor immune responses. The gangliosides 
GM1, GD1b, and GT1b all inhibit the stimulatory effect of 
IFN-β on murine NK cells in vitro, by competing with NK 
cells for their interaction with IFN-β. Likely, the direct bind-
ing of gangliosides is responsible for the IFN-β-mediated 
suppression of NK cell activation [104]. The suppression of 
IFNs is thus a direct mechanism of action of gangliosides to 
stimulate tumor progression and enhance immune evasion.

4.3.3  Immunosuppression due to senescence

A recent study revealed that senescent cells modify their 
glycosphingolipid composition towards a higher gan-
glioside level, characterized by the overexpression of 
GD3. This is due to a transcriptional upregulation during 

senescence of the gene encoding the enzyme ST8Sia1, 
which is responsible for GD3 synthesis. Increased levels 
of GD3 lead to an immunosuppressive effect on NK cells 
in vitro and in vivo by binding to Siglec-7 receptor on 
NK cells [107].

4.3.4  NKT cells

The effect of gangliosides on NKT cells is poorly studied. 
However, Wu et al. demonstrated that mice immunized with 
 GD3+ human melanoma cells developed a CD1d-restricted 
NKT cell response against GD3. The observed response was 
typical of Th2-like cells (secretion of IL-4, IL-10), although 
the cells also produced some transient IFNγ [108]. Similarly, 
GD3 isolated from ovarian cancer-associated ascites also pre-
vented activation and IFNγ production by NKT cells; how-
ever, in this study, also, IL-4 secretion was inhibited [52].

4.4  Dendritic cells

Dendritic cells (DCs) are professional antigen-present-
ing cells, capable of initiating adaptive T cell responses 
towards pathogens and malignant cells. In addition, 
DCs play a crucial role in maintaining immunological 
tolerance, through the selection and depletion of self-
reactive T cells. Gangliosides seem to disrupt the whole 
DC life cycle, ranging from DC development to DC 
maturation, thus promoting a tolerogenic TME (Table 2; 
Fig. 3).

4.4.1  Impaired DC differentiation

In vivo DCs develop from dedicated precursors; however, 
under inflammatory conditions, monocytes can also differ-
entiate into so-called monocyte-derived DCs (moDCs). The 
impact of ganglioside on DC differentiation has not been 
widely studied; however, early reports indicate that neuro-
blastoma-derived GD2 impairs DC development from mouse 
bone marrow and human  CD34+ progenitors [114], while 
GM2, GD3, and GM3 dampen monocyte to DC differentia-
tion, resulting in a DC population with altered morphology, 
reduced endocytic capacity, as well as a reduced expression 
of the DC markers CD1a, HLA-DR, and CD80 [41, 112].

4.4.2  Inhibition of TLR activation

Interestingly, in non-small cell lung cancer, a high 
expression of the ganglioside N-glycolyl-GM3 was 
associated with a decreased density of mature  CD83+ 
DCs, indicating that gangliosides may blunt DC matura-
tion [48]. Indeed, in several in vitro studies, DC matu-
ration was inhibited in the presence of gangliosides. 
DC maturation is generally triggered by the engagement 
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and subsequent signaling through pattern recognition 
receptors, such as the toll-like receptors (TLRs). The 
gangliosides GM1, GD1a, and GD1b are able to inhibit 
the activation of multiple TLRs in vitro through the 
upregulation of the TLR signaling pathway inhibitor, 
IL-1 receptor–associated kinase M (IRAK-M) [93]. 
GD1a also reduces TLR-dependent phosphorylation 
of p38, the key downstream kinase in TLR4 signal-
ing [115], and the subsequent nuclear translocation of 
NF-κB [116, 124]. This inhibition of TLR activation 
occurs in a dose-dependent manner and seems to be 
reversible, with complete recovery of TLR signaling, 

as assessed by the regained production of pro-inflam-
matory cytokines, after removal of gangliosides [93]. 
Interestingly, GD3 is furthermore able to block CD40L-
induced maturation [41].

4.4.3  Interference with DC maturation

Gangliosides appear to have the ability to inhibit the LPS-
driven and IFNγ boosted DC maturation and cytokine pro-
duction, and therefore downregulate the pro-inflammatory 
response triggered against tumor cells.

Fig. 3  Immunomodulatory effects of gangliosides on myeloid cells. 
Gangliosides downregulate the differentiation and maturation of 
DCs through several mechanisms. They reduce the capacity of DCs 
to activate T cells and induce DC apoptosis. Gangliosides inhibit the 
production of pro-inflammatory cytokines by DCs, macrophages, and 
monocytes. Besides, they can block Fc receptors, TLRs, and co-stim-

ulatory molecules on different myeloid populations. Some ganglio-
sides stimulate the M2-polarization of macrophages by increasing the 
levels of Arg-1 through CD206, and suppress the production of RNI 
and NO. General ganglioside structures are depicted in the figure. 
Please refer to the main text and tables for the action of individual 
gangliosides. Created with Biore nder. com

http://biorender.com
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Gangliosides GM3 and GD3 are modest inhibitors 
of human DC maturation marker expression in vitro, 
inf luencing costimulatory molecules CD40, CD80, 
CD86, and MHC-II [109]. While GM3 only impaired 
IL-10 and IL-12 production, GD3 also reduced IL-6 and 
TNFα secretion after LPS triggering [109]. A similar 
GM3-mediated downregulation of CD40 and IL-12 was 
observed in vivo in neuroblastoma bearing mice [110]. 
In these mice, IL-12 secretion was abrogated in a CD40-
dependent manner. GD1a and to a lesser extent GM1 also 
inhibit the TLR-induced expression of co-stimulatory 
molecules, such as CD40, CD80, CD83, and CD86 on 
murine and human DC in vitro [113, 116, 124]. Moreo-
ver, GD1a is a potent inhibitor of IL-6, IL-10, IL-12, 
and TNFα secretion in vitro [113, 116, 124]. Strong pro-
inflammatory conditions might counteract the tumor gan-
glioside-induced phenotype. Yet, IFNγ further amplified 
the GD1a effects and augmented both IDO1 and PD-L1 
expression on the DCs, indicating that IFNγ and GD1a 
may act in concert to further amplify the tumor immuno-
suppressive loop [115].

4.4.4  Inability to activate T cells

Exposure of DCs to a wide variety of gangliosides not only 
impairs TLR-mediated maturation, costimulatory marker 
expression, and cytokine production, but it also impairs 
their ability to activate T cells. Treatment of both murine 
and human DCs with a plethora of gangliosides, includ-
ing GM3, GD3, GM2, GD2, and GD1a, reduces the DC 
stimulatory capacity in vitro, resulting in a diminished T 
cell proliferative response in an allogeneic mixed lympho-
cyte reaction (MLR) assay [41, 109, 112, 114, 116]. GD1a-
preincubated DCs show a similar deficiency in stimulat-
ing tetanus toxoid antigen-specific  CD4+ T cell responses 
[124].

In addition, and expected from the aberrant cytokine 
secretion profiles, gangliosides can derail DC-mediated 
induction of T helper differentiation. Both GD1a and GM1 
compromise Th1 and Th2 differentiation and instead favor 
the instruction of functional Tregs [113]. Interestingly, this 
altered Th1 skewing could not be rescued by exogenous 
IL-12, suggesting that other factors, besides IL-12, contrib-
ute to the tapered Th1 differentiation.

4.4.5  Impaired maturation and migration of LC

Langerhans cells (LC) are a type of dendritic cells present in 
the epidermal layer of the human skin where they act as an 
immune barrier. Melanoma-derived GM3 and GD3 impair 
the maturation and migration of human epidermal LCs, 

which might explain the marked decrease in activated LCs 
in the lymph nodes close to the tumor [111]. GM3 and GD3 
both significantly downregulate expression of costimulatory 
and maturation markers, which correlated to an impaired 
ability of the LCs to mount allogeneic T cell proliferation. 
Also, expression of CCR7 was downregulated, reducing 
the migration towards CCL19, a chemokine crucial for LC 
migration to the lymph node.

4.4.6  Induction of DC and LC apoptosis

The gangliosides GM3 and GD3 are also able to induce early 
apoptosis of DCs and LCs (Fig. 3) [111, 139], which may be 
attributed to a dysregulated and early DC differentiation and 
maturation [41]. Interestingly, the GM3- and GD3-induced 
apoptosis was independent of ganglioside catabolism [139], 
but did involve activation of caspase-3. Whereas GD3 expo-
sure let to a loss of mitochondrial membrane potential and 
production of ROS, GM3 exposure did not [139]. Clearly, 
the mechanisms through which GM3 and GD3 induce cas-
pase-3 activation and apoptosis are different and still not 
fully elucidated.

Overall, gangliosides seem to foster the development of 
an immunosuppressive tumor microenvironment, low in 
fully matured DCs and elevated in Treg numbers.

4.5  Macrophages

Macrophages are important players of the innate immune 
system. They are not a single-cell population with a defined 
phenotype and function, but depending on the tissue con-
text rather a collection of cell types with a wide range of 
functional roles in homeostatic and pathological conditions 
[140]. In the context of cancer, myeloid cells are often seen 
as double-edged swords, since on the one hand, they have 
the potential to kill tumor cells, mediate ADCC, and activate 
lymphoid cells. In contrast, tumor-associated macrophages 
(TAMs) contribute to cancer progression and angiogenesis 
as well as to an immunosuppressive TME [141]. The effects 
of specific gangliosides on macrophages can be found in 
Table 2 and Fig. 3.

4.5.1  Inhibition of Fc receptor expression

The Fc receptor on macrophages is an important contribu-
tor to the immune functions of macrophages [140, 142]. 
It can bind specifically to antibody-opsonized malignant 
cells, thereby resulting in phagocytosis of tumor cells 
[143]. Treatment of human macrophages with GM3 and 
GM2 gangliosides in vitro inhibited their Fc receptor 
expression, while other gangliosides did not have this 
capacity [117].
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4.5.2  Suppression of cytokine release

IL-1β is produced by infiltrating myeloid cells, including 
macrophages, and can promote tumor progression, metas-
tasis, and the generation of an immunosuppressive TME 
[144]. GM1 and GD3 melanoma-derived gangliosides 
inhibit IL-1β production by macrophages in vitro [117]. 
Similarly, GM3 suppresses the secretion of IL-1β and IL-6 
in murine RAW 264.7 macrophages [145]. The production 
of IL-1α and IL-1β was also inhibited by GD1a in LPS-stim-
ulated macrophages [122]. Even though gangliosides might 
thus be involved in dampening IL-1β release, the underlying 
mechanisms are still unclear.

TNFα is a pro-inflammatory cytokine that mainly 
has anti-tumorigenic effects; however, at low levels, this 
cytokine may also sustain tumor development [146]. Several 
gangliosides, including GM3 and GD1a, were all effective 
in reducing TNFα production by murine macrophages in 
vitro [118, 122]. These gangliosides appear to act at an early 
step of the signaling transduction cascade as they inhibit 
MAPK upstream of NF-kB, a key transcription factor for 
TNFα [118].

4.5.3  Inhibition of RNI production

Reactive nitrogen intermediates (RNI), including nitric 
oxide (NO), are produced by TAMs and can cause DNA 
damage and genomic instability, resulting in tumor 
progression [141]. In contrast, RNI produced by mac-
rophages may also be involved in tumor killing [147]. 
GM3 and GD1a, amongst other gangliosides shed by 
tumor cells, appear to inhibit the production of RNI 
and NO by macrophages in vitro [119, 122, 145]. The 
mechanism behind this inhibition is still unresolved, but 
likely involves a direct action of the gangliosides on mac-
rophage function.

4.5.4  Stimulation of M2 macrophage polarization

Macrophages can adopt different functional phenotypes, 
classically referred to as the pro-inflammatory M1-like 
macrophages and the anti-inflammatory M2-macrophages, 
which share similarities with TAMs in the TME. GM1 
seems to be a potent stimulator of the polarization towards 
M2-like macrophages in vitro for both human as well as 
murine macrophages. It does so by increasing the expression 
of arginase-1 (Arg-1), a M2-macrophage marker, through 
the mannose receptor (CD206) and common gamma chain 
(γc)-mediated activation of JAK3 and STAT6 [121]. In 
addition, GM1-stimulated macrophages secrete monocyte 
chemoattractant protein-1 (MCP-1/CCL2) promoting tumor 
growth and angiogenesis [121].

4.6  Monocytes

Monocytes are well known as a precursors of macrophages 
and moDCs, but they can also act as APCs that are able 
to prime  CD8+ and  CD4+ T cells [148]. Similar to other 
immune cell subsets, gangliosides modulate the prolifera-
tion and function of monocytes [149]. For instance, expos-
ing LPS-stimulated monocytes to GD1a downregulates 
CD40 and CD80, as well as hampers the release of IL-12 
and TNFα [120, 124]. Moreover, incubation of monocytes 
with specific gangliosides impairs Fc receptor expression 
(GM3 and GM2), reduces IL-1 production (GM1 and GD3), 
and decreases TLR signaling [93, 117]. Additionally, GM3 
suppresses monocyte adhesion to endothelial cells by inhib-
iting ICAM-1 and VCAM-1 expression on endothelial cells 
through activation of NF-κB [123] (Table 2; Fig. 3).

4.7  Myeloid‑derived suppressor cells (MDSCs)

Tumor-infiltrating MDSCs are a heterogeneous population 
of myeloid cells known to have many immunosuppressive 
properties, including recruitment of Tregs and inhibition of 
 CD8+ T cell infiltration. To study the role of gangliosides 
shed by tumor cells, Wondimu et al. used a novel tumor 
cell created by oncogenic transformation of murine embry-
onic fibroblasts in which the GM3 and GM2 synthase were 
knocked-out [150]. This KO rendered the tumor cells com-
pletely devoid of gangliosides and resulted in decreased 
tumor growth in vivo and less infiltration of MDSCs in the 
TME. The exact mechanism on how gangliosides enhance 
MDSC remains unclear; however, it might be due to altered 
chemokine release. In addition, gangliosides can induce the 
production of iNOS and Arg-1, which are crucial factors for 
the MDSC-induced immunosuppression [150].

5  Discussion and outlook

Gangliosides play crucial roles in the context of tumor 
immunity. During malignancy, changes occur in the gly-
cosphingolipid composition present on the surface of tumor 
cells, which aid in tumor progression through inhibition of 
the immune system [11]. Cancer cells have the ability to 
shed gangliosides into the surrounding environment or to 
present them as tumor-associated antigens influencing a 
wide range of immune cells, including T lymphocytes, B 
cells, NK cells, DCs, macrophages, and monocytes. Gan-
gliosides can suppress the activation, proliferation, and 
cytotoxicity of these immune cells to inhibit the anti-tumor 
immune response. However, certain gangliosides also have 
the capacity to activate specific immune cells. This gangli-
oside-mediated immunomodulatory effect depends on the 
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type of ganglioside, the amount of sialylation, and on the 
specific tumor type.

Many aspects of ganglioside-mediated immunomodula-
tion are still unclear, especially regarding individual ganglio-
sides and their specific roles during the anti-tumor immune 
response. Multiple studies have focused on T cells, dendritic 
cells, and macrophages and demonstrated that most gan-
gliosides have potent inhibitory effects on the activation, 
proliferation and functionality of these immune cells. Over-
all, the shedding of gangliosides by cancer cells and their 
suppressive actions appear to be great weapons to counteract 
anti-tumor immunity. Interestingly, the impact of these gly-
cosphingolipids on B cells, NK cells, monocytes, and even 
neutrophils has hardly been investigated. Moreover, most 
of the studies related to the immunomodulatory properties 
of gangliosides have been performed in vitro with isolated 
gangliosides in co-cultures with one specific immune cell 
subset. More elaborate functional assays and in vivo studies 
are needed to gain more insight in the shedding of ganglio-
sides and their immunomodulation in a dynamic and com-
plex environment like the TME.

The gangliosides described in this review can be catego-
rized into gangliosides that exhibit pro-tumorigenic and anti-
inflammatory properties stimulating tumor growth, and gan-
gliosides that exhibit anti-tumorigenic and pro-inflammatory 
properties. Almost all gangliosides, including GM3, GM2 
and GM1, are considered immunosuppressive, whereas 
GD2, GD1b, and GT1b show a dual response depending on 
the tumor type and the interacting immune cell. Remark-
ably, gangliosides containing one or two sialic acid moieties 
appear to be good immune cell inhibitors, thereby promot-
ing tumor progression. On the contrary, the more complex 
gangliosides, carrying more than two sialic acid residues, 
also possess anti-tumorigenic features, stimulating T cell 
proliferation and production of pro-inflammatory cytokines. 
The mechanism behind this phenomenon is unknown, but 
could be related to the fact that simple gangliosides predomi-
nate in most peripheral tissues [5]. Clearly, the molecular 
composition of gangliosides is of great importance in cancer 
immunosurveillance. It is also relevant to mention that sia-
lylated glycosphingolipids are ligands for inhibitory Siglec 
receptors on immune cells (reviewed in [151]). Siglec-1, 
for example, interacts with several gangliosides, including 
GM3, GD1a, GD1b, and GT1b resulting in phagocytosis, 
degradation, and antigen presentation. Siglec-7 and Siglec-9, 
amongst other Siglecs, also engage endogenous gangliosides 
to inhibit immune signaling, such as NK cell cytotoxicity. 
The ganglioside-Siglec axis could be one of the mechanisms 
by which lipid sialoglycans modulate immune responses. 
However, more research is needed to draw strong conclu-
sions about the exact role of ganglioside-Siglec interactions 
in the TME.

Since many tumors upregulate and shed gangliosides, 
they are prime candidates for antibody therapy. Ganglio-
sides present in the bloodstream are a perfect diagnostic 
marker for several tumors and provide targets for antibody 
therapies directed against tumor-associated gangliosides [16, 
152]. Many of these antibodies are now being investigated 
in pre-clinical and clinical studies [9, 14, 25]. For example, 
anti-GD2 is currently being administered to neuroblastoma 
patients in a phase III trial (trial NCT01704716). Addition-
ally, a GD3 antibody-drug conjugate has been administered 
to melanoma patients in a phase I trial (NCT03159117). 
However, so far, these therapies were only partially success-
ful. Synthetic antigens mimicking the carbohydrate moiety 
of GD2 and GD3 gangliosides as vaccines have been tested 
in an in vivo pre-clinical setting. Interestingly, mice vac-
cinated with these synthetic gangliosides had an initial 
γδ T cell response followed by a cascade of  CD8+ T cells 
that infiltrated tumors [153]. Since these proof-of-concept 
synthetic gangliosides induce both a cellular and humoral 
response, these glycomimetic vaccines might be expanded to 
target other tumor gangliosides expressed in several malig-
nancies [153]. In combination with other treatments or as 
an adjuvant therapy, this approach could be a promising 
new lead to combat cancer cells. Nevertheless, exploiting 
tumor-associated gangliosides has been challenging, because 
glycolipids are poor immunogens, as the carbohydrates may 
not be efficiently processed nor presented in the context of 
MHC-I/II [154]. An alternative could be the development of 
chimeric antigen receptor (CAR) T- and NKT cells directed 
against tumor-associated gangliosides. Because of its highly 
tumor-specific expression pattern, GD2-specific CAR-T- 
and NKT cells have already been used in neuroblastoma or 
glioma with promising results [155–157]. The development 
of GD3 CAR-T cells is in a pre-clinical phase, but showed 
promising results in several murine tumor models [158].

In conclusion, this review highlights gangliosides and 
their importance in the complex and dynamic process of 
tumor development and anti-tumor immunity. The impor-
tance of shed- or tumor-associated gangliosides in modulat-
ing the anti-tumor immune response is evident and multi-
disciplinary in nature. We postulate that future research 
should focus more on complex sialylated glycosphingolipids 
and on the Siglec-ganglioside interactions to better under-
stand their physiological role and to expand the horizon for 
targeting gangliosides as an immunomodulatory strategy to 
cure cancer.
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