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Abstract

Cancer is one of the three leading causes of death worldwide. Even after successful therapy and achieving remission, the
risk of relapse often remains. In this context, dormant residual cancer cells in secondary organs such as the bone marrow
constitute the cellular reservoir from which late tumor recurrences arise. This dilemma leads the term of minimal residual
disease, which reflects the presence of tumor cells disseminated from the primary lesion to distant organs in patients who
lack any clinical or radiological signs of metastasis or residual tumor cells left behind after therapy that eventually lead
to local recurrence. Disseminated tumor cells have the ability to survive in a dormant state following treatment and linger
unrecognized for more than a decade before emerging as recurrent disease. They are able to breakup their dormant state and
to readopt their proliferation under certain circumstances, which can finally lead to distant relapse and cancer-associated
death. In recent years, extensive molecular and genetic characterization of disseminated tumor cells and blood-based bio-
marker has contributed significantly to our understanding of the frequency and prevalence of tumor dormancy. In this article,
we describe the clinical relevance of disseminated tumor cells and highlight how latest advances in different liquid biopsy
approaches can be used to detect, characterize, and monitor minimal residual disease in breast cancer, prostate cancer, and
melanoma patients.
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1 Identifying regulators and biomarker
of tumor dormancy using liquid biopsy

Tumor dormancy circumscribes different modalities of
quiescence and constant tumor load. Tumor mass dor-
mancy on the one side expresses an equilibrium state
of tumor cell apoptosis and proliferation from a holistic
point of view. This steady state finds it clinical equiv-
alent in the term of minimal residual disease (MRD),
whereas recently also the term measurable residual dis-
ease has been proposed for leukemia, which might also
become appropriate for solid tumors [1]. MRD denotes
the cellular networks of gene regulation, cell signaling,
and metabolic reactions, shaping dormant states. In con-
trast to mass dormancy, cellular dormancy aims to eluci-
date molecular profiles of singular disseminated tumor
cells. As described by Sosa, Bragado, and Aguirre-Ghiso
[2], cellular dormancy regulated by autogenously pro-
grams and tumor microenvironmental drivers have imme-
diate impact on tumor mass dormancy and therefore on
MRD (Fig. 1). Vice versa, a profound understanding of
the biological mechanism driving tumor dissemination
and controlling quiescence of disseminated tumor cells
(DTCs) are of emergent clinical interest. Blood-based,
non-invasive liquid biopsy biomarkers monitored by cli-
nicians open perspectives for therapeutics maintaining
tumors dormant or eradicate DTC [3].

By the event of an organ donation harboring unde-
tected MRD from a long-term cancer survivor, a meta-
static outbreak in an immune deficit patient has been
observed [4]. This case report has first led to the princi-
ple of immune surveillance, postulating the predominant
role of immunity in controlling MRD [5, 6]. Secondly,
the MRD outbreak has shown dissemination of local dis-
ease earlier than previously expected. More evidence—in
line with this case report—has emphasized the notion
of early dissemination in malignant disease [7—10] with
implications for therapy strategies and, respectively, for
implementation of sensitive blood-based biomarkers
indicating early dissemination. To date, multiple qui-
escence drivers (e.g., SOX9 or SOX2) have been iden-
tified, reactivating progenitor stem cell programs, and
are simultaneously known for their function in immune
tolerance and therapy resistance [11]. However, qui-
escent cells with key features like autophagy, GO cell
cycle arrest, and immune surveillance might be diffi-
cult to detect in cancer patients. This dilemma can be
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circumvented by the principle of liquid biopsy, first
described by Pantel and Panabieres [12], which allows
the specific analysis of tumor markers such as circulat-
ing tumor cells (CTC), circulating tumor DNA (ctDNA)
by simple and non-invasive blood sampling or by the
direct detection of DTCs in secondary organs like the
bone marrow (BM).

Cancer cell dormancy is embedded in the cascade of
metastasis formation. When precancerous lesions over-
come self-protection programs like senescence by muta-
tional or epigenetic loss of tumor suppressors and gain
of oncogenic drivers, processes predisposing facilitate
motility of tumor cells. Early within carcinogenesis,
malignant cells managed under selection pressure to gain
the ability to influence and modify their tumor microen-
vironment [13, 14]. Cancer cells escape epithelial cell
formation by epithelial-mesenchymal transition (EMT)
to invade into their stromal adjacent tissue (invasion) and
become CTCs. Thereby, cancers induce neoangiogenesis,
predominate immune surveillance by inducing immune
tolerance, and enhance invasiveness [13]. In the blood-
stream, CTC face new challenging environmental cir-
cumstances and therefore just a minority of CTCs resist
and invade into their secondary lesions, such as the liver,
BM, or lungs, and become DTCs [15].

Extrinsic mechanisms and tumor cellular dormancy are
mutually related [16]. Adaptive immunity with crucial
function for tumor mass dormancy impairs and control the
tumor in its phenotypical appearance. A recent work pro-
motes the idea of close relation of tumor intrinsic modifi-
cation reducing cell cycle dynamics and facilitate immune
evasion allowing long-term dormancy in distant metastatic
niches [17]. In MRD patients, the presence of mutant cells
that are primarily resistant to the applied anti-cancer drugs
or the presence of tumor cells that become secondarily
drug resistant due to activation of survival pathways dur-
ing therapy is frequently observed. Thus, another reason
for the establishment of tumor dormancy is the develop-
ment of therapy resistance in individual cancer cell clones
[18]. In this context, therapy-induced senescence has long
been recognized as an important mechanism that enables
tumor cells to escape the direct impact of a cytotoxic ther-
apy by enabling cell survival in a dormant state [19]. The
senescence-associated secretory phenotype as well as the
reversion of the senescent state can contribute to disease
recurrence and escape from tumor dormancy [19-21].
Recent findings demonstrate that treatment itself can
also actively induce tumor dormancy through a diapause-
like adaptation, which is a reversible state of suspended
embryonic development activated by hostile environmen-
tal conditions [22, 23].

Over the past decade, a growing body of research suggests
that malignancies adapt to selection pressure as therapies like
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Fig. 1 Dormancy. Dissemination and tumor dormancy—MRD
and dormancy biomarkers indicating late tumor recurrence. TME
tumor microenvironment, CTC circulating tumor cell, ctDNA cir-
culating tumor DNA, MRD minimal residual disease, NETs neu-
trophil extracellular traps, SASP senescence-associated secretory
phenotype, DTC disseminated tumor cell, dDTC dormant dis-
seminated tumor cell. During carcinogenesis, tumor cells undergo
different adaptions enabling malignancies to invasive growth,
escape of immune surveillance, epithelial-mesenchymal transi-
tion, and induction of tumor vascularization. Often, intravasation
and dissemination were achieved before solid malignancies were
clinically captured or have been detected by radiographic diagnos-
tics. Minimal residual disease (MRD) tracking with liquid biopsy
might be a more suitable diagnostic instrument for detection of
early blood dissemination. Enhanced by metastatic niche prepa-

immune checkpoint inhibitors [24] or targeted therapies [25]
or to hypoxia [26, 27] with similar adaptations rendering qui-
escence a clinically pivotal biomarker target. Besides clinical
applications, investigation of CTC, ctDNA, and DTCs might
give new impulses for the biologic procedure of dissemination.
Nevertheless, the detection and analysis of these biomarkers
need to overcome major clinical and technical challenges and
thus require several sensitive methodologies, which are dis-
cussed in the following chapter.
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ration, disseminated tumor cells (DTC) extravasate and colonize
secondary organs and form immediately overt metastasis. How-
ever, some entities tent to endure in a tumor dormant status. Previ-
ously invasive and proliferative tumor cells switch therefore into a
quiescent cell state in which these cells resist immunity for years.
Driven by a plethora of partly unknown processes and programs,
dormant disseminated tumor cells (dDTCs) awake and re-gain
proliferative phenotypes. For early prediction of disease progres-
sion, there is an urgent need for the exploration and clinical intro-
duction of blood-based liquid biopsy biomarkers indicating early
dynamics in MRD. On the other side, detection of dormant DTCs
resting in cell cycle arrest and in metabolic quiescence circum-
venting invasive procedures like bone marrow punctation might
be challenging and requires complementary and comprehensive
tumor-derived and microenvironment biomarkers

2 Methodology and technical challenges
of liquid biopsy

Only a small subpopulation of CTCs released from pri-
mary or metastatic lesions is able to survive in blood for
a short transit time, due to an immense stress exposure,
which, in part, explains the low concentration of CTCs
in blood samples from cancer patients and requirement
to use ultrasensitive methods for the enrichment and
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detection methods of these rare cells [28]. CTCs can be
enriched by physical criteria that distinguish them from
normal blood cells such as size, deformability, or electri-
cal charge of the cell membrane (Fig. 2). These technolo-
gies do not depend on the expression of a tumor marker
antigen and are therefore denoted as “label-independent”
(e.g., Hydro-Sec and CTC-iChip) [29-32]. Alternatively,
label-dependent technologies are applied that are either
based on positive or negative selection of CTCs. Positive
enrichment methods use cell surface markers frequently
expressed on tumor cells and absent or rarely expressed
on normal blood cells (e.g., EpCAM, Mucin-1, HER2, or
EGFR). Negative enrichment is based on the removal of
normal blood cells by antibodies against CD45 or other
antigens expressed on leukocytes or circulating endothe-
lial cells [32, 33]. After enrichment, the isolated CTCs
can be identified using immune—cytological assays like
membrane and/or intracytoplasmic staining with antibod-
ies to epithelial, mesenchymal, tissue-specific, or tumor-
associated markers (e.g., keratins). Because BM is a mes-
enchymal organ and DTCs from most other solid tumors
are derived from epithelial organs, this principle is also
applied for the detection of DTCs in BM samples [34].
Molecular assays enable the identification of CTCs at the
DNA, RNA, and protein level. Besides immunocytological

approaches, secretion of tumor-associated proteins can be
used to enumerate viable CTCs using the EPISPOT or
EPIDROP technologies [35] that enables the detection of
single CTCs in microdroplets. The functional properties
of CTCs can also be investigated in vivo by the establish-
ment of CTC-derived xenografts. Recent studies using
xenografts models of CTC cell lines allowed first insights
into functional properties and response to drugs of CTCs
[28, 36].

Cell-free DNA (cfDNA) circulating in the peripheral
blood is mostly released through necrosis and apoptosis but
potentially also by secretion through extracellular vesicles.
In cancer patients, only a small portion of cfDNA (usually
0.01-5%) is ctDNA shed into the blood by tumor cells [37].
ctDNA analysis requires the use of ultrasensitive methods
based on the identification of tumor-specific aberrations or
epigenetic marks in cfDNA samples [38] (Fig. 2). Ultra-
sensitive targeted approaches like droplet digital PCR or
BEAMing and NGS technologies (Tam-Seq, Safe-SeqS, and
CAPP-Seq) are able to detect prespecified cancer-associated
mutations at high sensitivity. Refined real-time PCR meth-
ods, like allele-specific PCR (AS-PCR), allele-specific non-
extendable primer blocker PCR (AS-NEPB-PCR), co-ampli-
fication at lower denaturation temperature (COLD-PCR), or
peptide nuclei acid-locked nucleic acid (PNA-LNA) PCR
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Fig. 2 Methods. Technologies for enrichment, detection, and
characterization of circulating tumor cells (CTCs) and circulat-
ing DNA (ctDNA) detection technologies. CTCs isolated from
blood samples can be enriched using marker-dependent tech-
niques. After enrichment, the isolated CTCs can be identified
using immunocytological assays. The functional properties of
CTCs can also be investigated in vivo by the establishment of
CTC-derived xenografts. ctDNA detection technologies: ctDNA
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analysis is based on the identification of tumor-specific aberra-
tions or epigenetic marks in cfDNA samples. Ultrasensitive tar-
geted approaches allow fast, cheap, and sensitive detection of
mutations. Untargeted approaches allow the unbiased detection
of genomic aberrations without requiring prespecified informa-
tion about the mutation pattern of the respective primary tumor.
Source: modified from Heidrich et al., Int. J. Cancer. 2021;
https://doi.org/10.1002/ijc.33217
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clamp allow fast, cheap, and sensitive detection of muta-
tions. Untargeted approaches like whole-genome sequenc-
ing, whole-exome sequencing, or FastSeqS allow the unbi-
ased detection of genomic aberrations without requiring
prespecified information about the mutation pattern of the
respective primary tumor [39, 40]. Even though targeted
approaches show high analytical sensitivity, they are limited
to mutations in a set of predefined genes, whereas untar-
geted approaches like whole-genome sequencing or whole-
exome sequencing provide the opportunity to detect novel,
clinically relevant genomic aberrations without requiring
information about the primary tumor [41]. It is essential to
avoid conditions that increase non-tumorous cfDNA in the
presence of small amounts of ctDNA, since most cfDNA
originates from normal cells. Besides fast processing of the
sample, ambient temperatures, double plasma centrifuga-
tion, and special cfDNA blood collection tubes, parallel
sequencing of normal leukocytes is required to differentiate
clonal hematopoiesis of indeterminate potential mutations
from somatic tumor mutations [42—44]. In this review, we
will focus on describing the clinical relevance of MRD as
well as the role of liquid biopsy (ctDNA, CTCs, und DTCs)
for detection, monitoring, and prediction of recurrence.
We place emphasis on studies with breast cancer, prostate
cancer, and malignant melanoma patients. Breast and pros-
tate cancer belong to the most frequent tumor entities, and
melanoma has become the prime target for immunotherapies
using liquid biopsy to assess treatment responses.

3 Breast cancer

3.1 Clinical relevance of MRD in patients
with breast cancer

Breast cancer is the most commonly diagnosed cancer
in women and the main cause of cancer-related death for
women worldwide [45]. In breast cancer, 70-80% of patients
harbor primary tumors expressing hormone receptors for
estrogen as major growth stimulus [46, 47]. These tumors
can be well-treated by drugs targeting the ER-signaling axis
with remarkable 5-year survival rates of over 90% [47-49].
However, around 20% of patients relapse and develop
recurrence after the 5-year surveillance period [50-52].
Early recurrence is mainly defined by events of metastasis
3 to 5 years after first diagnosis and is closely related to an
aggressive, therapy-resistant tumor [53]. However, analysis
of 20-year follow-up has shown that ER-positive patients
show continuously late relapses [52] most likely due to MRD
or dormant DTCs that become activated by so far unknown
extrinsic and intrinsic stimuli. Interestingly, approximately
50% of breast cancer patients with DTCs in their BM show
no tumor recurrence within 10 years observation time [34].

Estimation of the total tumor load of DTCs in BM from
these data results in the astonishing conclusion that these
patients are able to control the outgrowth of at several hun-
dred thousand of tumor cells in BM. If one assumes that
the BM is not the only reservoir for DTCs, this number is
probably even much higher. Until to date, metastatic disease
is a non-curable state of breast cancer, underlining the clini-
cal importance of intervention for eradication or control of
MRD to prevent metastatic outbreak.

To prevent late recurrence, a prolonged endocrine stand-
ard of care therapy might suppress MRD long lastingly and
can prevent thereby disease outgrowth [54-56]. Although,
endocrine therapy is a well-tolerated, cost-efficient therapy
option, subgroups under low recurrence risk prone to over-
treatment and patients under high risk would benefit from
an enhanced and multimodal systemic therapy. Currently,
there are several trials aiming to target MRD with systemic
adjuvant treatment options including liquid biopsy analyses
for therapy stratification and monitoring (NCT04523857,
NCT00429247, and NCT01779050).

3.2 Monitoring MRD in breast cancer patients
by detection and characterization of DTCs

For screening and monitoring of MRD, DTC characteriza-
tion from BM aspirates were introduced and appear as addi-
tional micrometastasis searching tool besides the sentinel
lymph node investigation [57]. BM aspiration is an invasive
method but procedure integration into the surgical setting
with general anesthetics can provide a pain-reduced oppor-
tunity for gaining information about DTCs. If BM aspirate
analysis precise the prognosis prediction in comparison to
clinicopathological criteria like tumor size, nodal status,
tumor grading, and molecular subclassification, this inves-
tigation would be legitimate for incorporation into clinical
routine. Previously, Braun et al. showed in a multicenter
study that DTC detection in BM independently predicted
prognostic values [34]. This finding has been more recently
confirmed in a large-scale single-center investigation on 803
patients out of 3141 patients, showing that DTC positivity
was an independent prognostic marker for disease-free sur-
vival (DFS) and overall survival (OS) [58]. By finding 2814
patients with detectable DTC from a 10,307 patient’s cohort,
a multicenter international study could further strengthen the
independence as prognostic marker [59]. Interestingly, DTC
detection appears to provide information independent from
the recurrence score determined by the analysis of primary
breast tumor tissue like the Oncotype DX score [60].
Besides DTC enumeration, the additional molecular
characterization of DTCs at the single-cell level can pro-
vide deeper insights into the biology of MRD. This might
hold the potential for identifying biological key signatures
as targets for adjuvant therapies for each patient’s MRD
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and can personalize adjuvant therapy that target those sig-
natures. Interestingly, DTCs isolated from BM appears
to show HER2 amplification in patients with HER2-neg-
ative primary tumors [61-63]. Accordingly, HER2 status
of DTCs can offer one opportunity to eradicate MRD, as
it was shown in previous work [64] and is under current
investigation in trials (NCT00429247 and NCT01779050).
Besides HER2, primary breast cancer tissue and DTCs can
also differ in terms of their PIK3CA mutations, EPCAM
upregulation, MYC and CCNE1 oncogene upregulation, or
ESR1 expression, underlining the heterogeneity of DTCs
[65]. Whether dormant DTCs harbor cancer-stem cell char-
acteristics remains subject of ongoing investigations. Balic
et al. showed that 72% of breast cancer patients analyzed
harbored DTCs with a CD44 +/CD24—stem cell phenotype
[66]. Whether or whether not these stem-cell like DTCs are
able to form metastasis remains to be demonstrated. Whole-
genome amplification followed by DNA analysis for copy
number aberrations or mutations [8] might provide more
comprehensive information on the genomic background of
DTCs, and the comparison to overt metastases might allow
the identification of metastasis-initiating cells.

3.3 Monitoring MRD in breast cancer patients using
blood-based biomarker

3.3.1 Circulating tumor cells (CTCs)

Analysis of DTCs in BM (or other organs) is invasive and
thus difficult to repeat. In contrast, peripheral blood can be
easily and repeatedly obtained by a simple venous punc-
ture and has therefore become the preferred fluid for liquid
biopsy analyses [3]. CTCs in the blood circulation are cells
that originate from primary and (micro-) metastatic lesions.
Despite the assumption that only a small fraction of CTCs
will develop into metastasis [67], the CTC counts at ini-
tial diagnosis and during the post-surgical follow up period
are tightly correlated to the risk of relapse in breast cancer
and other solid tumors [32]. Dissemination of tumor cells
through the blood circulation is therefore an important inter-
mediate step that also exemplifies the switch from localized
to systemic disease [15] and recent mathematical modeling
revealed that the survival of CTCs during their dangerous
passage though the blood might be even the largely under-
estimated key step in cancer metastasis [68].

The detection and molecular characterization of CTCs
may provide important insights into the biology behind
metastatic progression. Due to the insufficient performance
of serum markers (CA 15-3 or CEA) regarding sensitivity
and the lack of proof of a survival advantage using protein-
based biomarker [69-71], other blood-based tests are des-
perately required. The clinical significance of CTCs has been
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extensively evaluated in patients with breast cancer, demon-
strating that CTC detection is associated with OS and PFS
both in early and metastatic breast cancer. In MRD stages of
breast cancer without overt metastatic lesions, CTC numbers
are low, and sufficient blood volumes as well as sensitive
assays are required for detection (e.g., up to 20 mL of blood)
[72]. Various studies have demonstrated that the detection of
CTC:s at initial diagnosis is correlated with an increased risk
for metastatic relapse, suggesting that tumors with a higher
propensity to release malignant cells into the circulation
have a higher chance to eventually form overt metastases
at distant organs [72-75]. These findings may change the
current risk assessment of early breast cancer because they
clearly indicate the metastatic potential of CTCs early in the
disease. In the 2018 Tumor staging Manual of the American
Joint Committee on Cancer (AJCC), a new risk category
called cMO(i +) was introduced. However, CTC testing has
not been implemented into clinical practice yet.

Less information is available regarding the prognostic
relevance of liquid biopsies focusing on the surveillance
of MRD through follow-up care studies. Here, we discuss
recent studies indicating that the detection of CTC months or
even years after initial diagnosis predicts metastatic relapse
earlier than clinical imaging procedures used to diagnose
relapse in breast cancer patients. Trapp et al. assessed the
CTC counts before and two years after chemotherapy in
patients with non-metastatic breast cancer [76]. Two years
after chemotherapy, 198 (18.2%) of 1087 patients were CTC
positive, and a positive CTC status at this time point pre-
dicted a decreased OS and DFS. Similarly, Sparano et al.
demonstrated that the presence of CTCs obtained approxi-
mately 5 years after diagnosis predicted late recurrence
of patients with operable human epidermal growth factor
receptor 2-negative breast cancer [77]. The analysis of 547
women revealed that the recurrence rates per person-year
of follow-up in the CTC-positive group was 21.4% (7 recur-
rences per 32.7 person-years), while being only 2.0% in
the CTC-negative group (16 recurrences per 796.3 person-
years). Multivariate analysis showed that the detection of
CTCs was linked to a 13.1-fold higher risk of recurrence
(hazard ratio point estimate, 13.1; 95% CI, 4.7-36.3), thus
indicating the clinical validity of CTCs for detection of
MRD and risk stratification concerning late breast can-
cer recurrences. In view of the transit time of CTCs in the
circulation, CTCs in patients detected years after removal
of the primary tumor are most likely derived from occult
micrometastatic lesions missed by radiological imaging or
even single DTCs that extravasate back into the blood from
their secondary site. Evidence for such a re-circulation of
metastatic cells is derived from experimental models [78]. In
addition, breast cancer patients with overt metastatic relapse
have usually higher CTC counts than early stages patients,
suggesting that CTCs are frequently released from metastatic
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lesions into the blood. To which extent these CTCs con-
tribute to metastatic progression from single sites (“oligo-
metastasis”) to multiple sites is still subject of investigation.
Recently, it has been also suggested that the release of CTCs
is following a circadian rhythm [79, 80].

3.3.2 Circulating tumor DNA (ctDNA)

The detection of ctDNA shedded by micrometastatic
lesions also offers the opportunity for monitoring MRD
[3]. Currently, ctDNA detection assigns patients into
intervention trials aiming to eradicate MRD and imped
metastasis outgrowth (NCT04985266, NCT04567420,
NCTO03285412, and NCT04915755), and it is used as sur-
rogate endpoint in trials to anticipate response indicated
by clearance of ctDNA by therapy (NCT03285412 and
NCT03145961) (Table 1). In the recent ESMO guidelines
[81], ctDNA detection for MRD detection is, however,
not yet recommended for clinical practice. Assays need to
be very sensitive to detect the minute amounts of ctDNA
fragments in patients with MRD and assay harmonization
and independent technical validation is urgently needed.
In addition, the results of interventional clinical trials are
needed to demonstrate the clinical utility of early recur-
rence detection by ctDNA. Although it is well accepted
that ctDNA surveillance of blood samples leads to early
detection of recurrence many months before radiological
imaging (Prediction of metastatic growth already 2 years
before relapse) [82], the clinical consequence of this find-
ing and its benefit for prolonging the life span of cancer
patients needs to be demonstrated before implementation
in clinical practice.

Following the landmark study of Dawson and colleges
[83], a plethora of studies have been published on the use
of ctDNA. Interestingly, high-depth targeted capture mas-
sively parallel sequencing from primary tumor, residual
tumors after chemotherapy, plasma samples with identified
MRD and metastasis biopsies represented subclonal and
clonal dynamics: whereas in only one patient congruence
between primary tumor and MRD were identified, all other
4 patients developed incongruent prerelapsed MRD. Moreo-
ver, mutations that were found in MRD reoccurred in metas-
tasis biopsies, revealing MRD as more similar to the distant
metastasis then to their originating primary tumor [84]. Due
to clonal and subclonal evolution tracking of primary lesion
over MRD to overt metastasis, this evidence emphasizes
the notion of the enrichment of diversity and acquiring of
mutations in micrometastatic disease. Thus, MRD detection
based on panels constructed by sequencing data from the
primary tumor, which is the common approach for tumor-
informed ctDNA assays, might be impeded by mutational
diversity acquisition over time.

4 Prostate cancer

4.1 Clinical relevance of MRD in patients
with prostate cancer

Prostate cancer is the most frequent malignancy in men in
Europe and the USA. Most prostate cancer cases are detected
when the primary tumor growth is still limited within the
prostate [85]. Additionally, newly diagnosed patients in the
Western countries have comparatively high 5-year survival
rates and thus prostate cancer is considered as relatively
slowly growing cancer type [85]. However, after a perceived
curative therapy without detectable tumor, a recurrence
can occur in about a quarter of the patients within the first
five years after the initial cancer treatment [86]. The abil-
ity of prostate carcinoma cells to resume proliferation after
a longer latency period and to initiate tumor recurrence is
principally comparable to the biology of estrogen receptor-
positive tumor cells [47].

Although breast and prostate cancer develop from organs
of different anatomy and physiological function, both can-
cer entities follow common principles. As such, transformed
epithelial cells from both organs require the steroid hor-
mones estrogen or androgen to maintain cell proliferation
in hormone-dependent cancer [87]. In contrast to breast
cancer, prostate cancer patients are tested for their prostate-
specific antigen (PSA) serum levels, which is a well-estab-
lished marker for response and relapse monitoring [88]. This
biomarker is unique for this cancer entity and exemplifies
the advantages of the liquid biopsy concept, especially by
enabling low-risk longitudinal measurements. Neverthe-
less, patients may not have an abnormal PSA value after
the removal of the primary tumor [86], so it can be assumed
that PSA measurement is not always appropriate to detect
MRD in prostate cancer patients. However, a characteristic
of prostate and breast cancer is the high propensity to metas-
tasize to bone [89, 90]. For that reason, in both malignan-
cies, the detection of DTCs in the BM has been widely used
as indicator for MRD and source of metastatic relapse [91].
Detection of DTCs in the BM or detection of CTCs in the
blood of prostate cancer patients are biomarkers that can be
used to increase the precision of prognosis, and to moni-
tor minimal residual cancer in an individual prostate cancer
patient, which we discuss in the following chapter.

4.2 Monitoring MRD in prostate cancer patients
by detection and characterization of DTCs

Pioneering studies showed that the presence of epithelial-
like cells in BM of prostate cancer patients might be inter-
preted as an indicator of the metastatic capacity of an indi-
vidual primary tumor [92-94]. The detection of occult cells,
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positive for epithelial keratin expression, showed a signifi-
cant correlation with established risk factors, such as local
tumor extent, distant metastases, and tumor differentiation
[95]. This indicated that BM is an important distant site for
detecting early hematogenous spread of prostate carcinoma
cells. Furthermore, immune—cytochemical detection of these
cells may, therefore, be useful for increasing the precision
of current tumor staging, and to monitor minimal residual
cancer in an individual patient [95] especially in patients
with clinically localized (T1-3NOMO) prostate carcinomas
[96]. However, at that time point, it has not been established
unequivocally that the cells detected by antibodies for epi-
thelial keratin expression are really tumor cells. Thus, addi-
tional biomarkers have been studied to further characterize
those epithelia-like cells. By combining staining of epithe-
lial keratins with staining of PSA and fluorescence in situ
hybridization (FISH), it has been shown that epithelial cells
in BM aspirates that have been collected immediately after
radical prostatectomy or cryosurgical ablation do really
express PSA and are predominantly cytogenetically aber-
rant [97]. Several later published studies have confirmed
tumor-specific characteristics in these epithelial-like cells
supporting their designation as DTCs [98—100]. Neverthe-
less, some of the detected cells in the BM may still represent
contaminating, epithelial keratin-expressing cells from the
skin or endothelium [100].

In the following decade, several studies have validated
the prognostic significance of DTCs in the BM of early-
stage prostate cancer patients in different clinical settings.
For prostate cancer patients who received radiotherapy, the
detection of DTCs in BM at diagnosis was associated with
the histological differentiation of the primary tumor and
an increased risk of developing distant metastases during
a 7-year follow-up [101]. Similar results were obtained for
patients that received hormone therapy followed by radi-
cal prostatectomy. Here, the presence of DTCs in BM was
a significant prognostic factor with respect to poor PSA
progression-free survival and an independent predictor of
biochemical recurrence in a multivariable analysis [102].
In addition, in the setting of radical prostatectomy without
neo-adjuvant therapy, the detection of DTC prior to surgery
was an independent predictor of recurrence [103]. This find-
ing was confirmed in another study, showing that patients in
whom DTCs were detected preoperatively were more likely
to relapse within the first 2 years after surgery, but in this
study, the detection of DTCs in the postoperative setting was
not correlated with biochemical recurrence or the develop-
ment of metastatic disease [104]. One more study addressed
the question, whether the detection of DTCs in BM of pros-
tate cancer patients before or after treatment for prostate can-
cer could be used as a prognostic marker for recurrence. In
this study, only preoperative DTC status showed up as statis-
tically independent parameter for survival in the multivariate

analysis [105]. Nevertheless, also conflicting results have
been published. In a single-center study, analyzing a cohort
of patients with increased risk for disease recurrence, the
detection of DTCs at the time of prostatectomy was not
correlated to the clinical outcome [106]. This discrepancy
might be due to technical variations in the assays applied or
differences in study cohorts. However, to date, the analysis
of BM aspirates at time of surgery is not recommended as a
standard procedure in patients with clinically localized PC.

In summary, these results imply that the presence of
DTC in the BM of prostate cancer patients is an indicator of
MRD. Based on these findings several clinical applications
have been proposed. Intended usages for DTCs would be
as a biomarker of prognosis that predicts for disease recur-
rence after surgery or to identify patients that would ben-
efit from anti-proliferative therapy in the perioperative or
postoperative period [107]. As postoperative detection of
DTCs does not always predict for poor overall survival [104,
106], it is feasible that DTCs in the BM of prostate cancer
patients can remain in a state of dormancy for extended peri-
ods. During the last decade, the interest in the detection of
DTCs has declined and also the latest mechanistically stud-
ies on mechanisms that control tumor dormancy of prostate
derived DTCs, lacked the opportunity for validating results
in BM samples collected from real tumor patients. This is
possibly because BM sampling is an invasive procedure not
integrated into clinical routine. In recent years and maybe
due to the declining interest in DTC detection, there have
not been any technical advancements for the enrichment and
detection of DTCs, too. Nevertheless, there is one report
describing the evaluation across multiple CTC analysis plat-
forms revealed that these technologies are nonspecific in BM
and, thus, not suitable for DTC detection [108]. However,
we propose that the detection and molecular characteriza-
tion of cancer cells in metastasis-prone environment provide
complementary information to other biomarkers, and we
encourage other scientist to include DTC analysis in future
research studies.

4.3 Monitoring MRD in prostate cancer patients
using blood-based biomarkers

4.3.1 Circulating tumor cells (CTCs)

Besides other biomarkers, CTCs have been most intensively
analyzed in prostate cancer [109] and the assessment of
CTCs or tumor cell-derived products in the circulation, such
as cell-free nucleic acids or extracellular vesicles bear also
the potential to identify prostate cancer patients with MRD.
In prostate cancer, it has been shown that higher numbers
of CTCs are not simply a matter of an increasing disease
burden, but also an intrinsic property of the tumor [110].
Nevertheless, there is a clear correlation between the number
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of detectable CTCs and the tumor stage. Thus, CTC detec-
tion in prostate cancer is best suited and validated for moni-
toring metastatic prostate cancer patient with castration-
resistant disease, in whom CTCs are more often detected
and at higher numbers [109-112]. In contrast, utility of
CTC detection in early-stage prostate cancer patients and
relevance of blood-based assays to monitor MRD in non-
metastatic patients remains less conclusive due to irregular
and low CTC counts. In addition, CTC enumeration does
not correlate with other clinic—pathological parameters in
these patients [109]. However, recently, it has been shown
that CTC enumeration by CellSearch analysis before a sal-
vage lymph node dissection can indicate spread of tumor
cells via the blood and systemic tumor disease. Suggesting
that CTC-positive patients seem to have worse pathologi-
cal and short-term oncological and will probably not ben-
efit of lymph node dissection [113]. In addition, the in vivo
CellCollector has successfully been applied to detect CTCs
before and after radiotherapy, suggesting that CTC is a suit-
able biomarker in high-risk non-metastatic prostate cancer
patients [114].

Collectively, highly sensitive CTC detection and char-
acterization methods are required to identify prostate can-
cer patients with MRD for patients with localized disease.
In order to enhance the value of CTC detection in early-
stage patients with MRD, combined and complementary
CTC isolation and detection techniques, like CellSearch,
CellCollector, and EPISPOT assays have successfully been
applied [115-117] (Table 1). Another possibility to enhance
the sensitivity for MRD detection is the implementation of
prostate-specific markers in liquid biopsies for the identifica-
tion of rare prostate cancer cells. In theory, in order to yield
a high sensitivity such prostate-specific markers shall be
stably expressed throughout the entire disease progression
and shall not be expressed on non-prostate-cancer cells in
the sample [118]. In this context, multimarker RNA profiling
of individual CTCs offers the opportunity to analyze gene
expression of multiple markers simultaneously [119]. Nev-
ertheless, capture of the extremely rare CTC in early-stage
patients remains the bottleneck for implementing prostate-
specific markers in liquid biopsies approaches.

Only few studies compared side by side the clinical rel-
evance of CTCs and DTCs in the same PC patients. Murray
et al. have simultaneously banalyzed CTCs and DTCs to
identify MRD patients in a cohort of patients with classified
pathologically organ-confined prostate cancer (pT2) treated
by radical prostatectomy. Patients were classified as (i) MRD
negative (CTC and DTC negative), (ii) micro-metastasis
positive, and (iii) CTC positive. After 10 years of follow-up,
a significantly increased risk for biochemical recurrence has
only been found for CTC-positive patients compared to the
MRD negative group, whereas no increased risk has been
detected for DTC positive patients [120]. These results imply

@ Springer

that CTC detection is superior to DTC detection for the iden-
tification of MRD patients, but these results need to be con-
firmed in larger studies using state of the art technologies.

4.3.2 Circulating tumor DNA (ctDNA)

Besides CTCs, other tumor-derived biomarkers, like ctDNA,
have been suggested for blood-based analysis for the iden-
tification of prostate cancer patients [121]. In this context,
it has been reported that in particular hypermethylation the
ZNF660 promotor can be potential used as blood-based bio-
marker for the stratification of low/intermediate-grade cases
into indolent or more aggressive subtypes [122]. Exosomes
also offer a potential biomarker content that could be used
alone or in combination with other types of liquid biopsies
[123] but to our knowledge successful applications for MRD
detection in prostate cancer have not been reported, so far.
However, any biomarker for MRD detection in prostate can-
cer needs to compete with serum PSA testing, which is an
excellent marker in aspects such of monitoring treatment
response and/or tumor relapse. Like for all other cancer enti-
ties, low allele fractions at post-treatment time points as well
as interference of technical and biological background are
hampering reliable results from ctDNA analysis for MRD
detection [124] and there is an ongoing debate whether
ctDNA detection could really measure up with PSA testing
for MRD detection in prostate cancer [125]. Nevertheless,
we believe that complementary methods, analyzing different
biomarker is the best strategy to enhance MRD detection and
the complementation but not the replacement of PSA testing
should be the goal of current research efforts.

5 Melanoma

5.1 Clinical relevance of MRD in patients
with melanoma

Malignant melanoma is the 13th most common cancer in
men and the 15th most common cancer in women. The abso-
lute number of incident melanoma cases increased continu-
ously since 1999 [126, 127]. Because of primary tumor het-
erogeneity and progressive clonal divergence resulting in the
growth of more aggressive tumor populations the majority
of early-stage, non-metastatic melanomas will experience
recurrence following a variable disease-free interval and
progression to metastatic melanoma and ultimately death.
The 5- to 10-year overall survival (OS) rates for clinical
stage IIIB, ITIC, and IIID are 83-77%, 69—60%, and 32-24%,
while in Stage IIB/IIC approximately 11% (low risk)-28%
(high risk) of patients without adjuvant therapy experi-
ence relapse after 18 months [128]. Melanomas are highly
immunogenic tumors, as seen by the naturally occurring
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high level of T cell infiltration and, in some patients, spon-
taneous tumor regression. Therapeutic strategies to eradicate
dormant cells by impairing important survival pathways or
mechanisms that mediate therapy resistance are promising.
By inhibiting the lymphocyte activation gene 3 (LAG-3), the
glucocorticoid-induced TNF receptor (GITR), and the T cell
immune receptor with immunoglobulin and ITIM domain
(TIGIT), the T cell antitumor response is improved, which
leads to increased T cell effector and NK cell proliferation,
resulting in a more efficient elimination of dormant tumor
cells [2]. With a minimal risk of overall toxicity, promis-
ing techniques combine antiangiogenic treatment or cancer
vaccines with immunotherapy to activate tumor-specific
immune responses with long-term memory to prevent recur-
rence or metastasis [129-131]. Many of the most interesting
new drugs relate to immune-mediated quiescence. Similar
to prostate cancer, there are commercially available tumor
markers in melanoma patients such as S100p, LDH, the pro-
tein “melanoma inhibitory activity” (MIA), CRO, PD-L1,
IL-8, TIL, osteopontin, and YKL-40. However, their clini-
cal utility is limited as many of these markers are associ-
ated with other biological processes. Even if the value of
S100-f as a prognostic marker in melanoma is low, there is
still a correlation with the patient’s tumor burden and thus
an association with overall survival of tumor-bearing meta-
static melanoma patients. However, for tumor-free patients,
for example, patients after surgical removal of lymph node
metastases (Stage II/III), there is no correlation between
S100-f serum concentration and overall or recurrence-free
survival [132]. The success of targeted therapy (TT) and
immunotherapy (ICI) in patients with metastatic melanoma
led to the development of adjuvant therapy for high-risk
melanoma. These therapies have now become the standard
of care. Nine large randomized controlled trials of immune
checkpoint inhibitors and targeted therapies in adjuvant
treatment have shown improved recurrence-free survival
compared with placebo or an active control group. How-
ever, following putative curative therapy without detectable
tumor, recurrence can occur in approximately one-quarter of
patients within the first five years after initial cancer treat-
ment [133, 134]. Due to toxicities of adjuvant therapies, one
goal in Stage II patients with primary surgical treatment is
to identify patients at high risk of relapse. Thus, an optimal
balance between insufficient treatments vs. overtreatment
should be found. To address this issue, there are several bio-
marker-based gene expression profiling approaches for bio-
marker-based risk classification of patients at high risk for
disease recurrence (MelaGenic, Skyline DX, Decision DX).
In addition, recent trials determine mutational und molecular
pathological relapse pattern of adjuvant therapy [135, 136].
One strategy currently under investigation is combining
BRAF/MEK inhibitors with ICI. This combination strategy
combines the hope for both a fast and lasting response to

therapy. Due to the higher toxicity of triple combinations,
and failed (COMBI-i) or disappointing (TRILOGY) trials,
a sequencing strategy rather than a simultaneous triplet is
thought to successfully combine the advantages of both
treatment regimes in order to achieve superior response rates
and increased duration of response (SECOMBIT, Immuno-
CobiVem) [137, 138]. Regarding the many immunomodula-
tory therapeutics, currently being tested in numerous trials a
tool for individual therapy decision making and recurrence
prevention is of even greater importance. To fully under-
stand the monitoring of tumor dormancy and early detection
of disease recurrence, it is crucial to study the interactions
between cancer cells and the surrounding microenvironment.

5.2 Monitoring MRD in melanoma patients
by detection and characterization of DTCs

Only a small part of CTCs can successfully arrive at a dis-
tant organ and become DTCs. Forty percent of melanoma
patients develop distant metastases at five or more years
after curative surgery, and frequent manifestations of mela-
noma without an identified primary lesion may reflect the
tendency of melanoma cells to spread from indolent sites
such as BM [139]. DTCs are found in 57.4% of skin mela-
noma cases and in as many as 28.6% of stage I cases, which
confirms the aggressive course even of localized disease.
Observations of hematogenous metastases from melanoma
after 10 [24] or even 40 [25] years after removal of the pri-
mary tumor and frequent melanoma manifestations without
cancer of unknown primary show the tendency of circulat-
ing melanoma cells (CMCs) to disseminate in the attractive
metastatic niches, e.g., into the BM. gp100—HMB-45 has
been used as marker of melanoma cells to identify DTCs in
BM [28]. Examination of the BM of 47 melanoma patients
revealed significant changes in BM hematopoiesis occur-
ring in the presence of DTCs. Significant differences in
the groups with the presence of DTCs (DTCs +) and their
absence (DTC-) were found for blast cells, total granulo-
cyte cell content and erythroid germ indicators, suggesting
that myelo- and erythropoiesis are involved in the tumor
process in the body and possibly react to the presence of
DTCs, which can lead to a reorganization of the microenvi-
ronment [140]. Furthermore, using RET transgenic mouse
melanoma model, dormant tumor cells accumulated in the
BM were found to be co-localized with memory CD8+ T
cells and displayed an aberrant expression of p16, p27, Ki67,
and PCNA proteins, suggesting their dormant phenotype
[141]. Although great advances have been made in CMCs,
CTC isolation, and analysis, the clinical utility of melanoma
CMCs need still to be investigated. Regarding the challenges
that appear intrinsic to CMCs (i.e., rarity and heterogene-
ity) and due to a lack of standardization for CMC detection
further investigations on CMC phenotypes, their prognostic
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potential as well as their differential pharmacodynamic
responses to treatment is needed.

5.3 Monitoring MRD in melanoma patients using
blood-based biomarkers

5.3.1 Circulating tumor DNA (ctDNA)

The analysis of circulating tumor components in the blood
such as ctDNA or CTCs shows promising potential and is
used and investigated as a biomarker in many studies of
other tumor entities like breast and prostate cancer [142].
Although most patients with early stages of melanoma
exhibit a substantial gap between onset of primary and
metastatic tumors, signaling mechanisms implicated in the
period of metastatic latency remain unclear. As patients are
rarely re-biopsied, detection in blood might be advantageous
by enabling a comprehensive assessment of tumor muta-
tional status in real time [143, 144]. Significant advances in
ultrasensitive detection and characterization of CTCs and
ctDNA allow now identifying MRD in an individual mela-
noma patient at a time point when there are still no clini-
cal or radiological signs of distant metastases [94]. Varaljai
et al. postulate that increasing ctDNA levels predicted dis-
ease progression significantly earlier than routine radiologic
scans, with a mean lead time of 3.5 months. Current studies
indicate that ctDNA concentration assessed during TT or
immune checkpoint inhibition in melanoma patients seem
to be a strong prognostic biomarker for advanced and adju-
vant staged melanoma patients and can be used to predict
response to treatment, recurrence, and resistance [145-147].
Recent studies have shown that the detection of ctDNA
before surgery correlates with the aggressiveness of the
disease. There is a high risk of recurrence after complete
surgery for stage IIB, IIC after proper staging, thus including
melanoma patients with a thick primary but negative sentinel
node biopsy. The detection of ctDNA was an independent
predictor of survival with a higher significance in patients
with stage IIID compared to IIIC, and it was associated with
a larger nodal melanoma deposit, a higher number of lymph
node involvement and an increase in LDH levels [148]. As
a diagnostically important biomarker for melanoma, the
detection of the BRAFV600E aberration at the DNA and
protein level in liquid biopsies confers an attractive option.
Through identifying quiescent melanoma cells in intravascu-
lar niches of various metastatic organs, evidence of endothe-
lial transdifferentiation (EndT) in BRAFV600E-metastatic
biopsies from the human lung, brain, and small intestine
reveals a tumor vascularization pattern that may contrib-
ute as a potential therapeutic target to induce quiescence in
metastatic organs of melanoma [149]. Furthermore, it has
been shown that the tumorigenic potential of a cancer cell
correlates to its differentiation status and melanoma cells

@ Springer

can acquire a metastable pluripotent state independent of
BRAF or NRAS mutations [150]. Blood-based testing com-
pared favorably with standard-of-care tissue-based BRAF
mutation testing. Importantly, blood-based BRAF testing
correlated with clinical outcome and appears to be there-
fore suitable for future interventional trials [147]. In addition
to the qualitative and quantitative detection of the presence
of specific mutations such as BRAF, KRAS, and NRAS,
ctDNA clearance seems to gain importance as well. Base-
line and postoperative ctDNA detection in two independent
prospective cohorts identified stage III melanoma patients
at highest risk of relapse and has potential to inform adju-
vant therapy decisions. No relapse was observed in treated
patients who did not have ctDNA at any time point. A differ-
ent scenario was observed in the cohort of untreated patients
with detectable postoperative ctDNA, where the relapse rate
was 100% highlighting the potential of ctDNA as a predic-
tive biomarker of relapse and survival [151]. Similarly, Lee
et al. examined ctDNA concentration in melanoma Stage
IV patients during therapy and showed that in the cohorts
of patients in which ctDNA was not depleted at any time
point or in which ctDNA clearance occurred during therapy,
there was a significant survival advantage compared with the
group that had a steady ctDNA concentration during therapy
[152] (Table 1). However, ctDNA was not able to predict or
monitor intracranial disease activity [153]. Despite the high
potential of ctDNA as a prognostic biomarker, the stand-
ardization of a highly sensitive and reproducible methodol-
ogy is warranted before translating liquid biopsy in clinical
practice.

5.3.2 Circulating tumor cells (CTCs)

CTCs are cancer cells circulating in the peripheral blood
shed from either the primary tumor or its metastatic sides.
CTC analyses enable comprehensive assessment at the
DNA, RNA, and protein levels [3], yet technical challenges
to detecting and capturing CTCs must be addressed. Inves-
tigating the heterogeneity of tumors within a patient through
CTC analyses are an important mechanism to uncover MRD
and recurrence after or under ongoing treatment [33]. How-
ever, detection of CTCs in melanoma patients has been chal-
lenging in recent decades due to the remarkable phenotypic
plasticity of melanoma cells. Despite the high phenotypic
and molecular heterogeneity of melanoma CTCs, the EMT
process is believed to play an important role in CTC dissemi-
nation. CTCs share the mutational profile with primary cells,
an intermediate EMT phenotype, and high expression of the
immunosuppressive factors. EMT and acquisition of stem-
like properties can dictate tumor cell quiescent and or their
proliferative fate [154]. A subclonal CTC population exhib-
ited stem cell properties as high aldehyde dehydrogenase
1 activity, melanosphere-forming ability, and expression of
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major stemness transcription factors. Xenograft experiments
confirmed the CTC ability to generate melanoma in vivo and
revealed enhanced metastatic propensity [155]. Commonly
used CTC markers include tyrosinase, Melan-A/MART-1,
MAGE3, MCAM, gp-100, MITF, and GalNac-T, which
have specificities ranging from 85 to 100% but sensitivities
from 6 to 95%. Detection of tyrosinase mRNA in peripheral
blood may be of similar importance for the clinical course of
melanoma as the detection of micrometastatic disease in the
sentinel lymph node. Whether a combination of these two
factors leads to a better definition of the prognosis of mela-
noma patients is under investigation in current studies [156].
Multimarker-derived CTC scores could serve as viable tools
for prognostication and treatment response monitoring in
patients with metastatic melanoma. CTC detection using a
combination of immunocytochemistry and transcript analy-
ses of five genes by RT-PCR and 19 genes by droplet digital
PCR (ddPCR) was associated with shorter overall and pro-
gression-free survival. In addition. Lucci et al. determined
that > 1 CTC was independently associated with melanoma
relapse, suggesting that CTC assessment may be useful to
identify patients at risk for relapse who could derive benefit
from adjuvant therapy [157]. CTC isolation from periph-
eral blood using a high-density dielectrophoretic microwell
array, followed by labeling with melanoma-specific markers
(MART-1 and/or gp100) and a leukocyte marker (CD45) of
a few stages 0-1II melanoma patients detected CTCs even in
patients with early disease (stage 0 and I). By selecting three
informative biomarkers (MART1, MAGE-A3, and GalNAc-
T), Koyanagi et al. demonstrated that two or more positive
biomarkers were significantly associated with worse distant
metastasis disease-free survival and reduced recurrence-free
survival [158]. Interestingly, the number of CTCs seems to
reflect patients’ responses to BRAF/MEK inhibitor treat-
ment indicating a usefulness of CTC analysis for monitoring
response to TT [159]. CTC scores correlated with plasma
ctDNA concentrations and had similar pharmacodynamics
changes upon treatment initiation. The outcomes of patients
with melanoma who have sentinel lymph node (SLN) metas-
tases can be highly variable. Detection of CTCs in patients
with melanoma diagnosed with SLN metastases Stage III
individual CTC biomarker detection ranged from 13.4 to
17.5%. First-time evidence provide that the asymptomatic
progression of metastatic melanoma can be recapitulated
in vivo using patient-isolated CTCs. Implantation of Lin-
population in NSG mice (CTC-derived xenografts, i.e.,
CDX), and subsequent transcriptomic analysis of ex vivo
BM-resident tumor cells (BMRTC) versus CTC identified
protein ubiquitination as a significant regulatory pathway
of BMRTC signaling. The authors assume targeting BM-
resident tumor cells through pharmacological inhibition of
USP7 as a possible therapeutic strategy [160].

6 Conclusion

Cancer dormancy tends to shift into lethal recurrence, pos-
ing severe challenges to clinical treatment. Blood based bio-
marker analysis offer a unique opportunity to determine—
specifically from DTCs, CTCs, or ctDNA—whether this
circulating material demonstrates full metastatic potential,
associated with rapid disease recurrence and death, or,
whether it is a terminally differentiated tumor mass with no
clinical relevance or a dormant cancer cell that may be asso-
ciated with long-term adverse outcomes [161]. Depending
on the scenario, different treatment options are needed. Over
the past decade, molecular phenotyping and genotyping of
CTCs and DTCs have taken a first step toward this goal. Val-
idation of previous findings to detect mechanisms of tumor
dormancy in DTCs in BM samples from patients remains
challenging due to the current still invasive procedure. Nev-
ertheless, the detection and molecular characterization of
cancer cells in an environment prone to metastasis provide
complementary information to other biomarkers [162, 163].

Tumor heterogeneity is a hallmark of solid tumors and has
an impact on the classification, diagnosis, and future treat-
ment of cancer. Assessment of ctDNA and CTCs can be also
used to encompass intrapatient and interpatient tumor heter-
ogeneity in cancer patients. Furthermore, analysis of ctDNA
offers a promising tool for adequate therapy monitoring and
for risk profiling of relapse especially under therapy, which
plays an important role in tumor dormancy as an extrinsic
factor. Regarding the challenge of enrichment and detection
of circulating blood-based biomarker, e.g., short survival
time of CTCs in the bloodstream or low concentration of
ctDNA in early cancer stages, liquid biopsy assays need to
be more standardized. Regarding this international consor-
tium such as the European Liquid Biopsy Society (ELBS,
www.elbs.eu), it can play an important role [164]. Compos-
ite biomarker panels need to be tested in clinical trials with
established endpoints to demonstrate clinical validity and
utility, which will be critical for the introduction of LB into
clinical practice. Preclinical research will enable the discov-
ery of new pathways responsible for the survival of quies-
cent cancer cells and the identification of mechanisms that
cause the transition from quiescent to active disease. The
development of targeted molecular therapies aimed at elimi-
nating dormant residual tumor cells or maintaining them in
a quiescent state is a highly attractive approach to prevent
late tumor recurrence. In addition, experimental studies need
to gain more knowledge about LB marker biology, which in
turn can be applied to the patient to improve the clinical use
of LB analytes. The insights into tumor dormancy and its
impact on MRD and eventual metastasis described in this
review have the potential to advance personalized medicine
significantly. Overall, risk stratification by genomic analysis
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of primary tumors of patients, combined with a high-fre-
quent MRD detection by DTCs, ctDNA, and CTCs enables
future clinicians to prevent overt metastasis formation and
paves the way for better clinical management.
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