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Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the 
complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical 
practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against 
metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental 
factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular 
and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell 
signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and 
the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell 
survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that 
redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour 
cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different 
phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment 
of supportive microenvironmental connections, from a redox perspective.
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1 Introduction

Metastasis is the final step of a complex, multi-stage, and 
stepwise pathological process, known as cancer progres-
sion, which is the main cause of cancer-derived mortal-
ity [1]. Through metastasis, tumour cells can disseminate, 
invade, and colonize distant secondary sites initiating a 
phase which is incurable from a clinical perspective. Cellular 
and environmental factors contribute to the process shaping 
the clinical evolution of cancer patients and highlight the 

extraordinary complexity of tumour evolution, which is at 
the base of the inefficacy of current clinical interventions 
and therapies against metastasis [2].

The heterogeneity of tumour cells regarding their mor-
phology, genetic background, and molecular signalling has 
been widely described. In addition and related to tumour cell 
heterogeneity, epigenetic modifications of DNA and/or chro-
matin in response to different environmental circumstances 
lead to changes in the selective regulation of gene transcrip-
tion [3]. The wide variety of cell-intrinsic and cell-extrinsic 
events, the microenvironmental circumstances faced by 
a growing tumour mass, together with individual genetic 
backgrounds, which can either promote or oppose metastasis 
development, lead to the generation of cell subpopulations 
characterized by a significant plasticity and increased meta-
static potential [3, 4]. However, because of the complex-
ity of tumour growth and progression, it is improbable that 
isolated genetic alterations are the sole cause of metastasis. 
Rather, the combination of genetic and epigenetic modifica-
tions, together with metabolic adaptations, might be neces-
sary to fuel tumour progression [5].
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Metastasis is considered an inefficient process based on 
the small proportion of cancer cells, known as disseminating 
tumour cells (DTCs), that colonize an organ which is distant 
from the anatomical site where the primary tumour origi-
nated [6]. Tumour cell dissemination consists of a process 
known as the invasion-metastasis cascade, which involves 
different steps. Likewise, it has been proposed [7] that DTCs 
able to generate a metastatic lesion are distinguished by four 
features known as the four hallmarks of metastasis: motility 
and invasion, plasticity, modulation of the local microenvi-
ronment of the secondary tissue, and colonization.

Specialized tumour cell subpopulations within the pri-
mary tumour mass have been shown to promote tumour 
cell dissemination based on the expression of a family of 
metastasis suppressor genes [8]. Although apparently con-
tradictory, the re-expression of such genes in metastasis-
promoting tumour cells would block tumour cell dissemina-
tion and metastasis growth while stimulating angiogenesis 
and engaging inflammatory cells. The activation of these 
processes would promote the development and establish-
ment of premetastatic niches through the communication of 
cells from the primary tumour with other sites of the body 
[9]. Indeed, it is known that metastasis development is initi-
ated long before any metastatic tumour mass is detectable, 
as initially described by Drs. Kaplan and Lyden [9–11], due 
to the establishment of supportive metastatic environments 
induced by the primary tumour though the secretion of solu-
ble factors and the recruitment of hematopoietic and mes-
enchymal stem cell populations that mobilize and condition 
the secondary site.

Likewise, tumour cell invasion requires alterations in 
the surrounding environment, as well as modifications in 
cell morphology and phenotype. During this step, there are 
three processes that have been considered as dynamically 
regulated: adhesion, reorganization of the extracellular 
matrix (ECM) and motility through the contractility of the 
cytoskeleton.

Adhesion is mediated by integrins and transmembrane 
glycoproteins. These surface molecules are considered the 
main cellular adhesion receptors at the interface with the 
ECM. Furthermore, integrins are associated with almost 
every step of the metastasis cascade through their diverse 
functions as signalling molecules, mechanotransducers, and 
crucial components of the cell migration machinery [12]. 
These molecules are cell surface heterodimers that link the 
actin cytoskeleton to the cellular membrane and mediate 
cell-ECM interactions. The strength of the cellular adhesion 
to the ECM might be regulated through cell-intrinsic signal-
ling pathways, whereas cellular phenotype can be modified 
through changes in cellular adhesion, highlighting the bidi-
rectional nature of this interaction [12, 13].

On the other hand, ECM remodelling occurs through 
the release of degradative enzymes by tumour cells or cells 

associated to the tumour. It has been described that these 
enzymes can act alone or together, through interactions 
that modulate their catalytic activity. Serine proteinases, 
cysteine proteinases, aspartyl proteinases, and matrix met-
alloproteinases (MMPs) are proteases well known to play a 
key role in tumour invasion [14]. However, the function of 
some of these proteolytic enzymes, specifically MMPs, is 
not only the physically demolition of ECM barriers but also 
the modulation of several other cellular processes (such as 
cell growth, differentiation, apoptosis, angiogenesis, chemo-
taxis, and migration) through their substrates and cleavage 
products [15, 16].

Finally, motility during tumour cell invasion has been dis-
tinctly described depending on whether it involves a single 
cell or a group of cells moving in concert through a mecha-
nism known as collective migration [17]. Cell migration is 
classified as mesenchymal or amoeboid, when referring to 
single cell migration, and collective when migration involves 
a coordinated group of cells. These three modes or types 
of cellular migration are interconvertible depending on the 
modulation of cytoskeletal structure [18] and the relative 
levels of adhesion, cellular, and nuclear deformability [19]. 
At the dynamical front edge of amoeboid migration, two 
types of cellular protrusions have been distinguished: amoe-
boid blebby and ameboid filopodial/pseudopodal. Amoe-
boid migration is also characterized by ability of the cells to 
deform their body, maintaining the tissue architecture and 
weakly adhering to its ECM [20]. Conversely, mesenchymal 
migration showed a stronger adhesion and capability of tis-
sue realignment and remodelling through deposition of ECM 
and cytokines [21]. Cells undergoing mesenchymal migra-
tion are characterized by an elongated shape, decreased 
cell–cell interactions, and increased motility. Tumour cells 
are known to achieve this characteristic morphology through 
a process known as epithelial-to-mesenchymal transition 
(EMT). EMT is characterized by a decrease in the cellular 
expression of epithelial-specific Cadherin-1 (CDH1) and 
the increase of Cadherin-2 and/or -3 (CDH2 and CDH3, 
respectively) enabling more motility and individual migra-
tion in the cells [22]. EMT will be further discussed in the 
context of redox signalling in metastasis, as part of specific 
sections in this review. Regarding to collective migration, 
three additional subtypes of collective movement have been 
described, which are characterized by an increasing degree 
of cell–cell adhesion: neuronal, epithelial (sheet/strand or 
ductal/glandular), and endothelial (vascular) collective 
migration. The morphological and molecular mechanisms 
regulating collective migration have been recently reviewed 
elsewhere and the readers are referred to these articles for 
more information [23, 24].

Once local invasion is completed, cells must intrava-
sate the circulatory system becoming circulating tumour 
cells (CTCs). To the succeed of this step, the ECM and the 
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basement membrane must be partially degraded, so tumour 
cells can push between endothelial cells extending filopodia 
into the lumen, preserving the integrity of the endothelial 
barrier [7, 25]. Although the metastatic process is highly 
inefficient, early steps in the metastatic cascade are achieved 
by tumour cells more frequently than later steps. For exam-
ple, the number of tumour cells shed into the bloodstream 
is significantly higher than the number of tumour cells that 
eventually will give raise to an active metastatic lesion [26, 
27]. During their journey through the bloodstream, tumour 
cells are in contact with leukocytes, lymphocytes, and other 
immune components. Tumour cells have been observed to 
evade immune system by downregulating the expression 
of antigens, producing factors that help tumour cells to be 
recognized as “normal,” or directly killing immune cells. 
Despite the high degree of adaptability to a hard microen-
vironment, as it is the bloodstream, a significant proportion 
of the shed CTCs succumb to the exposure to hydrostatic 
pressures and hemodynamic shear forces [28]. Even when 
CTCs are characterized for being deformable, cell origin 
and biophysical parameters may determine if the cell will 
survive or will be broken by shear. Interestingly, to protect 
cells from shear forces and immune attacks, cancer cells can 
be transported as an embolus or a CTC cluster [29].

After surviving shear forces, tumour cells adhere in a 
selective manner to the endothelium. Endothelial cells found 
in each tissue express characteristic markers or a combina-
tion of them that can be recognized by tumour cells, pro-
moting selective infiltration [30–32]. Apparently, tumour 
cells adhere in a more efficient manner at anatomical loca-
tions where inflammation takes place. After recognition and 
adherence to the endothelium, cancer cells migrate through 
it and encounter the basement membrane. At the basement 
membrane, cancer cells produce proteinases that lead to 
its deformation and squeeze between endothelial cells and 
through holes in the matrix [7, 33]. Extravasation was previ-
ously thought to be a limiting step of the metastatic cascade, 
but even its requirement for the completion of the metastatic 
process has been discussed, as it has been observed that 
tumour cells can form pulmonary metastases through the 
attachment to the lung endothelium and intravascular growth 
[34]. Next, tumour cells start their interaction with the prem-
etastatic niche, which promotes the proliferation and colo-
nization of that secondary site. At this point, colonization 
depends on the ability of DTCs to interpret and adapt to the 
new tissue microenvironment, which will determine tumour 
cell fate. On one hand, tumour cells can remodel the micro-
environment to allow continued growth, leading to the devel-
opment of a clinically detectable metastatic lesion [35, 36]. 
Interestingly, the requirements for colonization of secondary 
tissues are similar to those of the primary tumour, such as 
be provided of enough oxygen and nutrients [37, 38], but in 
the secondary sites, additional players determine DTCs’ fate. 

In this regard, immune cells have been shown to play a role 
in the establishment of the premetastatic niche and tumour 
cell colonization. Neutrophils form the so-called neutrophil 
extracellular traps (NETs) by the extracellular deposition of 
DNA, which promote DTC colonization and growth [39]. 
Conversely, DTCs require to evade immune surveillance 
and clearance to successfully colonize secondary sites and 
grow into a metastatic lesion. Malladi et al. [40] showed that 
DTCs self-impose a slow-cycling state through the auto-
crine inhibition of Wnt signalling and downregulation of 
natural killer (NK) lymphocyte ligands, which impeded NK-
mediated recognition and cytolysis and promoted immune 
evasion. The “slow-cycling state” described by the authors 
alludes to a stage of metastasis known as tumour dormancy.

As described above, metastasis is a stepwise process; 
the kinetics of which are highly variable across the dif-
ferent tumour malignancies and within different subtypes 
of neoplasms originated at the same anatomical primary 
location [7]. The highly heterogeneous rates of recurrence 
in breast cancer, depending on the estrogen receptor (ESR) 
status of the tumour, exemplify this phenomenon. Breast 
cancer patients diagnosed with ESR-negative tumours 
have a higher risk of recurrence during the first 5 years 
after diagnosis, as compared to patients diagnosed with 
ESR-positive tumours. On the contrary, patients diag-
nosed with ESR-positive tumours show a higher steady 
rate of recurrence that expands from 5 to 20 years from 
diagnosis [41, 42]. This highly variable and potentially 
long period from tumour diagnosis to the detection of a 
metastatic lesion may result from DTCs. DTCs are thought 
to prevail in a dormant state until the appropriate stimuli 
trigger a switch that promotes colonization of the microen-
vironment and proliferation in the metastatic site, resum-
ing tumour progression and the emergence of a clinically 
active metastatic lesion [6]. Different concepts have been 
coined in relation to tumour dormancy. Tumour dormancy 
can be the result of a proliferative arrest at the G0 phase of 
the cell cycle (tumour cell dormancy), or the consequence 
of a balance between proliferation and apoptosis of cancer 
cells (tumour mass dormancy) [43, 44]. On one side, data 
from different studies have associated apoptosis in tumour 
mass dormancy with the inexistence of a proper vascular-
ity providing sufficient nutrients and oxygen, known as 
angiogenic dormancy [45, 46]. On the other side, tumour 
mass dormancy has also been linked to the response of the 
immune system, probably due to the coordinated activity 
of cytotoxic CD8 + T cells, memory T cells, and humoral 
response, which is called immune system-induced dor-
mancy [43]. Despite the potential involvement of these 
different and presumably non-exclusive modes of tumour 
dormancy along the metastatic cascade, tumour cell dor-
mancy has been best characterized, both at the molecular 
and clinical levels, in the context of metastasis.
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As mentioned before, microenvironment has been shown 
to play a key role in the establishment and induction of 
tumour cell dormancy. Early seminal studies have demon-
strated that DTCs undergo growth arrest and enter dormancy 
when they are not able to achieve appropriate interactions 
with the ECM. Supporting this idea, Aguirre-Ghiso et al. 
[47] described that the in vivo downregulation of urokinase 
plasminogen activator receptor (uPAR) induces tumour 
dormancy by inhibiting the interaction of the uPA/uPAR 
proteins with the α5β1 integrin. The downregulation of this 
interaction decreased tumour cell adhesion to fibronectin and 
reduced the activation of mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase (ERK) path-
way. An additional study reported that the uPA/uPAR inter-
action activate the generation of insoluble fibronectin fibrils 
inhibiting p38 MAPK activity. Furthermore, the authors also 
concluded that depending on p38 MAPK/ERK activity ratio 
Hep3 cells, a model of human head and neck squamous cell 
carcinoma (HNSCC) showed a distinct proliferative status. 
Hep3 cells showed growth arrest when the ERK/p38 ratio 
was high due to p38 phosphorylation and activation [48]. 
Interestingly, downregulation of uPAR in Hep3 cells inhib-
ited focal adhesion kinase (FADK 1) phosphorylation and 
downstream proto-oncogene tyrosine-protein kinase Src 
(Src) activation leading to cellular dormancy in vivo [49].

In line with these findings, MDA-MB-231 breast cancer 
cells infiltrated into the bone marrow have been shown to 
upregulate the expression of Src kinases and upregulate the 
phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, 
also named AKT) pathway, as a mechanism of survival in 
response to stromal cell-derived factor 1 (SDF-1)/C-X-C 
chemokine receptor type 4 (CXCR-4) and tumour necrosis 
factor ligand superfamily member 10 (TNFSF10, also named 
TRAIL), which are highly expressed in the bone microen-
vironment [50]. Barkan et al. found that the dormant-to-
proliferative switch was dependent on the engagement of 
integrin β1 (ITGB1) and downstream signalling via activa-
tion of FADK 1, Src, ERK, and myosin light-chain kinase 
(MLCK) in breast cancer D2.0R cells. They demonstrated 
that ITGB1-mediated phosphorylation of myosin light chain 
by MLCK is necessary for the development of actin stress 
fibers and proliferative growth. When either ITGB1 or 
MLCK were inhibited, the dormant-to-proliferative switch 
was prevented and a significant reduction of the metastatic 
burden was observed in vivo [51]. In addition, the authors 
showed that the dormant-to-proliferative switch was driven 
by cytoskeletal reorganization in otherwise dormant D2.0R 
cells due to the enrichment of the metastatic niche with type 
I collagen [52]. Lastly, the team showed that combination 
treatment eliciting the simultaneous inhibition of Src and 
ERK1/2 could induce apoptosis in dormant breast cancer 
cells [53]. In addition, a recent study revealed that D-HEp3 
(dormant HNSCC) DTCs reorganize the ECM through the 

secretion of type III collagen via DDR1-mediated STAT1 
signalling to maintain tumour cell dormancy. Conversely, 
the elimination of collagen III re-established the prolifera-
tive behavior of cancer cells and changes in the structure 
and quantity of collagen during the dormant-to-proliferative 
transition were observable [54].

Other components of the microenvironment, such as the 
vascular system, have also been studied in the context of 
tumour cell dormancy. The endothelium has been shown 
to promote breast tumour cell dormancy via the expres-
sion and release of thrombospondin-1 (TSP-1). Conversely, 
the authors found that DTC proliferation was activated by 
endothelial tip cells in the neovasculature through secretion 
of transforming growth factor-beta (TGFβ) and periostin 
[55, 56]. Finally, a recent study showed that the interaction 
of breast DTCs with resident epithelial cells of the second-
ary microenvironment significantly impacted tumour cell 
dormancy. Montagner et al. [57] showed that dormant breast 
DTCs in the lung interacted with alveolar type 1 epithelial 
cells leading to the formation of fibronectin fibrils and driv-
ing integrin-mediated pro-survival signals. Mechanistically, 
the interaction was mediated by the secreted frizzled-related 
protein 2 (FRP-2), whose expression inhibition reduced the 
number of dormant breast DTCs.

While environmental factors have been studied and thor-
oughly discussed in the context of tumour dormancy induc-
tion and maintenance, only few studies have addressed the 
intrinsic molecular mechanisms which allow dormant DTCs 
to survive in the metastatic niche for extended periods. In 
this regard, autophagy, which is an evolutionary conserved 
mechanism of cell survival opposing metabolic stress, has 
been shown to promote dormant DTCs survival [58]. Inter-
estingly, this and other studies that will be discussed later 
in this review highlight the key role of redox signalling and 
the intracellular redox balance in tumour cell dormancy and 
metastasis. Herein, we will review the current experimental 
evidence showing the determining role of redox biology and 
redox signalling along the metastatic cascade. In addition, 
we will discuss the potential therapeutic implications of such 
knowledge in the design and implementation of new and 
improved antineoplastic therapies.

2  Redox signalling in tumour progression

ROS are produced intracellularly as a by-product, by mito-
chondria and other cellular elements, and exogenously by 
pollutants, tobacco smoke, drugs, xenobiotics, and radiation. 
Cancer cells exhibit persistently high levels of ROS because 
of genetic, metabolic, and microenvironment-associated 
instability [59–61]. Therefore, cancer cells are chronically 
exposed to sublethal levels oxidative stress which are known 
to modulate cell signalling and fate. At this point, it is worth 

52 Cancer and Metastasis Reviews (2023) 42:49–85



1 3

to review the current concept of oxidative stress, which has 
evolved since it was first introduced by the scientific litera-
ture. Oxidative stress is considered a cellular state in which 
living cells are exposed to highly reactive oxidizing mol-
ecules. Consequently, the pro-oxidant/antioxidant balance 
of the cell is disrupted in favor of pro-oxidant processes 
leading to a wide variety of cellular responses, ranging from 
the modulation of signalling networks to apoptosis due to 
persistent and/or severe oxidative damage [62–64].

Accumulated evidence has suggested that highly meta-
static cancer cells contain high levels of ROS and that intra-
cellular redox state governs crucial steps for the metastatic 
process promoting cell invasion and metastatic spread. Early 
experiments showed that treatment of carcinoma cells with 
 H2O2 prior to intravenous injection into mice enhanced 
metastasis [65]. Additionally, subpopulations of the low- 
or non-motile breast cancer cell line MCF-7 that possess 
higher levels of endogenous ROS, as compared to the paren-
tal cell line, showed increased motility. In addition, ortho-
topic breast tumours generated with these “high endogenous 
ROS” cell subpopulations metastasized to the lung, liver, 
and spleen while the orthotopic tumours generated using 
the parental MCF-7 line did not [66]. The role of ROS in 
metastasis is also supported by the fact that ROS attenuation 
by antioxidants suppressed hypoxia-induced metastasis of 
human pancreatic cancer cells in a xenograft nude mouse 
model [67].

Mechanistically, ROS have been found to increase the 
expression and/or activate MMPs, adhesion molecules [68], 
epidermal growth factor (EGF) [69], epidermal growth fac-
tor receptor (EGFR) [70], and vascular endothelial growth 
factor (VEGF) [71] whose upregulation and activity is 
known to be crucial along the metastatic cascade. Several 
genes relevant to EMT, including CDH1, integrins, and 
MMPs, have shown to be directly or indirectly regulated 
by intracellular ROS levels [71]. Interestingly, the dismu-
tation of mitochondrially generated superoxide to  H2O2 is 
considered an important step in oxidative stress-mediated 
expression of MMP genes [72]. In this line, the treatment of 
SCp2 mouse mammary epithelial cells with the ROS scav-
enger N-acetyl-L-cysteine (NAC) abolished EMT though the 
inhibition of the expression of MMP-3, a stromal protease 
that is upregulated in mammary tumours [73]. Additionally, 
to modulate expression of MMP genes, ROS can lead to the 
direct activation of MMPs through reaction with thiol groups 
in their catalytic domain [74]. Interestingly, ROS regulate 
not only the expression and activity of MMPs, but also the 
inactivation of their inhibitors, such as the metalloprotein-
ase inhibitor (TIMP) [75, 76]. Increased MMP activity has 
also been associated with angiogenesis, increased tumour 
cell invasion, and blood vessel penetration [77–80]. A role 
for ROS in angiogenesis though MMPs increase has been 
evidenced. ROS-induced secretion of MMP-1 from tumour 

cells promoted vessel growth within the tumour microenvi-
ronment [81]. Moreover, a transient expression of MMP-1, 
MMP-2, and MMP-9 correlated with an increase in ROS 
during formation of capillary-like structures, implicat-
ing that MMP-mediated angiogenesis also occurs through 
upregulation of ROS [82]. On the other hand, cancer cells 
have been shown to purposefully restrain pyruvate from 
entry into mitochondrial oxidative metabolism, given that 
the ROS produced as by-products of mitochondrial respira-
tion exhibit anti-metastasis activity [83].

Resistance to anoikis and independence from cell attach-
ment signals promote tumour cell survival through increased 
generation of intracellular ROS. It has been suggested that 
an increase in oxidative stress mimics autocrine/adhesive 
signals, which in non-tumour cells is mediated by growth 
factor- and integrin-mediated signalling pathways [70, 84, 
85]. The activation of these signalling pathways would con-
tribute to increase the threshold for anoikis induction in 
cancer cells, elevating their disseminating and metastatic 
potentials. Thus, metastatic cancer cells gain increased 
anoikis resistance and survival advantage through increased 
intracellular ROS generation and ROS-mediated signalling.

ROS have also been reported to participate in the regula-
tion of mesenchymal-like tumour cell movement that likely 
involve, besides gene regulation, a direct modification of 
cytoskeleton dynamics through actin glutathionylation [85, 
86]. In general, ROS appear to promote an “explorative” 
behavior whereby membrane protrusions and fast-turnover 
focal contacts with ECM prevail over stable focal adhe-
sions and cell contractility. These characteristics are typi-
cally observed in invadopodia, the actin cytoskeleton-based 
structures that tumour cells use to invade. NADPH oxidases 
(NOX) have been found, concentrated, and activated, at the 
invadopodia of several types of malignant cells [87–89]. 
NOX1-mediated ROS generation has been shown to be 
necessary for the formation of invadopodia [88], where also 
MMP activity is concentrated. Accordingly, invadopodia 
formation is impaired in the absence of NOX-derived ROS 
[88]. ROS generated by NOX have been show to activate the 
cofilin pathway and thus contribute to increased cell migra-
tion [90, 91].

ROS may also promote tumour cell metastasis by increas-
ing vascular permeability [77] and triggering vasodilation 
through activation of the enzyme heme oxygenase 1 (HO-
1), given that HO-1 is able to induce the formation of nitric 
oxide [92]. The sources of ROS and their importance differ 
along the different steps of the metastatic process. Elevated 
ROS levels resulting from mutations in mitochondrial DNA 
have also been shown to promote metastasis [70, 93]. Cell 
detachment during metastasis upregulates pyruvate dehydro-
genase kinase 4 (PDK4) which inhibits pyruvate dehydro-
genase complex (PDHc) and decreases the flux of glucose 
carbon into the tricarboxylic acid (TCA) cycle [94]. On 
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the other hand, cell adhesion and migration are dependent 
on integrin binding to ECM and these are able to elevate 
oxidant levels mainly by increasing prostaglandin G/H syn-
thase 2 (PGHS-2, also named COX-2) [68] but also through 
polyunsaturated fatty acid 5-lipoxygenase (5-LO) and even 
mitochondria [68, 84]. In this context, an increase in mito-
chondrial ROS was linked to a first cellular contact with the 
ECM and increases in cytosolic ROS were shown to contrib-
ute to cytoskeleton remodelling and actin stress fiber forma-
tion during a later phase of the process [84, 95]. In turn, 
these increases in ROS can trigger oxidative stress leading to 
oxidative damage to DNA and genomic instability. Despite 
NOXs have been clearly involved in invasion-related redox 
signalling, mitochondria may also contribute as sources of 
oxidant species in malignant growth [96–99].

On the other hand, the effects of ROS are not specific to 
cancer cells and may result in the destruction of normal cells 
and tissues as well. Changes in the tumour microenviron-
ment can bring about invasion and adhesion processes. Oxi-
dative stress initiated in tumour cells is transferred to can-
cer-associated fibroblasts laterally and vectorially via  H2O2. 
Excess of stromal ROS production has been shown to drive 
the onset of antioxidant defense in adjacent cancer cells, 
protecting them from apoptosis. Moreover, ROS can also 
act as players of immune regulation in cancer development. 
In particular, ROS are likely to participate as immunosup-
pressive agents [100–102] in the tumour microenvironment 
facilitating tumour invasion, metastasis, and resistance. Most 
ROS-sensitive pathways transduce cytoplasmic signals to the 
nucleus, where they influence the activity of transcription 
factors that control the expression of a wide array of genes. 
In this regard, to prevent excessive intracellular ROS, cancer 
cells respond to oxidative stress by inducing the transcrip-
tion of antioxidant enzymes, highlighting the relevance of an 
in-depth knowledge of these pathways for use in elaborating 
therapies that alter ROS levels.

Finally, antioxidant defense systems are expected to 
be also key signalling elements since they also modulate 
redox state. High levels of ROS are usually compensated 
by increased antioxidant capacity of the cancer cells. Due 
to the persistent high ROS microenvironment and increased 
intracellular ROS levels, cancer cells adopt efficient mecha-
nisms of ROS detoxification. Consequently, they show high 
dependency on antioxidant systems for their survival. The 
cell’s defense against ROS includes antioxidant enzymes 
that detoxify ROS and prevent their intracellular accumula-
tion at high concentrations [103]. Evidence suggests that 
cancer progression involves numerous alterations in specific 
metabolic pathways involved in synthesis of proteins, lipids, 
and nucleotides. Besides, there is an increase in the genera-
tion of reductive equivalents, such as NADPH or GSH, and 
redox cofactors, such as NADH and flavin adenine dinu-
cleotide (FADH2). There is a reciprocal crosstalk between 

metabolism and redox balance in cancer cells, with a par-
ticular emphasis on the role of glycolysis, glutaminolysis, 
fatty acid oxidation, one-carbon metabolism, and the pentose 
phosphate pathway [104, 105]. Cell detachment has been 
shown to increase the expression of manganese superoxide 
dismutase (MnSOD), the main mitochondrial antioxidant 
enzyme, to detoxify mitochondrial ROS resulting from 
detachment [106]. Moreover, it has been found that cells 
depleted of MnSOD were hypersensitive to matrix detach-
ment [106]. Therefore, through the activation of the antioxi-
dant systems, cancer cells gain increased anoikis resistance 
and a survival advantage for the completion of subsequent 
steps of metastasis. However, metastatic breast cancer and 
highly invasive pancreatic cancer cells show lower levels 
and activity of the antioxidant enzyme MnSOD [107–109]. 
Other redox proteins with redundant functions, such as 
thioredoxin and peroxiredoxin, may contribute to survive 
the raise in oxidative stress caused by anoikis. Indeed, it has 
been shown that reverse (basolateral-to-apical) transendothe-
lial migration of human melanoma cells is induced by  H2O2 
and can be blocked by thioredoxin [110].

Therefore, redox state has a profound impact on intracel-
lular cell signalling [111]. Not surprisingly, it is considered 
that ROS function as second messengers to regulate multiple 
metastasis-related signalling pathways by interacting with 
different proteins [112]. From a biochemical standpoint, 
the oxidation of redox-sensitive cysteine and/or tyrosine 
residues located within or around the active site of many 
enzymes generates intra- and inter-protein bridges that affect 
their function [113, 114]. These modifications generate a 
wide array of cellular responses [115]. The possible mecha-
nism involved in promoting targeted protein oxidation by 
 H2O2 may involve the ability of ROS-scavenging enzymes, 
such as glutathione peroxidase (GPx), to sense and trans-
duce the  H2O2 signal, which is classified as a redox-relay 
mechanism. Another mechanism proposed is the so-called 
floodgate model in which oxidation causes inactivation of 
the ROS-scavenging enzymes by hyperoxidation or phos-
phorylation of key aminoacids, causing localized increases 
in  H2O2 leading to protein oxidation and loss of function 
[116].

ROS have been shown to regulate numerous signalling 
pathways (e.g., the MAPK and PI3K/AKT pathways) and 
activities of key transcriptional factors (e.g., hypoxia-induc-
ible factor (HIF) and zinc finger protein SNAI1 (SNAI1)) 
to enhance cancer cell migration and invasion. Notwith-
standing, ROS are also associated with epigenetic changes 
in genes. It is established that many transcription factors, 
including activator protein 1 (AP-1), hypoxia-inducible fac-
tor 1-alpha (HIF-1α), heat shock transcription factor 1 (HSF-
1), nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB), nuclear factor erythroid 2-related factor 
2 (Nrf-2), and tumour protein p53 (TP53) are activated by 
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ROS and regulate the redox status of cells [117]. The extent 
to which individual members of the abovementioned net-
work of antioxidant transcription factors are differentially 
activated by oxidative stress is uncertain, although it is 
improbable that all are activated simultaneously. Rather, dif-
ferent transcription factors likely respond to distinct thresh-
old levels of ROS/reactive nitrogen species (RNS), in a con-
centration- and/or time-dependent manner that is probably 
attuned to the coexistence of metabolic stress, proteotoxic 
stress, hypoxia, inflammation, or DNA damage. While these 
transcription factors have all been experimentally shown to 
be involved in carcinogenesis, more recent studies show that 
they also contribute to redox status and are implicated in 
tumour progression [118].

From the extensive collection of experimental data 
summarized in this section, it is possible to conclude 
that the intracellular redox status of cancer cells has 
a profound impact on metastasis and tumour progres-
sion. In the coming sub-sections of this review, we will 
review and analyze the scientific evidence investigating 
the role of redox signalling along the different stages 
of metastasis.

3  Redox signalling during tumour cell 
invasion and dissemination

3.1  EMT

During the initial phase of the metastasis cascade, namely 
tumour cell invasion and dissemination, a fraction of can-
cer cells requires undergoing morphological changes that 
allow them to invade the surrounding environment [119] 
(Fig. 1). These changes are thought to occur via a bio-
logical process which implies a loss of epithelial traits 
towards a gain of mesenchymal traits, named EMT [22]. 
Importantly, it has been described that EMT in tumour 
cells leads to distinct intermediary states, which represent 
a biological continuum between the two absolute pheno-
types, epithelial and mesenchymal. These intermediary 
states are interconvertible and/or reversible given the epi-
genetic nature of the molecular mechanism that modulates 
the phenotypic transitions [120]. This genetic flexibility 
may be behind the higher adaptability to different microen-
vironments observed in DTCs. ROS are involved in several 
biological processes in cancer cells as cellular secondary 
messengers, playing an important role in EMT. Through 
different redox alterations, ROS can modify the biological 
function of proteins, which are sensitive to redox status 
of the cell. In addition to induce molecular and functional 
changes in proteins that are involved in the remodelling 
of the ECM, other proteins implicated in cytoskeleton 
remodelling, the establishment of cellular junctions and 

cell motility, may undergo variations which have a pro-
found impact on metastatic invasion and dissemination  
[60, 121]. For instance, it has been observed that the 
knockdown of NADP-dependent malic enzyme (ME1), 
a major source of reducing equivalents, significantly 
decreased NADPH production and generated ROS, which 
decreased migration and invasion as well as altered EMT 
biomarkers expression. These data suggest that the pro-
motion of EMT mediated by ME1 is driven in an ROS-
dependent manner [121]. Furthermore, ME1 knockdown 
in human colon and lung cancer cells repressed cell 
growth under conditions of glucose starvation and induced 
senescence. In other words, ME1 knockdown diminished 
NADPH and induced high levels of ROS and apoptosis 
when subjected to stress conditions, for example, glucose 
starvation and anoikis [59].

3.2  ECM detachment

Anoikis is a biological process defined as a caspase-
dependent cell death mechanism which is induced by loss 
of integrin-mediated attachment to the ECM [122]. ROS 
modulation during anoikis has been studied through differ-
ent experimental approaches. During matrix detachment, 
it has been observed a deficiency in glucose uptake that 
reduce pentose phosphate pathway (PPP) flux, diminish-
ing NADPH and subsequently increasing ROS intracellular 
levels. However, the expression of the oncogene receptor 
tyrosine-protein kinase erbB-2 (ERBB2) has been shown to 
restore defective glucose uptake, rescuing PPP flux through 
the increase of glucose 6-phosphate. These changes lead to 
the generation of NADPH which fortified the antioxidant 
capacity of the cell [123]. In addition, cellular detachment 
from the ECM activated AMP-activated protein kinase 
(AMPK), which in turn limited NADPH consumption in 
fatty acid synthesis (FAS) and increased NADPH levels, 
through the production of fatty acid oxidation-induced 
NADPH. Therefore, tumour cells are capable to buffer the 
increase of intracellular ROS through the modulation of 
lipid metabolism and the maintenance of the intracellular 
levels of reducing equivalents, such as NADPH [124]. Sub-
sequent studies have corroborated the direct effect of ECM 
detachment on AMPK activation. Interestingly, [125] found 
that AMPK was rapidly phosphorylated and upregulated 
in several cancer cell lines following matrix deprivation. 
Further investigations revealed that this early AMPK acti-
vation upon ECM detachment was triggered by an intra-
cellular increase of ROS and  Ca2+ levels and operated 
through the AMPK upstream activators serine/threonine-
protein kinase STK11 (STK11) and calcium/calmodulin-
dependent protein kinase kinase 2 (CaMKK2). Therefore, 
a  Ca2+-ROS intracellular increase triggers the activation 
of the STK11/CaMKK-AMPK signalling cascade which 
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promotes cell survival following ECM detachment. On the 
other hand, the activity of other antioxidant enzymes, such 
as catalase copper zinc superoxide dismutase (CuZnSOD) 
and MnSOD, in mitigating intracellular ROS levels to 
increase ECM-detached cell survival have been explored. 
Catalase and MnSOD, when antagonized, compromise the 
survival of detached mammary epithelial cells in a spe-
cific manner [126]. These observations were supported by 
another study indicating that overexpression and activity 
of MnSOD facilitate the survival of ECM-detached breast 
cancer cells and metastasis. Furthermore, the same study 
found a positive correlation between histologic tumour 
grade and expression of MnSOD in human breast cancer 
samples [106].

Additionally, the role of mitochondria and amino acid 
metabolism in tumour cell invasion and dissemination has 

been addressed through different experimental approaches. 
Lung carcinoma cells detached from the ECM-used isoci-
trate dehydrogenase (NADP) cytoplasmic (IDH1) to decar-
boxylate glutamine to citrate, which enters the mitochon-
dria and participates in oxidative metabolism to provide 
energy to the cells. Concomitantly, but in the mitochon-
drial compartment, isocitrate dehydrogenase (NADP), 
mitochondrial (IDH2), synthesized NADPH, neutralizing 
mitochondrial ROS and stimulating cell survival [127]. 
Proline metabolism has also been shown to impact metas-
tasis development. Proline has been found to support mito-
chondrial ATP production via proline dehydrogenase 1, 
mitochondrial (Prodh), which produces FADH2, a redox 
cofactor, and provides electrons to the electron transport 
chain, balancing redox homeostasis and enhancing metas-
tasis formation [128].

Fig. 1  Intracellular ROS sources and redox signalling during epi-
thelial to mesenchymal  transition, extracellular matrix detachment, 
and extravasation of tumor cells. Black arrows  indicate increases or 
decreases of activity or levels. Abbreviations: AMPK, AMP-acti-
vated  kinase; Bach1, transcription regulator protein BACH1; ECM, 
extracellular matrix; ERK,  extracellular-regulated kinase; Fbxo22, 
F-box only protein 22; Fe-S, ironsulphur proteins; GSH,  reduced 
glutathione; HIF, hypoxia inducible factor; HO-1, heme oxygenase 

1; JNK, c-Jun-aminoterminal kinase; MMP, matrix metalloprotein-
ase; mTOR, mammalian target of  rapamycin; NF-κB, nuclear fac-
tor κB; NOXs, NAD(P)H oxidases; Notch1, neurogenic locus notch 
homolog protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; 
p38, p38 mitogen-activated protein kinase; PGC1, peroxisome pro-
liferator–activated  receptor γ coactivator-1; PPP, pentose phosphate 
pathway; ROS, reactive oxygen species; SOD, superoxide dismutase
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3.3  Ferroptosis

As mentioned before, there are other redox cellular changes 
that can lead to cell death due to ECM-detachment. A novel 
type of programmed cell death, known as ferroptosis, has 
been related to cell death induction in ECM-detached cells 
[129]. Ferroptosis is characterized by the accumulation of 
lipid hydroperoxides to lethal levels and in an iron-depend-
ent manner [130]. From a biochemical perspective, lipid per-
oxides and other intracellular ROS such as superoxide  (O2−), 
 H2O2, and peroxyl radicals  (ROO•) are generated through a 
cascade of reactions which involve different forms of ROS 
as intermediaries.  O2− is generated extracellularly or intra-
cellularly by NADPH oxidase or the mitochondrial electron 
transport chain, respectively. In the mitochondria,  O2− pro-
duces ferrous iron  (Fe2+) through its release from iron-sulfur 
(FE-S) or the reduction of ferric iron  (Fe3+).  O2− can also be 
dismutated to  H2O2 by superoxide dismutases in the mito-
chondria.  H2O2 penetrate through membranes reacting with 
proteins and DNA, ultimately being detoxified by cellular 
peroxidases.  ROO•, which originated from both the decom-
position of  ONOO− and/or the reaction of  H2O2 with  Fe2+, 
initiates the lipid peroxidation cascade.  ROO• forms lipid 
radicals  (L•) by reacting with lipids, which subsequently 
generate lipid peroxyl radicals through its reaction with oxy-
gen. In a propagation reaction, lipid peroxyl radicals form 
lipid peroxides by reacting with polyunsaturated fatty acids 
(PUFAs) [131].

Sensitivity of the cells to ferroptosis has been associated 
with several biological mechanisms, such as the metabolism 
of amino acids, iron, and PUFAs, as well as glutathione, 
phospholipids, NADPH, and coenzyme Q10 biosynthesis. 
It has been shown that the induction of ferroptosis is driven 
by erastin, which is a small molecule that selectively inhib-
its the cystine/glutamate transport receptor  (Xc− system). 
Cell treatment with erastin inhibits the import of cystine 
and leads to the depletion of glutathione, finally causing the 
deactivation of the phospholipid hydroperoxide glutathione 
peroxidase (PHGPx). PHGPx acts converting lipid peroxides 
that might be toxic, into non-toxic lipid alcohols. Therefore, 
suppression of lipid peroxidation have been described to 
prevent ferroptosis in mammalian cells [130]. Furthermore, 
lipid peroxidation induced by ROS have been considered to 
play an important role in different types of cell death, based 
on chemical and structural alterations of the cell membranes, 
secondary to lipid peroxidation chain reactions [132]. In 
this line, the toxic products generated from lipid peroxida-
tion have been shown to trigger apoptosis through distinct 
pathways, such as NF-kB [133], MAPK [134], and protein 
kinase C (PKC) [135], as well as autophagy via AMPK/
mammalian target of rapamycin complex (mTORC) [136] 
and c-Jun-amino-terminal kinase (JNK)-apoptosis regulator 
Bcl-2 (Bcl-2)/Beclin-1 (BECN1) [134, 137]. Another study 

revealed the important protective role of Nrf-2 against lipid 
peroxidation and, consequently, ferroptosis. Nrf-2 is a key 
regulator of the cellular antioxidant response and controls 
the expression of genes that code proteins which catalyze 
reactions leading to oxidative and electrophilic stress neu-
tralization [138]. In particular, the expression of the  Xc− sys-
tem and PHGPx, which play a prominent role in ferroptosis 
inhibition, is under the control of Nrf-2.

Taken together, these studies exemplify a well-known fact 
in tumour biology, which is that the net effect of intracellu-
lar ROS can either promote tumour cell endurance through 
the activation of pro-survival signalling pathways or induce 
cell death, if the intracellular level increases beyond a lethal 
level that cannot be quenched by the several antioxidant 
mechanisms. Therefore, in order to survive, tumour cells 
might reach a situation of equilibrium through which they 
favor the intracellular raise of ROS, at sub-lethal levels, to 
activate signalling pathways that promote several biological 
processes involved in tumour progression. At the same time, 
the intracellular raise of ROS might be maintained at non-
toxic levels through the action of the antioxidant system. 
This non-physiological redox balance might confer survival 
advantages to tumour cells and be at the base of the meta-
static behavior [139, 140].

4  Infiltration of CTCs and DTCs fate

The adhesion of CTCs to endothelial cells is considered the 
first step of the extravasation. Following migration through 
endothelial parenchyma, cancer cells may reach a distant 
organ, becoming DTCs. At this point, a substantial propor-
tion of DTCs undergo some form of cell death due to the 
several biological hurdles encountered at this phase of the 
metastatic cascade. A minor fraction of the metastatic cells 
which disseminated from the primary tumour will either 
enter a dormant or a proliferative state, in accordance with 
several intracellular and extracellular signals [141, 142] 
(Fig. 2).

4.1  ECM reattachment

In determining cell fate when entering the secondary sites, 
the re-adhesion of tumour cells to the ECM at the metastatic 
niche is known to be rate-limiting step [143]. The biophysi-
cal properties of the ECM have been related to tumour cell 
antioxidant homeostasis. A recent study [144] has shown 
that breast cancer cells cultured on a soft ECM increase the 
production of mitochondrial ROS (mtROS) due to changes 
in mitochondrial dynamics, driven by an increase in peri-
mitochondrial F-actin, which was found to control dynamin-
1-like protein (DRP1) activity and mitochondrial fission. 
These changes conferred enhanced tolerance to oxidative 
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stress through Nrf-2 antioxidant transcriptional response to 
finally provide breast tumour cells with a survival advantage. 
Interestingly, the activation of the F-actin/DRP1/Nrf-2 axis 
was shown to be upregulated in breast tumour dormancy 
models where inhibition of DRP1 and Nrf-2 prevented the 
dormant-to-proliferative switch, showing the deep impact of 
mitochondrial dynamics and redox signalling in DTC fate 
and metastasis.

Not only the biophysical properties of potential second-
ary sites have a profound impact on DTCs fate, but bio-
chemical and metabolism-derived products released to the 
tissue stroma determine the adoption of different survival 
strategies from DTCs. In this line, an enrichment of pyru-
vate in the lung stroma has been shown to enforce the adap-
tation of breast DTCs through the conversion of pyruvate 

to α-ketoglutarate catalyzed by mitochondrial alanine 
aminotransferase 2 (ALT2). The raise in the extracellu-
lar concentration of α-ketoglutarate potentiated mTORC1 
signalling and supporting the remodelling and deposition 
of collagen [145], a known inducer of the dormant-to-pro-
liferative switch and metastasis formation [146]. Indeed, 
metabolic rewiring has been shown to discern between 
micro- and macrometastasis. Using patient-derived-xen-
ograft (PDX) models of breast cancer, Davis et al. [147] 
showed that the expression of genes involved in mitochon-
drial oxidative phosphorylation (OXPHOS) was upregulated 
in micrometastasis as compared to primary tumour cells, 
where expression of glycolytic enzymes were highest. The 
authors corroborated these findings through metabolomic 
data and pharmacologic inhibition of OXPHOS, which 

Fig. 2  Intracellular ROS sources and redox signalling in disseminated 
dormant tumour cells. Black arrows indicate increases or decreases of 
activity or levels. Abbreviations: Akt: protein kinase B; ECM, extra-
cellular matrix; ERBBs, epidermal growth factor (EGF) and its recep-
tors; FoxM1, forkhead box M1; HIF, hypoxia inducible factor; PLD1, 
phospholipase D1; MIG6, mitogen-inducible gene 6 protein; mTOR, 

mammalian target of rapamycin; Notch1, neurogenic locus notch 
homolog protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; 
p38: p38 mitogen-activated protein kinase; PI3K, phosphoinositide 
3-kinase; ROS, reactive oxygen species; SIAH2, SIAH2 E3 ubiqui-
tin-protein ligase; Shh: sonic hedgehog; TGFβ2, transforming growth 
factor-beta 2; Wnt5a, protein Wnt-5a
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further demonstrated its functional importance in the context 
of metastasis since OXPHOS blockade significantly reduced 
metastatic burden in the lungs of their PDX model. Finally, 
Viale et al. [148] showed that oncogene ablation, using an 
inducible model of KRAS-mutant pancreatic ductal adeno-
carcinoma (PDAC), selected a subpopulation of dormant 
PDAC cells which displayed stem cell features and were 
highly dependent on OXPHOS for survival. In addition, 
transcriptomic and metabolic analyses performed in sur-
viving cells revealed major expression of genes regulating 
autophagy and mitochondrial and lysosome activity. Consid-
ering that mitochondrial OXPHOS is a major source of intra-
cellular ROS [149] and that OXPHOS may be a commonly 
activated pathway in quiescent or dormant cancer cells, the 
raise in intracellular ROS and its consequences in dormant 
DTC signalling and survival warrants further investigation.

4.2  Hypoxia

Hypoxia, defined as a biophysical condition of the cellular 
microenvironment by which a tissue is not able to provide 
sufficient oxygen to sustain homeostasis [150], has been 
linked to DTC fate, as it is known to significantly impact 
tumour progression, resistance to the treatment, and metas-
tasis. Indeed, hypoxia is a poor-prognosis feature of solid 
tumours [151]. Hypoxia signalling has been shown to regu-
late diverse steps of the metastatic cascade: EMT, invasion, 
intravasation, survival of CTCs, extravasation, establishment 
of the premetastatic niche, and proliferation from microme-
tastasis to macrometastasis [152]. Under low oxygen, HIF is 
stabilized though the inhibition of its degradation by the von 
Hippel-Lindau disease tumour suppressor (pVHL), conse-
quently being translocated to the nucleus where it promotes 
the expression of genes that lead to the adaptation to the low 
levels of oxygen [153]. Fluegen et al. [154] showed that a 
hypoxic microenvironment induce the reversible upregula-
tion of hypoxia (glucose transporter 1 (GLUT-1), HIF1α) 
and dormancy (COUP transcription factor 1 (COUP-TF1), 
differentiated embryonic chondrocyte gene (DEC2), p27) 
genes in primary breast and HNSCC. Remarkably, post-
hypoxic DTCs were characterized by a dormant phenotype 
and high expression of COUP-TF1, DEC2, p27, and TGFβ2. 
Upon hypoxia, COUP-TF1 and HIF1α were shown to induce 
the expression of p27 and quiescence in tumour cells. How-
ever, dormant DTCs did not show a high-level expression 
of other hypoxia markers, such as GLUT-1. These data sug-
gested that the preservation of the dormant phenotype in 
post-hypoxic DTCs was independent of GLUT-1 expression 
or that additional hypoxia-responsive pathways may contrib-
ute to the maintenance of dormancy in DTCs. In addition, 
following hypoxia exposure, T-Hep3 cells in the lung sig-
nificantly overexpressed TGFβ2 as compared to proliferat-
ing metastases, where its signalling was silenced. In this 

line, the authors suggested that post-hypoxic DTCs home to 
TGFβ2 expressing metastatic niches that may contribute to 
dormancy induction. Indeed, Bragado et al. [155] showed 
that TGFβ2 signalling in the bone marrow activates MAPK 
p38α/β, lowering the ERK/p38 ratio, and thus, inducing dor-
mancy in T-Hep3 DTCs in vivo. The same signalling axis 
has been shown to induce tumour dormancy in a model of 
prostate cancer [156].

In line with these findings, Erler et al. [157, 158] found 
that Lysine Oxidase (LOX), a protein of the ECM, is con-
trolled by hypoxia and HIF. Under hypoxic conditions, 
breast cancer cells in the primary tumour secrete LOX, 
which accumulates in the premetastatic niche and modifies 
the secondary site ECM. LOX crosslinks collagen IV at the 
basement membrane, which is essential for the recruitment 
of CD11b + myeloid cells and secretion of MMP2. In turn, 
CD11b + myeloid cell-derived MMP2 cleaves collagen at the 
pre-metastatic niche, which promotes the invasion of bone 
marrow-derived cells (BMDCs) and metastatic cells. Indeed, 
LOX inhibition significantly decreased metastatic growth. In 
addition, hypoxia has also been shown to induce a quiescent 
state in a model of patient-derived primary lung cancer har-
boring activating EGFR mutation [159]. Mechanistically, 
hypoxia upregulated the expression of mitogen-inducible 
gene 6 protein (MIG-6) a negative regulator of ERBB sig-
nalling, which prevented heterodimer formation of ERBB 
family receptor tyrosine kinases (RTKs) and downstream 
signalling inducing tumour cell quiescence and resistance 
to EGFR tyrosine kinase inhibitor (TKI) treatment. Inter-
estingly, when MIG-6 was downregulated in mutant EGFR 
lung cancer cells under hypoxic conditions, EGFR signal-
ling was restored, promoting the phosphorylation of ERK 
and AKT through increased EGFR-HER3 binding, as well 
as their sensitivity to EGFR-TKI and radiation. In accord-
ance with this results, analyses of tumour samples from lung 
cancer patients with EGFR mutations revealed a significant 
inverse correlation between MIG-6 expression their survival 
rates after the treatment with EGFR-TKI [159].

5  Redox signalling in tumour cell dormancy 
and the dormant‑to‑proliferative switch

After dissemination, cancer cells might enter dormancy. As 
it has already been shown, redox signalling plays a crucial 
role in earlier steps of the metastatic cascade, and it contin-
ues having a deep impact in the onset and maintenance of 
a dormant phenotype and the survival of quiescent DTCs. 
Current bibliography suggests that dormant DTCs activate a 
series of molecular mechanisms aiming to control excessive 
oxidative stress, given that they appear to be highly sensi-
tive to intracellular ROS while in a dormant state. Oxidative 
stress has been found to modulate tumour cell dormancy 
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through the inactivation of Kelch-like ECH-associated pro-
tein 1 (Keap1) and translocation of Nrf-2 into the nucleus, 
leading to the promotion of neurogenic locus notch homolog 
protein 1 (Notch1) and sonic hedgehog protein (SHH) tran-
scription and subsequently activating downstream signalling 
[160, 161]. Together with Notch1 and SHH-initiated signal-
ling pathways, Wnt signalling may sustain DTC dormancy 
through transcription of stemness-related genes [162]. The 
important role of Wnt signalling in dormancy maintenance 
has been suggested by additional studies. Protein Wnt-5a 
(Wnt5a) expression in the osteoblastic niche has been found 
to promote dormancy in a model of prostate cancer via the 
activation of the Wnt5a/tyrosine-protein kinase transmem-
brane receptor ROR2 (ROR2)/E3 ubiquitin-protein ligase 
SIAH2 (SIAH2) signalling axis [163]. This study showed 
that the reversible induction of dormancy was driven by 
Wnt5a through enhanced expression of SIAH2, which in 
turn repressed Wnt/β-catenin signalling. Besides, this mech-
anism of dormancy induction was showed to depend on 
ROR2, whose expression was inversely correlated with the 
disease-free survival (DFS) rates in prostate cancer patients 
who developed bone metastasis. Finally, the disrupting effect 
of itraconazole, a Wnt inhibitor, was evaluated in a patient-
derived colorectal cancer model. The authors observed an 
increased cytotoxic vulnerability in dormant colorectal can-
cer cells exposed to itraconazole, supporting the role of Wnt 
in the maintenance of a dormant phenotype in DTCs [162].

As it has been mentioned before, cell stress has a pro-
found impact in the modulation of molecular signalling path-
ways leading to tumour cell dormancy. Two stress-related 
processes have been recently studied regarding dormant 
DTC survival and maintenance: autophagy and unfolded 
protein response (UPR).

5.1  Autophagy

Autophagy is an evolutionarily conserved physiological 
mechanism involved in the maintenance of cell homeostasis 
under metabolic stress [164]. This physiological mechanism 
can be hijacked by tumour cells to survive the numerous 
stresses encountered along the metastatic cascade. In this 
regard, Vera-Ramirez et al. [58] reported that breast DTCs 
activate autophagy via BECN1-independent non-canonical 
pathway to survive upon the establishment of a cell dor-
mancy program both in vitro and in vivo. Pharmacological 
inhibition (through administration of different autophagy 
inhibitors, such as bafilomycin, 3-methyladenine, and 
hydroxychloroquine) or genetic (through knockdown of 
autophagy related 7 (ATG7) but not BECN1) means dra-
matically impaired the survival of dormant breast cancer 
cells. Mechanistically, autophagy inhibition resulted in the 
intracellular accumulation of depolarized mitochondria and 
toxic oxidative by-products which drove apoptotic cell death. 

Interestingly, quenching of mitochondria-derived ROS res-
cued cell viability, further showing the crucial importance of 
ROS management in the survival of dormant DTCs. Addi-
tionally, autophagy has been shown to be activated under 
hypoxic conditions and decrease intestinal inflammation 
through the downregulation of the mTOR/NOD-like recep-
tor, pyrin domain-containing 3 (NLRP3) pathway [165]. 
Moreover, whereas the inhibition of the PI3K/AKT/mTOR 
and MAPK signalling pathways resulted on autophagic cell 
death [166], lower levels of PI3K in association with micro-
environmental factors were correlated with the promotion of 
autophagy-induced dormancy in ovarian cancer [167]. These 
data highlight the hormetic and environment-dependent net 
effect of the activation of the molecular networks related to 
redox signalling and autophagy. On the other hand, oxida-
tion of ATG4, ATG7, and ATG3 have also been found to 
decrease autophagy. A study revealed that ATG4B activity 
was reversibly modulated by the formation of intramolecu-
lar disulfide bonds in response to oxidative stress. Modifi-
cations were described in Cys292 and Cys361 residues of 
the ATG4B protein [168]. Furthermore, inactive ATG3 and 
ATG7 are covalently bond to microtubule-associated protein 
1A/1B-light chain 3 (LC3) and protected from oxidation. 
When activated, LC3 is transferred to phosphatidylehanola-
mine, the covalent interaction is lost, and the catalytic thiols 
of both ATG3 and ATG7 are exposed to inhibitory oxida-
tion, preventing LC3 transfer and autophagy [169].

5.2  Unfolded protein response

The accumulation of unfolded or misfolded proteins in the 
ER lumen is a salient feature of specialized secretory cells 
leading to a cellular condition known as endoplasmic reticu-
lum (ER) stress. ER stress is counteracted by the activation 
of the unfolded protein response (UPR), which is a homeo-
static signalling network that either promote the recovery 
of ER function or potentiates apoptosis, depending on the 
duration and intensity of the stress stimuli. Chronic UPR 
has been shown to be involved in the pathogenesis of a wide 
variety of human diseases, from diabetes to cancer, high-
lighting the role of this highly interconnected signalling net-
work as a stress “dimmer” in the cell, beyond ER stress and 
protein folding [170–172]. Indeed, some types of cellular 
stress and extracellular stress signals, such as hypoxia, acti-
vate p38 MAPK which can in turn inhibit the expression of 
Forkhead Box protein M1 (FoxM1), Proto-Oncogene C-Jun 
(c-Jun), and the uPAR transcripts, supressing the activation 
of ERK and triggering downstream UPR signalling [173]. 
An analysis revealed the upregulation of ER-stress response 
genes in HEp3 cells under p38 regulation: binding immu-
noglobulin protein (BiP, also known as GRP-78), protein 
disulfide-isomerase (PDI)/protein disulfide-isomerase A3 
(PDIA3, also known as ER60), serpin H1 (HSP47), and 
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cyclophilin B [174]. The data showed that under normal con-
ditions, BiP is bound to domains located in the ER-luminal 
kinase receptors protein kinase R-like endoplasmic reticu-
lum kinase (PERK), serine/threonine-protein kinase/endori-
bonuclease IRE1 (IRE1α), and activating transcription factor 
6 (ATF6), among others. However, in the presence of mis-
folded proteins, BiP dissociated from the protein complexes 
and translocated to the ER lumen activating PERK, IRE1α, 
and ATF6. When active, PERK phosphorylated eukaryotic 
translation initiation factor 2A (eIF-2A) which inhibited 
eIF-2A-dependent protein synthesis and induced ATF4 to 
upregulate the expression of genes associated with protein 
synthesis and antioxidant response. The activation of this 
molecular cascade promoted cell survival and growth arrest. 
PERK has also been considered to induce the activation of 
the Nrf-2 transcription factor, to inactivate C/EBP-homolo-
gous protein (CHOP) and block apoptosis [175]. Activated 
IRE1α promoted the spliced form of X-box-binding protein 
1 (XBP-1) (XBP-1 s), which is a transcription factor that 
binds to chaperones and endoplasmic-reticulum-associated 
protein degradation (ERAD) gene promoters to modify or 
degrade misfolded proteins. IRE1α can stimulate Grp78/BiP 
to block apoptosis regulator BAX (Bax)-elicited proapop-
totic signals. Last, ATF6 has also been shown to promote 
cell survival in HEp3 cells through the activation of mTOR 
signalling, controlled by GTP-binding protein Rheb (Rheb) 
[176–178].

Therefore, the UPR-mediated transcriptional induction of 
genes that increase protein folding capacity and antioxidant 
machinery is an important mechanism to re-establish cellu-
lar homeostasis and to alleviate protein folding stress [176, 
177]. In addition, protein post-translational modifications, 
which are key for appropriate folding, are frequently highly 
sensitive to the redox status of the cell. The formation of 
disulfide bridges is catalyzed by protein disulfide isomerases 
and other oxidoreductases which, in turn, contribute to ROS 
generation and redox unbalance in the ER [172, 178]. Evi-
dence suggests that ROS production and oxidative stress are 
not only coincidental to ER stress. Rather, ROS are an inte-
gral part of the UPR signalling network, supporting either 
proapoptotic or proadaptive UPR signalling [170–172].

5.3  Intracellular molecular mechanisms

Regarding to the onset of proliferation following quiescence, 
several lines of evidence support the role of the microen-
vironment in triggering the dormant-to-proliferative switch 
of DTCs in the metastatic niche, as reviewed in previous 
sections of this manuscript. On the contrary, our knowledge 
about the intracellular molecular mechanisms contributing 
to the dormant-to-proliferative switch is much more lim-
ited, although redox signalling is thought to play an impor-
tant role in the reactivation of dormant DTCs. For instance, 

Nrf-2 has been shown to be upregulated upon downregula-
tion of ERBB2 in breast cancer cells and secondary to an 
increase in intracellular ROS due to altered cellular metabo-
lism. It has also been reported that Nrf-2 was activated dur-
ing dormancy and its signalling has been found to induce the 
re-establishment of redox homeostasis in recurrent tumours 
and upregulation of de novo nucleotide metabolism, ulti-
mately promoting the reactivation of dormant breast cancer 
cells [179].

It has also been suggested that lipid metabolism is rel-
evant to this step of the metastatic cascade. Pascual et al. 
[180] showed that a sub-population of metastasis-initiating 
oral carcinoma cells (defined by overexpression of CD44) 
expressed high levels of the fatty acid receptor CD36 and 
lipid metabolism genes. Supplementation with palmitic 
acids or a high-fat diet fuelled tumour proliferation and met-
astatic outgrowth in vitro and in vivo, respectively. Blocking 
CD36 dramatically inhibited the formation of metastasis in 
vivo. These data showed that metastatic cells rely on lipid 
metabolism in early steps of the metastatic colonization and 
growth.

Remarkably, a series of experiments using organoid cul-
tures and mouse models revealed that tumour recurrent cells 
showed increased ROS intracellular levels and modified lipid 
metabolism. When the synthesis or intramitochondrial trans-
port of fatty acids was inhibited, the levels of cellular ROS 
and DNA injury decreased, promoting tumour cell prolifera-
tion. Moreover, a significant reduction on the rate of in vivo 
recurrence was achieved through NAC-dependent ROS scav-
enging and proliferation inhibition through treatment with 
progesterone antagonist [181]. Interestingly, Carracedo et al. 
[182] unveiled the role of promyelocytic leukemia (PML) 
gene as an inhibitor of peroxisome peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1-α) 
acetylation and as a potent activator of peroxisome prolifera-
tor-activated receptors (PPAR) signalling and fatty acid oxi-
dation in breast cancer. PML expression promoted tumour 
cell invasion in vitro and was correlated with poor progno-
sis in breast cancer patients. Therefore, fatty acid oxidation 
and fatty acid metabolism have been shown recurrently to 
critically modulate metastasis development. Lipid metabo-
lism is intimately ligated to redox signalling, both as a ROS 
source through their catabolism [183] and as a ROS intracel-
lular scavenger when stored as cytoplasmatic lipid droplets 
(LDs) [184]. In the context of metastasis, the antioxidant 
role of intracellular lipids stored in the form of LDs has 
been shown to protect DTCs against paclitaxel-induced ROS 
production and promote breast cancer metastasis. Mechanis-
tically, metastasis competent cells overexpressed FoxM1, 
whose transcriptional activity stimulated the expression 
of phospholipase D1 (PLD1), which in turn, promoted LD 
accumulation [168]. These innovative approaches and data 
underscoring the antioxidant and protective role of lipids, 
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beyond their traditional metabolic and signalling roles, open 
new research avenues in our understanding of dormant DTC 
biology and metastatic relapse.

6  Redox signalling during colonization 
and metastatic outgrowth

The functional contribution of ROS to metastasis forma-
tion and metastatic outgrowth has been studied deepest 
as compared to any other phase of the metastatic cascade 

[111] (Fig. 3). During some stages, cancer cells have higher 
basal ROS levels than normal cells, but these increases can 
be transient since cancer cells can increase its antioxida-
tive capacity to adapt itself to excessive ROS conditions. 
Moreover, cancer cells are known to induce mechanisms 
that limit oxidative damage and repair cellular structures 
damaged by ROS, all of which endorses them with a higher 
oxidative stress tolerance. However, certain ROS level over 
the cytotoxic threshold could selectively kill cancer cells 
by different mechanisms. As mentioned, ROS plays an 
essential role in the cellular signalling that regulates cell 

Fig. 3  Intracellular ROS sources and redox signalling in the dormant-
toproliferative switch and the metastatic outbreak of disseminated 
tumor cells.  Black arrows indicate increases or decreases of activ-
ity or levels. Abbreviations: ATG3, autophagy related 3; ATG4, 
autophagy related 4; ATG7, autophagy-related 7; BMDCs, bone 

marrow-derived cells; COX-2, ciclooxygenase-2; ECM, extracellular 
matrix; HIF, hypoxia-inducible factor; LOX, lysyl oxidase; MMP2, 
matrix metalloproteinase 2; OXPHOS, oxidative phosphorylation 
proteins; PPARs, peroxisome proliferator–activated; ROS, reactive 
oxygen species
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proliferation and cell survival, but chronic oxidative stress 
situations with maintained higher levels of ROS could result 
in the disruption of homeostasis and cell death. However, it 
is very difficult to establish a ROS threshold defining cell 
fate, in part as consequence of difficulties measuring ROS 
levels at real time and cell redox state. In addition, exposure 
of in vitro and in vivo models to oxidative stress is difficult 
to time and modulate since ROS exposure results in oxida-
tive chain reactions that expand intracellularly and cannot be 
controlled experimentally. Taking into account these techni-
cal considerations, the development of redox biosensors is 
warranted.

6.1  The hypoxia and HIF signalling pathway

As mentioned before, the tissue microenvironment is known 
to play a pivotal role in cancer metastasis. A widespread 
characteristic of tumours is their inability to develop ade-
quate blood vessels with the consequence being relative 
hypoxia. Hypoxic conditions stimulate blood vessel devel-
opment, whereby the blood flow in these new vessels is 
often chaotic, causing oxidative stress [77]. Consequently, 
within a growing tumour mass, cancer cells repeatedly face 
cycles of hypoxia and reoxygenation [85].  H2O2 secreted 
by cancer cells has been proposed to mimic the effects of 
hypoxia under aerobic conditions in adjacent fibroblasts and 
other stromal cells, resulting in production of ROS, which 
has been shown to stimulate angiogenesis. For instance, it 
has been shown that the administration of Mn(III) ortho-
tetrakis-N-ethylpyridylporphyrin, a potent scavenger of ROS 
and RNS, attenuates angiogenesis in vivo, modifies the den-
sity of microvessels, and decreases the proliferation rate of 
endothelial cells in a mouse model of breast cancer [185].

Moreover, glucose deficiency is one of the main factors 
leading to oxidative stress in tumours, either in the stage of 
tumour initiation or progression [186]. In relation to metas-
tasis, it is important to note that detaching from ECM leads 
to ATP deficiency owing to a reduction of glucose trans-
port [123], which would lead to a strong induction of ROS 
production. VEGF expression can be regulated by nutrient 
deprivation and hypoxia, which both increase intracellular 
levels of ROS [187]. Increased generation of  H2O2 also 
led to accumulation of HIF-1α [188]. MnSOD suppresses 
the induction of HIF-1α in human breast carcinoma cells 
[188]. Likewise, suppression of endogenous ROS by mito-
chondrial inhibitors or GPx decreased HIF-1 induction and 
VEGF expression in cancer cells [189]. Moreover, it has 
been reported in three different tumour mouse models that 
antioxidants, as NAC and vitamin C, exert their antitumoural 
effect mainly acting on HIF-1α level [190]. These results 
suggest that both, superoxide and  H2O2, may contribute to 
HIF-1α accumulation. At moderate levels, ROS induce tran-
scription of HIF1A gene and stabilize the encoded protein by 

inhibiting the activity of the iron-dependent prolyl 4-hydrox-
ylase (4-PH) as a consequence of catalytic  Fe2+ oxidation 
of Prolyl hydroxylase domain-containing protein 2 (PHD2) 
[191]. This mechanism seemed involved in physiological 
stabilization of HIF under mild (1–3%  O2), but not deep, 
hypoxia, a condition reportedly accompanied by mitochon-
drial production of ROS [192, 193]. This is probably medi-
ated by an increase in basal levels of  H2O2 and superoxide, 
due to decreased expression of several antioxidant enzymes 
such as peroxiredoxins (Prxs) and CuZnSOD [194]. Moreo-
ver, S-nitrosylation of HIF at Cys-800 has been shown to 
increase factor stability and transcriptional activity, likely 
by promoting HIF binding to p300 [195]. Interestingly, PH 
inhibition by ROS may contribute to normoxic accumulation 
of HIF in cancer cells [196, 197].

As a consequence of hypoxia-induced HIF-1α activa-
tion, HIF-1 and its cofactor p300 induced the expression 
of pro-angiogenic genes [198], such as VEGF and VEGF 
receptors [199, 200]. HIF-1 stabilization is important for 
cancer metastasis due to several reasons. Hypoxia, through 
HIF activation, drives cancer cell invasion and metastatic 
progression in various cancer types. In epithelial tumours, 
hypoxia induces the transition to amoeboid cancer cell dis-
semination. Accordingly, hypoxia triggers EMT in several 
human tumour cells through the generation of mitochondrial 
ROS which correlated with elevated intracellular levels of 
HIF [201]. Invasion and metastasis in cells where metastasis 
was promoted by the generation of mitochondrial ROS as 
consequence of mitochondrial DNA mutations have been 
also associated with elevated intracellular levels of HIF, 
suggesting a direct link between ROS and the pro-invasive 
program triggered by this transcription factor [93].

Moreover, HIF-1 regulates glycolysis-related genes and 
inhibits mitochondrial respiration resulting in metabolic adap-
tion of tumour cells to hypoxia [202, 203]. Likewise, HIF-1 
prevents intracellular acidification, which leads to an increased 
formation of lactate and  CO2 [202], both compounds favoring 
ECM degradation and cell invasion [204]. In addition, HIF-
1α-induced promotion of metastasis and EMT in osteosarcoma 
cells has been shown to depend on a reduction of intracellular 
ROS production. In osteosarcoma (OS) cells under hypoxic 
conditions, HIF-1α induces the overexpression of the mito-
chondrial NADH dehydrogenase (ubiquinone) 1 alpha sub-
complex 4-like 2 (NDUFA4L2) protein, which in turn pro-
moted OS cell migration, invasion, proliferation, and EMT. 
Drug-and genetically-induced inhibition of the NDUFA4L2 
protein negatively impacted OS cell survival, which could be 
in part compensated through a reduction in intracellular ROS 
levels through autophagy activation [205].

Along with oxygen availability, interstitial fluid hydro-
static pressure that generally increases with the rapid growth 
of malignant tumours also has been shown to influence HIF 
activity. Higher protein levels of HIF-1α have been found 
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in Lewis lung cancer (LLC) cells that were exposed to 
50 mmHg hydrostatic pressure for 24 h. This condition was 
associated with upregulation of numerous metastasis-pro-
moting genes (hepatocyte growth factor (HGF), cadherin 
11 (CDH11), and ephrin type-B receptor 2 (EPHB2)) 
and the downregulation of metastasis suppressing genes 
(KiSS-1 metastasis suppressor (KISS1), spleen associated 
tyrosine kinase (SYK), and HIV-1 Tat interactive protein 
2 (HTATIP2)). Thus, elevated interstitial fluid hydrostatic 
pressure in malignant tumours may promote the onset of the 
metastatic cascade by stabilizing HIF-1α [206]. Moreover, it 
was found that the exposure of the LLC cells to high hydro-
static pressure, prior to intravenous injection into healthy 
mice, resulted in higher cell survival/retention in the lungs 
24 h later and resulted in more metastatic tumour lesions 
4 weeks later [206].

In the previous model, elevated HIF-1α levels also corre-
lated with the levels of the antioxidant enzymes, CuZnSOD 
and MnSOD, improving tolerance to oxidative stress in LLC 
cells exposed to high hydrostatic pressure. These data sug-
gested that metastasis promotion in cancer cells exposed to 
high hydrostatic pressure would be driven by oxidative dam-
age prevention through HIF transcriptional activity [206]. In 
addition, under hypoxic conditions, HIF-dependent upregu-
lation of the one-carbon metabolism enzyme serine hydroxy-
methyltransferase, mitochondrial (SHMT2), promotes mito-
chondrial serine catabolism and NADPH production [207], 
to raise the antioxidant capacity and prevent ROS-mediated 
tumour cell death [207].

6.2  Small GTPases

The Rac1 GTPase has important functions in ROS-mediated actin 
reorganization of migrating tumour cells [208, 209]. Intracellular 
ROS increases are involved in MMP-3–induced EMT in murine 
breast epithelial cancer cell lines which, concomitantly, correlated 
with increased expression of a Rac1b splicing variant. It has been 
suggested that the treatment with MMP-3 stimulates the expres-
sion of Rac1b that would be responsible for increasing ROS levels 
[73]. Importantly, a cell shape change is required for EMT induc-
tion by MMP3 and Rac1b [210], in keeping with the notion that 
Rac-dependent ROS transduce mechanical perturbations into a pro-
invasive gene expression program [76]. Secretion and activation 
of MMP-2 has been reported to be dependent on Rac1 and ROS 
generation in pancreatic carcinoma PANC-1 cells exposed to EGF. 
Moreover, it has been suggested that signalling events downstream 
of EGF receptor involved PI3K- and Src-dependent activation of 
Rac1 [211]. ROS are in turn responsible for the activation of the 
SNAI1 factor, a key transcriptional inducer of the EMT program 
[212–214]. In addition, synergistic signalling between growth fac-
tors and integrins leads to an intracellular oxidative burst through a 
Rac1-dependent increase in mitochondrial ROS production [215, 
216]. In this sense, Rac1-mediated ROS generation was involved 

in prometastatic signalling through c-Met, one of its upstream regu-
lators, in a murine model of invasive melanoma [217]. The redox 
cascade triggered by overexpression of c-Met involved generation of 
 H2O2 via CuZnSOD-mediated dismutation of superoxide. Impor-
tantly, tumour cell capacity to form experimental lung metastases in 
vivo was inhibited after blocking the abovementioned cascade [217].

Some studies also have demonstrated the involvement of 
Rac signalling in cytoskeletal rearrangement and in medi-
ating integrin signalling. ROS generated by Rac1-induced 
NOX have been shown to activate the cofilin pathway and, 
thus, to contribute to increased cell migration [90, 91]. Con-
versely, a density-dependent decrease of NOX-Rac1 activity 
and ROS production in response to receptor tyrosine kinases 
engagement mediates growth inhibition by cell–cell contact 
in fibroblasts [218]. Interestingly, it has been reported that 
mesenchymal and amoeboid motility styles are intercon-
vertible through the reciprocal regulation of Rac and Rho 
GTPases in melanoma cells [219]. Moreover, activation 
of Rac and subsequent generation of ROS leads to NF-κB 
activation and MMP-1 production in response to integrin-
mediated cell shape changes [216]. Rac1-mediated changes 
in cellular ROS levels also increase the migratory potential 
of MCF-7 and T47D breast cancer cells probably through 
NF-κB [220]. Lastly, increased activity of Rac1 in primary 
endothelial cells has been shown to mediate the loss of 
cell–cell adhesions and loosens the integrity of the endothe-
lium, which allows the intravasation of cancer cells [221].

6.3  Protein kinases

6.3.1  The PI3K/AKT signalling pathway

In general, phosphatases as protein-tyrosine phosphatase 
1B (PTP-1B), SH2 domain-containing PTP (SHP-2), phos-
phatase and tensin homolog (PTEN), and low molecular 
weight phosphotyrosine protein phosphatase (LMW-PTP) 
are inhibited by ROS [222], whereas kinases may be inhib-
ited or activated [223]. In particular, ROS activate nonre-
ceptor protein kinases belonging to the Src family; small 
G proteins, such as Ras; and other protein tyrosine kinases 
including tyrosine kinase receptors of growth factors 
[224–226]. Some studies have demonstrated that  H2O2 can 
promote the activation of Ras and growth factor signalling 
which in turn activates PI3K/AKT pathway and inactivates 
PTEN signalling cascades. Phosphatases are transiently 
inactivated by  H2O2 in the context of growth factor, cytokine 
or integrin signalling, as a necessary step for the propaga-
tion of tyrosine phosphorylation cascade. Targets for mito-
chondrial ROS in these processes are SHP-2 and FADK 1, 
while cytosolic ROS target the phosphatases LMW-PTP and 
SHP-2, receptor tyrosine kinases, Src-family kinases, FADK 
1, and structural proteins such as β-actin [84]. Activation 
of phosphatases and Src occurs through direct oxidation, 
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whereas activation of FADK 1 is probably indirect through 
upstream signalling events leading to its tyrosine phospho-
rylation [227]. The tyrosine kinase Src (that leads to acti-
vation of MAPK, ERK, and AKT) also regulates NOX1-
induced generation of ROS [87]. Both Src and FADK 1 
are initiators of focal adhesion formation in adherent cells, 
contributing to cell spreading, cell migration, and preven-
tion of anoikis.

Specifically, through the formation of disulfide bonds 
between catalytic cysteines,  H2O2 inactivates PTEN and 
unlocks the PI3K-dependent recruitment of its downstream 
kinases, such as AKT [228] contributing to increasing cell 
adhesion to ECM, cell spreading, and proliferation.  H2O2 
reversibly oxidizes cysteine thiol groups of phosphatases 
such as PTEN, PTP-1B, and protein phosphatase 2 (PP2A) 
which cause loss of their activity and promote the activa-
tion of the PI3K/AKT/mTOR survival pathway [102]. ROS-
dependent oxidation of v-Src causes enhancement in the 
invasion potential and anchorage of Src-transformed cells. 
ROS has been reported to confer anoikis resistance to cancer 
cells through the oxidation and activation of Src, leading to 
constitutive, ligand-independent EGFR activation and pro-
survival signalling. The tyrosine kinase Src also regulates 
NOX1-induced generation of ROS [87]. PTEN significantly 
influences AKT activity under glucose deprivation. When 
PTEN is present in lung cancer cells, AKT phosphoryla-
tion is increased after glucose deprivation. When PTEN is 
mutated or knocked down, AKT phosphorylation is inhib-
ited instead [229]. Both Src and FADK 1 are initiators of 
focal adhesion formation in adherent cells, contributing to 
cell spreading, cell migration, and prevention of cell death 
by anoikis. For example, in prostate cancer cells, redox-
regulated anoikis resistance was mediated via Src and the 
EGF receptor [70]. Subsequently, it resulted in a constitu-
tive deregulation of mitogenic pathways and proliferation 
independent of anchorage. It further allowed cancer cells 
to abolish anoikis signals and escape apoptotic responses 
after a loss of cell-ECM contacts [84]. Both Src and FADK 
1 are initiators of focal adhesion formation in adherent cells, 
contributing to cell spreading, cell migration, and prevention 
of cell death by anoikis.

Importantly AKT signalling is involved in negative regu-
lation of Forkhead Box Protein O (FOXO). Glucose depriva-
tion-derived ROS production induces the nucleus transloca-
tion of FOXO and thereby promotes transcriptional activity 
of antioxidant-related genes [230, 231]. However, AKT 
inhibits this process by phosphorylating the FOXO at three 
conserved residues and inversely translocates FOXO from 
nucleus to cytoplasm [232]. One of them is ROS-dependent 
phosphorylation of FOXO by AKT, leading to nuclear exclu-
sion of the factor [233–235]. Inactivation and nuclear exclu-
sion of FOXO3a can also be elicited by  H2O2 through a path-
way involving AKT and the longevity-related protein p66shc 

[233]. Besides, AKT also promotes the ubiquitination of 
FOXO and leads to its degradation [236]. Therefore, FOXO 
activity can be inhibited by  H2O2 by distinct mechanisms 
decreasing antioxidant production among other effects. On 
the other hand, AKT is also involved in mTOR activation 
since it inhibits Tuberous Sclerosis 2 protein (TSC2) and 
subsequently allows Rheb-GAP to phosphorylate mTOR1. 
Additionally, AKT inactivates proline-rich AKT1 substrate 
1 (PRAS40), which alleviates the PRAS40-mediated inhi-
bition of mTORC1. Therefore, AKT increases oxygen con-
sumption and ROS production under glucose deprivation via 
mTOR activation [237, 238] rendering cancer cells closer to 
the death threshold of ROS lethality [239]. In addition, AKT 
is activated upon ECM detachment by activation of tyrosine 
kinase receptors, which has been shown to inhibit cell death 
mainly by promoting glucose uptake and upregulating anti-
apoptotic pathways such as Bcl-2 signalling [240].

It is interesting that under glucose deprivation, AKT 
plays antagonistic roles from AMPK in ROS-mediated cell 
apoptosis because of their effects on mTOR and FOXO, but 
also because AMPK and AKT regulate mutual phospho-
rylation directly or indirectly. When glucose is abundant, 
AMPK activity remains limited and AKT is relatively acti-
vated, promoting cancer cell growth, division, and metas-
tasis. Under glucose deprivation when AKT predominates, 
the anti-apoptotic role of AKT is reversed since glucose is 
lacking. However, AKT activation under glucose deprivation 
seems to be different among cancer cells [239, 241–243]. 
Thus, AKT function in this context would be specific to dif-
ferent cancer cells and backgrounds. In fact, it has been also 
reported that AKT activation can protect cells under glucose 
deprivation [244].

6.3.2  The MAPK signalling pathway 

ROS activate components of the JNK and p38MAPK path-
ways that induce apoptosis [226].  H2O2 has been shown 
to oxidize the redox protein thioredoxin suppressing its 
inhibitory effect on the p38MAPK signalling cascade [245]. 
Studies have demonstrated that  H2O2 can promote the acti-
vation of Ras and growth factor signalling which in turn 
inactivates PTEN signalling cascade and activates MAPK/
ERK along with PI3K/AKT/mTOR pathway. It has been 
suggested that small increases in ROS would be expected to 
activate the PI3K/AKT pathway preferentially, while further 
increases would be expected to trigger p38MAPK-depend-
ent apoptosis. The activation of the Ras-Erk1/E twenty-six 
(2-ETS), Rac1-JNK-AP, or p38 signalling pathways would 
be involved in MMPs  H2O2-induced expression [80, 246]. 
Moreover, phosphorylation of Hsp27 by ROS-activated 
p38 MAPK induces changes in actin dynamics in vascular 
endothelial cells, which may contribute to facilitate the inva-
sive processes [247, 248]. On the other hand, JNK is able 
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to activate some members of the FOXO transcription factor 
family after ROS levels are increased [249], which has been 
shown to induce SODs and catalase gene expression [250]. 
FOXO transcription factors have a complementary function 
to that of p53 that induce the expression of sestrin 3 [251]. 
Interestingly, both p53 and FOXO control a distinct set of 
genes that are not targets of Nrf-2 activity, even though all 
three factors induce HO-1 expression and  Fe2+ storage and 
secretion, which is known to play a role in breast cancer 
progression [252]. Furthermore, the redox-sensitive tran-
scription factors NF-κB and FOXO3a have been described 
as regulators of MMP expression [85, 253, 254].

6.3.3  Calcium signalling

ROS also influence the activity of calcium channels; in fact, 
they induce the release of calcium from cellular stores with 
the consequent activation of kinases, such as PKC, thereby 
playing important roles in the proliferation of cancer cells. 
Lastly, the ROS/Nrf-2/Notch1 pathway was activated by 
mitochondrial  Ca2+. Mitochondrial  Ca2+ plays a criti-
cal role in tumour progression and metastasis. In fact, the 
expression of the mitochondrial calcium uniporter regula-
tor 1 (MCUR1) was reported to be higher in hepatocellu-
lar carcinoma (HCC) with metastasis and associated with 
tumour progression. Namely, it promoted in vitro invasion 
and in vivo metastasis of HCC cells by the activation of 
EMT via SNAI1. Likewise, treatment with the mitochon-
drial  Ca2+-buffering protein parvalbumin significantly inhib-
ited ROS/Nrf-2/Notch pathway and MCUR1-induced EMT 
and HCC metastasis [255]. Inhibition mitochondrial  Ca2+ 
uptake, Nrf-2 expression, or Notch1 activity significantly 
suppressed MCUR1-induced EMT of HCC cells [255] sup-
porting that both Notch1 and Nrf-2 are needed for MCUR1-
induced EMT of HCC cells.

6.3.4  The AMPK signalling pathway

Activity of AMPK was enriched in metastatic tumours com-
pared to primary tumours. Depletion of AMPK rendered 
cancer cells more sensitive to metabolic and oxidative stress, 
leading to the impairment of breast cancer lung metastasis 
[256].

AMPK mediates metabolic reprogramming by promoting 
catabolism and suppressing anabolism [257–260]. In part, 
this is due to critical maintenance of PDH, the rate-limiting 
enzyme involved in TCA cycle, by AMPK, which favors 
pyruvate metabolism towards the TCA cycle [261]. AMPK 
could enhance mitochondrial biogenesis and OXPHOS by 
activating p38 MAPK/PGC-1-α pathway [262]. In particu-
lar, PGC-1-α can act as partner of p53 influencing the impact 
of the mutant p53 R72 variant that is associated with poor 
prognosis on metabolism and metastasis in breast cancer 

cells, where the mutant p53 enhances migration and metas-
tasis through the ability to bind and regulate PGC-1-α, 
increasing mitochondrial function [263]. Under these con-
ditions, AMPK also inhibits mTOR1 activity which leads 
to decreased protein synthesis and increased autophagy. 
Likewise, AMPK enhances the PPP and increases NADPH 
production by alleviating the glucose deprivation-induced 
NADPH depletion via decreased fatty acid synthesis and 
increased fatty acid oxidation [124].

Consequently, the global inhibition of protein synthesis 
and autophagy induction by AMPK is known to mitigate 
ATP reduction under ECM-detached conditions that is asso-
ciated with glucose deprivation [264, 265]. Decreased anab-
olism reduces ROS production, while enhanced autophagy 
and glycolysis increases the resilience of cells to ROS. The 
enhancement of autophagy and OXPHOS by AMPK also 
contribute to balance the input and output of energy resisting 
against glucose deprivation-derived ROS, which in combi-
nation with and PPP modulation contribute to modulate the 
redox state, relieving the ROS load under glucose deficiency. 
Therefore, AMPK protects DTCs from both metabolic and 
oxidative stress-induced cell death and facilitates cancer 
metastasis. The role of AMPK in anoikis resistance is sup-
ported by the results of assays where the treatment with the 
exogenous antioxidants Trolox and NAC can rescue ATP 
deficiency independent of glucose uptake [123].

The effects of AMPK on cell metabolism are achieved 
by its downstream effectors of which FOXO activation 
and mTORC1 inhibition play key roles. AMPK increases 
activities of FOXOs by different mechanisms including gene 
expression enhancement by recruiting CREB-binding pro-
tein (CBP) and p300 [230, 266, 267] and post-translational 
modifications as phosphorylation [268–271] and acetylation 
[230, 272, 273]. FOXO participates in glucose metabolism 
by regulating phosphoenolpyruvate carboxykinase (PEPCK) 
that promotes gluconeogenesis and glutamine metabolism 
[274, 275] and G6Pase and PGC-1-α and that promotes 
mitochondria biogenesis and OXPHOS [231]. FOXO acti-
vation also leads to increased oxidative stress resistance by 
targeting the expression of SOD, catalase, and sestrins [270]. 
In addition, some PGC-1-α positive cells exhibit increased 
ROS detoxification capacities in cancers such as melanoma 
(Vazquez et al. 2013). Moreover, FOXO induces expression 
of autophagy-related genes to elevate autophagic flux and 
increases the production of fatty acid and amino acids ulti-
mately converted in products consumed by mitochondrial 
OXPHOS [270, 276].

In contrast, the possible antimetastatic role of AMPK has 
been also evidenced. AMPK blockade resulted in increased 
cell movement in human and murine pancreatic ductal ade-
nocarcinoma cell models [277]. Likewise, SDF-1 decreased 
oxidative phosphorylation and glycolytic capacity in pan-
creatic ductal adenocarcinoma cells, while locked myosin 
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light chain into a phosphorylated state, decreasing F-actin 
polymerization and preventing cell migration. These events 
were accompanied by an increase in the phosphorylated and 
active form of AMPK and, therefore, the described effects in 
the cytoskeleton would be dependent upon AMPK and the 
CAMKK2 [277]. Additional downstream elements seem to 
be necessary for metastasis enhancement for some related 
mutations.

6.4  The NF‑kappaB signalling pathway 

The transcription factor NF-κB is considered as a redox-sen-
sitive transcription factor. ROS can activate NF-κB through 
several mechanisms and, at the same time, ROS production 
is also regulated by NF-κB. Several NF-κB target genes are 
involved in the detoxification of ROS but some of them, 
such as NOS, have been shown to exert a pro-oxidant func-
tion [278]. These interactions highlight a complex interplay 
between ROS and NF-κB. By regulating gene expression, 
NF-kB can promote metastasis. NF-κB can modulate EMT 
by inducing the expression of MMPs and key cellular adhe-
sion molecules [85, 253, 254, 279, 280]. NF-κB upregu-
lates the expression of MMPs, urokinase-type plasminogen 
activator, and cytokines in highly metastatic breast cancer 
cell lines. Rac-induced in response to integrin-mediated cell 
shape changes leads to NF-κB activation and MMP-1 pro-
duction [216]. NF-κB was also suggested to be involved in 
the increase in the migratory potential of the MCF-7 and 
T47D breast cancer cells mediated by Rac [220]. In addi-
tion, ROS regulate the expression of interleukin-8 (IL-8) and 
the cell surface protein intercellular adhesion molecule 1 
(ICAM-1) through NF-κB. Both ICAM-1 and IL-8 can regu-
late the trans-endothelial migration of immune cells [281, 
282]. On the other hand, VEGF and its receptors are known 
to be regulated by NF-κB, in the promotion of angiogen-
esis [283, 284]. In a recent study, it was demonstrated that 
Kras-derived mitochondrial ROS activated NF-κB through 
polycystin-1 (PC1) to upregulate EGFR pro-proliferative 
signalling [198]. Overexpression of the inhibitor of nuclear 
factor kappa-B kinase (IKK) in breast cancer cells with con-
stitutive NF-κB activity resulted in reduced expression of 
the receptor CXCR4 in vitro and the corresponding loss of 
migration mediated by its ligand, the SDF-1α. Introduction 
of CXCR4 cDNA into IκB-expressing cells restored SDF-
1α-mediated migration. Thus, NF-κB regulates the motility 
of breast cancer cells by directly upregulating the expression 
of CXCR4, a receptor of the SDF-1α. NF-κB subunits p65 
and p50 bind directly to CXCR4 promoter and activate its 
transcription. Cell surface expression of CXCR4 and the 
SDF-1α-mediated migration were enhanced in breast cancer 
cells isolated from mammary fat pad xenografts compared 
with parental cells grown in culture. A further increase 
in CXCR4 cell surface expression and SDF-1α-mediated 

migration was observed with cancer cells that metastasized 
to the lungs [285].

There are numerous interactions, links, and coopera-
tivities between the NF-κB pathway and other signalling 
pathways. More recently, crosstalk of NF-κB with another 
transcription factor involved in certain types of cancer, 
that is, the transcriptional regulator ERG (ERG), has been 
identified. Interestingly, an increased NF-κB activity was 
detected in ERG fusion-positive prostate cancer patients and 
cell lines. It was shown that increased NF-κB activity is 
associated with phosphorylation of p65 on Ser536 involving 
signalling through Toll-like receptor 4 (TLR4) [286]. ERG 
also appears to stimulate the SDF-1/CXCR4 axis, which 
contributes to metastasis [287]. Furthermore, the redox-sen-
sitive transcription factors NF-κB and FOXO3a have been 
described as regulators of MMP expression [85, 253, 254].

6.5  The Nrf‑2/ARE signalling pathway 

Nrf-2 can be activated by cigarette smoke, infection, oxida-
tive stress, or inflammation. High amount of ROS activates 
tyrosine kinases to dissociate Nrf-2:Keap1 complex allowing 
the nuclear import of Nrf-2 [288]. Moreover, the modifi-
cations of cysteine residues in Keap1 apparently alter the 
interaction of Keap1 with Nrf-2 and lead to its relocation 
to the cytoplasm, where it is subsequently degraded by the 
ubiquitin proteasome [289]. Therefore, under physiological 
conditions, Keap1 and Nrf-2 act as a cellular sensor of dam-
age caused by free oxygen radicals, through the constant 
shuttling of Keap1 between the nucleus and the cytoplasm 
[290]. Consequently, certain ROS levels can induce the 
expression of multiple antioxidants and cytoprotective genes 
via Nrf-2 transcriptional activity.

Because it regulates a wide spectrum of antioxidants and 
detoxification genes, Nrf-2 is the main inducible defense 
against oxidative stress [291, 292] but, whether it is more 
readily activated by ROS than other redox-responsive tran-
scription factors, is unclear. Nevertheless, assuming that 
Nrf-2-induced gene expression provides an initial means to 
adapt to oxidative stress, it may offer a type of “floodgate” 
protection in which only once the antioxidant protection elic-
ited by the proteins whose expression is induced by Nrf-2 
is overwhelmed (and the ROS concentration threshold that 
induces Nrf-2 transcriptional activity can vary for different 
tissues and experimental systems), additional antioxidant 
transcription factors within the network are activated. A 
modification of the floodgate model would include induction 
by Nrf-2 of Krueppel-like factor 9 (KLF9), which is a DNA-
binding transcriptional regulator that downregulates the anti-
oxidant genes TXNRD2 and PRDX6 [293, 294]. Therefore, 
induction of KLF9 would shut down antioxidant defenses 
when ROS levels exceed a certain threshold or duration. 
In this scenario, other members of the network would only 
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be activated when the antioxidant capacity of Nrf-2 target 
genes is exceeded or when KLF9 is induced. Once Nrf-2-di-
rected floodgate defenses have been breached, the question 
of whether individual antioxidant transcription factors are 
activated in a stratified or coordinated manner is uncertain. 
In this context, it should be noted that Nrf-2 regulates the 
expression of HSF-1 [295] whose increased levels have been 
reported to be associated with metastasis [296–298] and pro-
mote infiltration, metastasis and neoangigoenesis in different 
cancer cell lines [299, 300]. In addition, Nrf-2 activation 
also led to overexpression of the NF-κB p65/RelA subunit, 
which antagonizes Nrf-2 by inhibiting the recruitment of 
CBP and activating histone deacetylase 3 (HD3) [301] and 
that, when oxidative stress is sufficient to cause DNA dam-
age, ensues the activation of TP53 which in turn antagonizes 
Nrf-2 activity, thereby heightening oxidative stress intracel-
lular levels and facilitating apoptosis [302]; together, these 
findings suggest that Nrf-2 could be downregulated by oxi-
dative stress to an extent to which it induces inflammation 
and pro-apoptotic signalling.

In animal models and breast cancer patients with poor 
prognosis, it has been shown that Nrf-2 is activated during 
dormancy and in recurrent tumours. Constitutive activation 
of Nrf-2 accelerates recurrence, while suppression of Nrf-2 
impairs it [179]. On the other hand, knockdown of Nrf-2 
greatly impairs migration and invasion of a variety of cell 
lines including malignant and non-malignant cells [303, 
304]. In a study comparing normal and tumour tissues of 
colorectal cancer patients, Nrf-2 and Keap1 protein levels 
and their tumour to normal tissue ratios were correlated with 
the lymph node/distant metastasis status. The authors found 
that the Keap1 tumour to normal tissue ratios was predictive 
of lympho-vascular invasion, which in turn was a significant 
predictor of metastasis in these patients [305].

Impairment of Nrf-2/antioxidant responsive element 
(ARE) pathway leads to oxidative stress, inflammation, 
and mitochondrial dysfunction [306]. Nrf-2 has been tra-
ditionally considered as tumour suppressor because of its 
cytoprotective functions against oxidative stress. However, 
hyperactivation of the Nrf-2 pathway creates an environ-
ment that favors the survival of normal as well as malignant 
cells, protecting them against oxidative stress, chemothera-
peutic agents, and radiotherapy and providing a survival 
advantage that might favor tumour progression [307–310]. 
In addition, Nrf-2 also controls free  Fe2+ homeostasis since 
it upregulates the expression of HO-1, which generates free 
 Fe2+ via the breakdown of heme molecules. Since  Fe2+ 
induces a Fenton reaction to produce the free radical •OH 
from hydrogen peroxide, the upregulation of HO-1 leads to 
a paradox. In addition, Nrf-2 boosts the expression of the 
genes encoding several components of the ferritin complex 
that detoxifies  Fe2+ by converting it to  Fe3+ and storing it 
[311]. Notably, high serum concentrations of ferritin have 

been described in several cancers with a poor prognosis 
[312, 313]. As Nrf-2 induces HO-1, the enzyme catabo-
lizing heme, its accumulation in lung cancer tissue causes 
the stabilization of transcription regulator protein BACH1 
(BACH1), a pro-metastatic transcription factor [314–316] 
whose degradation is triggered by heme [317]. BACH1 pro-
metastatic effects are a consequence of its interaction with 
the ubiquitin ligase Fbxo22 [318]. Human metastatic lung 
cancer displays high levels of HO-1 and BACH1 supporting 
the pro-metastatic role of both proteins. Moreover, BACH1 
transcriptional signature is associated with poor survival and 
metastasis in lung cancer patients [318].

Despite Nrf-2 inhibits EMT in non-transformed cell lines 
[212, 319, 320], overexpression of Nrf-2 in cancer cells can 
enhance metastasis through the process of EMT. Namely, 
expression of Nrf-2 has been reported to be important for 
the migration of normal and malignant cells since it is 
needed for MMP upregulation. In this sense, it has been 
reported that Nrf-2 downregulation correlates with reduced 
expression or gelatinase activity of MMP2 and MMP9 [303, 
321, 322]. Moreover, it has also been reported that Nrf-2 
promotes EMT by downregulation of CDH1 expression 
in cancer cell lines [323, 324]. Likewise, Nrf-2 silencing 
reduces CDH2 expression, a process which was proposed 
to be mediated by the downregulation of the Nrf-2 target 
gene NOTCH1 [321, 325]. Inhibition of ROS production 
suppressed MCUR1-induced EMT of HCC cells which 
would also depend on Nrf-2 and Notch1 activity [326]. 
Thus, ROS may act as second messengers for Nrf-2 activa-
tion leading to EMT promotion. However, the mechanism 
by which Nrf-2 regulates these enzymes and proteins needs 
to be clarified. ROS/Nrf-2/Notch1 pathway was also acti-
vated by mitochondrial  Ca2+ [326], as discussed before in 
the “6.3.3” section. Interestingly, cancer cells that exhibit 
constitutively high levels of Nrf-2 can grow in an anchorage-
independent manner and have a higher metastatic capacity 
[327]. Cell detachment generates ROS [328] and activates 
autophagy [264], which could induce Nrf-2-dependent gene 
expression. A possibility is that this anchorage-independent 
growth might be regulated by Nrf-2-dependent induction 
of secreted phosphoprotein 1 (SPP-1, also known as osteo-
pontin) [329]. In cells that lose ECM attachment by adduc-
tion of integrins with the toxic metabolite methylglyoxal, 
Nrf-2 activation induces the expression of glyoxalase I (Glx 
I), which metabolizes methylglyoxal and prevents anoikis 
[330, 331]. Moreover, in recurrent tumours, Nrf-2 signalling 
induces a transcriptional metabolic reprogramming to re-
establish redox homeostasis and upregulate de novo nucle-
otide synthesis. The Nrf-2-driven metabolic state renders 
recurrent tumour cells sensitive to glutaminase inhibition, 
which prevents reactivation of dormant tumour cells in vitro 
[179]. In addition, mechanistic studies showed that Nrf-2 
binds to the promoter region of steroid hormone receptor 
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(ERR1) and may function as a silencer in breast cancer cells. 
This may enhance RhoA protein stability and lead to RhoA 
overexpression that promotes migration and metastasis by 
the RhoA/Rho-associated protein kinase (ROCK) pathway 
[332]. Likewise, Nrf-2 silencing suppressed stress fiber and 
focal adhesion formation leading to decreased cell migra-
tion and invasion of breast cancer cells by downregulating 
RhoA [332]. Moreover, restoration of RhoA in MCF7 and 
MDA-MB-231 cells induced Nrf-2 knockdown-suppressed 
cell growth and metastasis in vitro, and Nrf-2 silencing sup-
pressed stress fiber and focal adhesion formation leading to 
decreased cell migration and invasion [332].

On the other hand, Nrf-2 expression in the metastatic 
microenvironment has also been reported to exert an anti-
metastatic role. In xenograft mouse models of metastasis, 
whole-body and myeloid-specific Nrf-2 deletion increased 
susceptibility to lung metastases [333, 334]. This effect 
could be attributed to a persistent inflammation featured by 
a high number of myeloid-derived suppressor cells (MDSCs) 
[333] combined with redox alterations in immune cells. 
Redox alterations were especially relevant in MDSCs since 
they suppressed CD8 + T cell proliferation, depending on 
their intracellular ROS levels [335, 336]. Intracellular ROS 
levels were higher in MDSCs from Nrf-2-deficient mice as 
compared to those from wild-type mice [333]. In addition, 
MDSCs derived from Nrf-2-deficient mice produced RNS 
and ROS that prevented CD8 + T cell antigen recognition, 
a tolerance mechanism known as anergy [335, 336]. There-
fore, Nrf2 deletion would lead to a metastasis-conducive 
microenvironment in this xenograft model of lung cancer. In 
contrast, in Keap1 knockdown mice (Keap1-kd or Keap1f/f) 
or in wild-type mice treated with the Nrf-2 inducer bardox-
olone, the number of lung metastases were reduced [291, 
337, 338]. Nrf-2 activation in Keap1f/f mice limits metasta-
sis, probably due partly to decreased ROS levels in MDSCs 
[333]. Consistently, deletion of Nrf2 or Trsp, the gene that 
encodes for selenocysteine tRNA necessary for the transla-
tion of the selenocysteine-containing antioxidant proteins 
GPx and Thioredoxin Reductase 1 (TR1), in the myeloid 
lineage confirmed that the anti-metastatic activity of Nrf-2 
relates to its regulation of ROS in MDSCs [334]. Further-
more, Nrf-2-dependent downregulation of IL-6 could also 
prevent recruitment of myeloid precursor cells to tumours 
[339, 340] independently of redox regulation.

Additional proteins acting upstream Nrf-2 also have 
been related to metastasis. These include carbonyl reduc-
tase (NADPH) 1 (CBR1), hepatitis B virus X-interacting 
protein (HBXIP), nestin, and karyopherin subunit alpha-6 
(KPNA6). CBR1 is another important enzyme that regulates 
the expression of Nrf-2 during oxidative stress and helps to 
detoxify ROS [341]. The levels of HBXIP that can compete 
with Nrf-2 for binding with Keap1 protein, via its highly 
conserved GLNLG motif, are positively correlated with 

Nrf-2 expression in breast cancer cells and clinical breast 
cancer tissue samples [342]. KPNA6 is a protein which 
facilitates nuclear import and attenuates Nrf-2 signalling, 
clearance of Nrf-2 protein from the nucleus, and restoration 
of the Nrf-2 protein to basal levels [343, 344]. Knockdown 
of nestin, a protein that binds to Keap1, resulted in down-
regulation of Nrf-2 and repressed the in vivo development 
of gastric cancer metastasis arising from the injection of 
SGC-7901 and MKN-45 cell lines in mice. The restoration 
of Nrf-2 expression, or treatment with the Nrf-2 activator 
sulforaphane, counteracted the inhibitory effect of nestin 
knockdown on the proliferation, migration, invasion, and 
antioxidant enzyme production [345].

6.6  The Wnt/β‑catenin signalling pathway 

Wnt signalling modulates major developmental processes 
and is a dominant mediator of stem cell self-renewal, cell 
fate, and cancer stem cell biology. β-catenin resulted 
upregulated in HNSCC after inhibition of human CBR1, 
whose expression is lower in HNSCC patients with lymph 
node metastasis compared to those without lymph node 
metastasis. In addition, CBR1 inhibition was shown to 
increase intracellular levels of ROS. Consistently, CBR1 
inhibition resulted in increased in vitro invasion ability of 
several HNSCC cell lines and in the activation of several 
EMT markers, such as vimentin, CDH1, or the zinc finger 
protein SNAI2 (SNAI2) [346], indicating that the Wnt 
signalling pathway could have a pro-metastatic role. On 
the other hand, β-catenin expression was suppressed after 
induction of glutathione S-transferase omega-2 (GSTO-2), 
an enzyme that exhibits thioltransferase activity, in a lung 
squamous cell carcinoma model. The overexpression of 
GSTO-2 correlated with a lower oxygen consumption rate 
and mitochondrial membrane potential in the lung squa-
mous carcinoma cells. Moreover, GSTO-2-overexpressing 
cells formed smaller tumours and the incidence of liver 
metastasis was lower as compared to control cells in a 
subcutaneous xenograft lung cancer model using nude 
mice. Interestingly, when cells transfected with GSTO2 
were treated with a p38 inhibitor, β-catenin expression 
and mitochondrial membrane potential were recovered, 
suggesting that GSTO-2 loss contributes to lung cancer 
progression, modulating tumour cells metabolism via the 
p38/β-catenin signalling pathway [347]. In line with these 
observations, pharmacological inactivation of GSK-3β, a 
well-known negative regulator of the Wnt/β-catenin sig-
nalling pathway, promoted the migratory activity of 4T1 
murine breast cancer cells, which correlated with higher 
levels of ROS and functional abnormalities in the mito-
chondrial respiratory chain complex I/III. In addition, 
NOX3 and NOX4 expression were upregulated in the 
4T1 cells, which would further affect the generation of 
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ROS. Furthermore, the authors found that the expression 
of pSer535-eIF-2B promoted the expression of NKG2-
D type II integral membrane protein (NKG2-D) ligands, 
Mult-1 and Rae1, followed by phosphorylation of Ser9 in 
GSK-3β and increased generation of ROS [255]. In the 
same line, the treatment with SSTC3, novel small-mol-
ecule activator of CK1α that inhibits the Wnt signalling 
pathway, has been proved to inhibit the growth of patient-
derived metastatic colorectal cancer xenografts in mice 
[348, 349]. Activation of Wnt/β-catenin signalling also 
correlated with the activation of EMT in cervical can-
cer cells in vitro [350]. Surprisingly, GPx2 was highly 
expressed in cervical cancer tissues compared to normal 
individuals and it was showed to reduce apoptotic damage 
by reducing hydroperoxides and promoting proliferation 
and metastasis [350]. On the other hand, the modulation 
of the Wnt/β-catenin pathway in neighboring cells, in par-
ticular immune cells, has been relevant to study its pro-
metastatic role. Indeed, pharmacological inactivation of 
GSK-3β downregulated NKG2-D ligands H60a and Rae1 
in NK cells and suppressed their cytotoxicity [255].

Importantly, several interactions with other signalling 
pathways have been put of manifest. For instance, PP2A 
has been shown to both positively and negatively regu-
late Wnt pathway at multiple levels [351]. Additionally, 
AKT could also activate β-catenin. Through a bioinfor-
matics analysis and Western blot assays, Ma et al. [352] 
showed that Zi Shen Decoction (ZSD) decreased the 
enzymatic activity of PI3K and AKT in vivo and in vitro. 
The authors also found that the AKT/GSK-3β/β-catenin 
pathway mediated anticancer effect of ZSD in lung can-
cer cells. Indeed, they showed that oral administration 
of ZSD suppressed the LLC growth in a subcutaneous 
allograft model and promoted necrosis and inflammatory 
cell infiltration in the tumour tissues. Pharmacological 
attenuation of p-GSK-3β formation by inhibiting the 
PI3K/AKT pathway, reversed the abovementioned effects 
[255]. Moreover, EGFR has also been suggested to form 
a complex with β-catenin contributing to invasion and 
the promotion of metastasis [353, 354]. Since many of 
the abovementioned pathways are in part related to cell 
redox state, Wnt/beta-catenin signalling could indirectly 
be conditioned by or modulate it.

6.7  The Sonic Hedgehog signalling pathway 

Aberrant activation of Sonic Hedgehog (SHH) signal-
ling pathway by mutations within its components drives 
the growth of several malignant tumours [355, 356]. Dif-
ferent SHH ligands have been evidenced to have some 
effect on the metastatic potential of lung cancer cells. In 
this sense, it has been reported that the canonical SHH 

signalling pathway is activated in lung stroma by SHH 
ligands secreted from transformed lung epithelia [357]. 
Likewise, SHH signalling dysregulation has been reported 
to contribute to metastasis and angiogenesis in colon can-
cer [358], and termination of SHH signalling through 
glioma-associated oncogene (GLI1) inhibition resulted in 
the inhibition of proliferation in colon cancer [359, 360]. 
Moreover, smoothened homolog (SMO) and GLI1 were 
highly expressed in triple negative breast cancer, and their 
increased expression was correlated with metastasis, poor 
prognosis, and recurrence of triple negative breast cancer 
[361]. In addition, a GLI1 isoform, called truncated GLI1, 
has also been reported to induce the activation of genes 
related to proliferation, migration, and angiogenesis of 
breast cancer [362].

Similarly, inhibiting SHH pathway by interfering with 
the interaction between the already mentioned ligands and 
their receptors has been shown to have an antimetastatic 
potential. Early abrogation of the SHH pathway using an 
anti-SHH/Indian hedgehog protein (IHH) antibody 5E1 
against Shh, the primary Hh ligand expressed in the lung of 
 KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocar-
cinoma, led to significantly worse survival with increased 
tumour and metastatic burden, while genetic deletion of 
Shh has no effect on survival [357]. Likewise, loss of 
IHH, another SHH ligand, by in vivo CRISPR led to more 
aggressive tumour growth suggesting that IHH, rather than 
SHH, activates the pathway in stroma to drive its tumour-
suppressive effects—a novel role for IHH in the lung. Inter-
estingly, the authors found that genetically engineered mice 
treated with the 5E1 antibody against SHH/IHH presented 
decreased blood vessel density and increased DNA dam-
age, all of which indicated a raise in ROS and subsequent 
tissue damage. Indeed,  KrasG12D/+;Trp53fl/fl mice treated 
with the 5E1 antibody and the antioxidant NAC showed 
inhibited tumour growth and prolonged mouse survival, 
suggesting that IHH may supress tumour growth through 
Hh signalling pathway by quenching or detoxifying ROS 
through a yet to explore mechanism [357].

Hh signalling has also been shown to promote tumour 
metastasis by being actively involved in EMT. SHH exerts 
its effects on EMT via the upregulation of the SNAI1 and 
downregulation of CDH1 [363, 364]. Namely, ectopic 
expression of GLI led to increased invasiveness of pan-
creas cancer cell lines [365]. Likewise, metastasis was 
induced by overexpression of GLI1 in the rarely metasta-
sizing clone of prostate cancer AT2.1 [364]. The role of 
SHH pathway in EMT was supported by the reduction in 
the invasive properties of pancreatic cancer cells, follow-
ing SNAI1 expression downregulation [365]. Moreover, in 
breast cancer, SHH signalling has been shown to induce 
angiogenesis independently of VEGF activation [366].
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7  Concluding remarks

Redox disbalance is a well-known feature of tumours. The 
involvement of free radicals in tumour cell signalling and 
cancer progression is evident from the data summarized 
and discussed in previous sections of this review, although 
most studies have focused on the presence/absence of 
free radicals and its impact on downstream signalling at 
defined steps of the metastatic cascade. To better under-
stand the impact of redox signalling in tumour cell biology 
and disease progression, a wider picture is needed.

A higher but sub-lethal amount of free radicals has been 
observed in tumour cells actively proliferating, migrating, 
and invading the microenvironment since free radicals, 
mainly ROS, are known to act as second messengers that 
positively modulate the signalling pathways activating 
these biological processes. On the other hand, tumour 
cells have been shown to be highly dependent on efficient 
detoxification of free radicals through conserved mecha-
nisms, such as autophagy, in other phases of the metastatic 
cascade, namely tumour cell dissemination and dormancy. 
Therefore, the question might not be whether free radi-
cals do or do not promote tumour progression; rather, the 
molecular and cellular context along the metastatic cascade 
may be determinant in the matter. Indeed, the redox status 
of the cell is physiologically modulated through the inter-
play between the pro-oxidant and anti-oxidant systems to 
accommodate to the changing tissue microenvironment and 
different stages of cell development. The extensive, but not 
yet conclusive, scientific data on tumour cell redox biology 
suggest that cancer cells highjack the molecular processes 
conferring physiological cellular tolerance to disbalances 
in redox homeostasis as well as those that favor a motile 
phenotype. Metastasis competent tumour cells might ben-
efit from the cellular plasticity endowed by the activation 
of redox signalling pathways throughout the metastatic 
cascade.

These considerations may have a clinical impact when 
applying redox-based therapies against cancer. Indeed, cur-
rent and novel chemotherapeutic approaches against can-
cer are already known to modulate oxidative stress. Most 
chemotherapeutic agents generate ROS and are known to 
alter redox balance in tumour cells. In this sense, anthracy-
clines, alkylating agents, platinum coordination complexes, 
and camptothecins are widely used chemotherapeutic drugs 
that rise ROS levels in tumour cells [367, 368]. For example, 
cisplatin induces ROS through mitochondrial DNA dam-
age, which impairs the synthesis of proteins involved in 
the electron transport chain [369]. Other chemotherapeutic 
drugs like paclitaxel and doxorubicin have been shown to 
promote oxidative stress in cancer cells contributing, at least 
in part, to tumour shrinkage due to tumour cell death [370, 

371]. Paclitaxel treatment showed an increase in superoxide, 
 H2O2, and nitric oxide, as well as oxidative DNA adducts, 
G2-M arrest, and cells with fragmented nuclei, suggesting 
the involvement of ROS and RNS in paclitaxel cytotoxicity. 
In breast cancer, a proton pump inhibitor known as lanso-
prazole has been observed to increase ROS generation and 
supress tumour invasion. Treatment with NAC and diphe-
nyleneiodonium, a specific inhibitor of NOX, significantly 
reduced lansoprazole-induced ROS accumulation [372]. In 
melanoma cells, the isoquinoline alkaloid berberine stimu-
lates ROS production which in turn regulates AMPK phos-
phorylation and activation leading to the decrease of ERK 
activity and COX-2 expression, finally reducing metastatic 
capacity of the cells [373]. Imexon is a small prooxidant 
molecule that bind to cellular thiols and depletes the cysteine 
and glutathione stores, therefore increasing intracellular 
ROS. Imexon has been shown to effectively increase non-
Hodgkin lymphoma cells to oxidative stress and demon-
strated therapeutic benefit in a clinical trial [374]. In this 
sense, buthionine sulphoximine (BSO), an inhibitor of the 
glutamylcysteine synthetase, has been observed to also con-
tribute to depletion of cysteine and glutathione achieving 
antitumour activity in several types of cancer cells [375]. 
The therapeutic implications of ketogenic diets through the 
induction of oxidative stress and in the context of its possible 
role in the enhancement of radio-chemotherapy responses 
in lung cancer xenografts have also been studied [376]. 
This type of diet increases dietary fatty acids, mainly PUFA 
levels, whose incorporation into membrane phospholipids 
increase cancer cells susceptibility to the accumulation of 
lipid peroxides and subsequent ferroptosis [377]. Moreover, 
the inhibition of the activity of enhanced antioxidant system 
in cancer cells may induce intracellular oxidative stress, for 
example, with the employment of drugs that block the pro-
teasome or cause ER stress [378].

On the other side, tumour treatment through antioxidant-
based therapies has also been investigated. In testicular can-
cer, an antioxidant cocktail of α-tocopherol, l-ascorbic acid, 
zinc, and selenium was used to modulate the expression of 
metastasis-associated protein 1 (MTA1), a gene involved 
in tumour growth and metastasis. The antioxidant cocktail 
effectively inhibited the expression of MTA1 and increased 
the susceptibility of tumour cells to apoptosis, suggesting 
that antioxidants may be helpful for metastasis prevention 
[379]. Furthermore, many clinical trials have been developed 
in order to evaluate the potential of dietary supplementa-
tion with antioxidants as suppressors of tumour development 
[380]. However, the context-dependent nature of redox sig-
nalling in cancer progression may contribute to the frequent 
contradictory results obtained in clinical trials evaluating the 
effect of adjuvant antioxidant therapies, in which the stage 
of the disease at which antioxidants are administered might 
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influence the clinical outcome of the intervention. There-
fore, much of the knowledge that we have acquired through 
research focused on redox signalling in cancer points to a 
stage-tailored strategy to develop redox-based therapies 
against cancer, conferring a “temporal dimension” to preci-
sion medicine.
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