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Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients pre-
sent with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable 
proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This 
process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the 
face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide 
future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative 
arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share 
common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the 
cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant 
cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In 
this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently 
know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
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1 � Introduction 

Cancer is generally described as a disease of uncontrolled 
cellular proliferation. This growth phenotype is well char-
acterized and driven by defined hallmarks that include the 
induction of sustained proliferative signaling (e.g., gain-of-
function mutations in oncogenes), evasion of growth sup-
pressive signals (e.g., loss-of-function mutations in tumor 
suppressors), and resistance against death signals (e.g., 
avoidance of apoptotic signaling and immune destruction) 
[1–3]. While understanding these hallmarks is critical, can-
cer is a complex adaptive system that is more than a simple 
sum of these characteristics. For example, if cancer was truly 

a disease simply of unattenuated proliferation, we might pre-
dict that all tumors would be eradicated by radiation and 
chemotherapy regimens that target such proliferative cells. 
In fact, however, the majority of cancers kill patients after 
such treatments have failed. How and why these treatments 
fail varies based on treatment, tumor type, genetic back-
ground, etc., but one mechanism that has been shown to 
play a role is strategic, regulated proliferation arrest in tumor 
cells. This process, which is critical in organismal devel-
opment, may also be critical in tumorigenesis and cancer 
progression, especially with regard to therapy resistance, 
tumor dormancy, and delayed recurrence.

Tumor dormancy refers to how a cancer cell or small 
cluster of cells may remain micrometastatic for years or dec-
ades before outgrowth. It remains a topic rife with urgent 
unanswered questions for the field. An appreciation of the 
distinct mechanisms of proliferative arrest that occur in can-
cer may help guide our understanding of the mechanisms by 
which a proliferative cancer cell may halt division to resist 
treatment or to metastasize, remain dormant at a distant 
site then regain proliferative potential to seed lethal recur-
rence. As the field works to better define the fundamental 
characteristics of these dormant cancer cells, it is important 
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to compare what we know in this field to what we know 
surrounding the two common forms of proliferative arrest 
described in cancer and normal physiology-senescence and 
quiescence. Are the same programs that drive arrest in these 
contexts involved in this process of tumor dormancy? If so, 
how?

2 � Cancer dormancy

Metastatic recurrence after eradication of the primary tumor 
is common and often occurs years after initial remission. 
Described in most common solid cancers, including breast, 
prostate, lung, and colon cancers, as well as in hematological 
cancers [4], this process of late recurrence has been observed 
for centuries but is only now beginning to be better charac-
terized. The term dormancy was first applied to the field in 
1934 by Rupert Willis when he described late metastases in 
patients who had no evidence of local recurrence, propos-
ing that these cancer cells entered the secondary tissue and 
“must have lain dormant” [5]. Geoffrey Hadfield postulated 
in 1954 that these late recurrences are driven by cells that 
had undergone a “temporary mitotic arrest” [6].

Dissemination from the primary tumor, once thought to 
be only a late-stage event, is now understood to also occur 
early in tumorigenesis [4, 7]. Some of the best evidence for 
early dissemination and subsequent dormancy comes from 
studies of patients who received organ transplants from peo-
ple who either had no previous cancer diagnosis or had been 
cured for over 10 years. Patients receiving different organs 
from the same donor went on to develop tumors, and some 
eventually succumbed to the disease (reviewed in [4]). Dis-
seminated tumor cells (DTCs) from early primary lesions 
apparently undergo a period of stasis during which no clini-
cally detectable tumors arise in secondary sites for years or 
decades, much longer than would be predicted in the absence 
of a dormant period.

These periods of dormancy have been described previ-
ously as driven by two related processes. The first is cellular 
or cell-intrinsic dormancy, where a solitary DTC or small 
cluster of DTCs are held in a state of proliferative arrest at 
the secondary site. These dormant DTCs may then progress 
to a state of “tumor mass” dormancy, an instance where a 
metastatic lesion is made up of proliferative cells, but the 
tumor is held below a clinically detectible size threshold by 
suppressive mechanisms such as lack of blood and nutrient 
supply (“angiogenic dormancy”) or by active surveillance 
by the immune system (“immune-mediated dormancy”) 
[8, 9]. Due to difficulties in preclinical models for track-
ing dormant cells in vivo, as well as our inability to study 
undetectable metastases in patients, rigorous studies into the 
identities and characteristics of these dormant tumor cells 
remain challenging. Despite this, many studies have begun 

to uncover some of these unknowns in the past two decades. 
These works are well reviewed elsewhere, including [8–18], 
and more recent studies are highlighted below.

Dormancy appears to be an adaptive strategy that cancer 
cells employ in response to environmental or therapeutic 
stressors, and these cells are a reservoir for delayed relapse. 
Tumor dormancy is a central process in cancer progres-
sion and a potential target for new therapies, but it remains 
to be fully understood. Currently, the field is clouded by 
the use of various terms with imprecise and overlapping 
definitions. “Quiescent,” “slow-cycling,” “drug-tolerant 
persister,” “reversibly senescent,” “cancer stem cell-like”, 
and other terms have all been equated to”dormant” cancer 
cells. As illustrated by these various designations, dormant 
cancer cells share characteristics with other cells undergoing 
proliferative arrest, namely quiescent and senescent cells. 
Exploring the roles of quiescence and senescence in normal 
physiology and in cancer will advance our understanding of 
dormancy and delayed relapse. Increasing our understanding 
of this phase of the disease may elucidate new paradigms 
for the treatment of patients, with the potential to prevent 
metastatic outgrowth, the overwhelming driver of cancer 
mortality.

3 � Cellular senescence in cancer

The process of cellular senescence originally described 
the limited replicative lifespan of human cells grown in 
vitro, now more accurately referred to as ‘replicative 
senescence’ and known to occur in vivo. Hayflick demon-
strated in the 1960s that human fibroblasts grown in vitro 
undergo proliferative arrest after a set number of divisions 
(now termed the ‘Hayflick limit’) [19, 20]. He considered 
this a terminal fate, an assertion that has been challenged 
by more recent data. It is now known that this process 
of replicative senescence is driven by loss of telomeres 
and persistent DNA damage signaling [21–25]. Although 
these studies were performed in normal cells, it is now 
clear that senescence can be induced in cancer cells in 
response to various stressors. These other processes that 
converge on a similar senescent phenotype are of interest 
in cancer and are now described as stress-induced pre-
mature senescence (SIPS); premature in the sense that 
the phenotype is not driven by the cells nearing the end 
of their replicative lifespan but by aberrant oncogene 
expression (oncogene-induced senescence, OIS) [26–30] 
or cytotoxic stresses from chemotherapy (therapy-induced 
senescence, TIS) [31]. Telomere shortening is not impli-
cated in all cases, although importantly, all three of these 
processes are largely driven by a persistent DNA damage 
response. DNA damage arises due to telomere shortening, 
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replicative stress, or direct DNA damaging agents in rep-
licative, oncogene-induced, and therapy-induced senes-
cence, respectively (Table 1) [25, 30, 32, 33].

In the 60 years since Hayflick’s initial description of 
cellular senescence, the definition of a senescent cell has 
evolved beyond describing a simple proliferative arrest to 
include morphological changes such as enlargement and 
flattening of cells; activation of tumor suppressor net-
works such as p16/Rb or p53/p21 that arrest cells in G1 
or G2 phase [34]; an increase in senescence-associated 
β-galactosidase (SA-β-Gal) activity; chromatin structure 
changes, including the presence of senescence-associated 
heterochromatin foci (SAHF); and changes in the tran-
scriptome that promote the secretion of a collection of 
growth factors, cytokines, chemokines, and proteases 
known as the senescence-associated secretory phenotype 
(SASP) (Table 1) [35, 36]. Evidence for the roles of cel-
lular senescence in normal physiology, namely in organ-
ismal development, tissue patterning, and wound healing 
processes, has also been uncovered [37–45], along with 
roles in pathophysiology related to aging [46].

Importantly, evidence has also accumulated pointing to 
roles for senescence during tumorigenesis [3, 22, 25, 30, 
47, 48]. At first glance, the induction of persistent prolif-
erative arrest appears to be beneficial for halting tumor 
growth. Indeed, much has been written that supports this 
view, hypothesizing, for example, that treating patients 
with lower doses of chemotherapies may be able to induce 
senescence and tumor growth arrest without the toxicities 
associated with the higher doses of these drugs that are 
utilized currently [49]. As with most things in cancer, 
however, senescence appears to be a double-edged sword, 
and several groups have reported findings describing the 
protumor functions of senescent cells (Fig. 1) [50].

3.1 � Antitumor aspects of senescence

The most intuitive case of the involvement of senescence (a 
form of proliferative arrest) in cancer (a disease of hyperpro-
liferation) is its role as an opposing force to tumor growth. 
Several groups have reported roles for senescence in protect-
ing against transformation and tumor initiation. Studies in 
various tumor types have documented the presence of senes-
cent cells in premalignant lesions, which are then rare once 
the lesions have progressed to malignancy [51–55], imply-
ing that senescent cells present a barrier for tumorigenesis. 
Although these studies are correlational, they are largely in 
agreement with the data on oncogene-induced senescence 
in normal or premalignant cells in which the senescence 
response halts the proliferation of cells at risk of transfor-
mation, preventing tumor formation. This response was first 
described in the context of HRASV12 expression and has 
since been shown to occur in response to gain-of-function 
mutations in other oncogenes, including BRAF, AKT, and the 
cell cycle regulators E2F1 and cyclin E. Similarly, loss-of-
function mutations in the tumor suppressors PTEN and NF1 
can trigger the same response in vitro and in vivo [28, 51–57]. 
Moreover, senescent cells are characterized by the SASP, 
which contains a host of immune-modulating cytokines and 
chemokines. Similar to its roles in tissue development and 
patterning, the SASP may induce immune-mediated clear-
ance of precancerous cells, which may act to further prevent 
tumor initiation (Fig. 1) [58–60]. Cells that avoid senescence, 
successfully transform, and go on to form detectable tumors 
will inevitably be treated with chemotherapy or radiation, 
both of which have been shown to drive TIS, halting tumor 
growth and promoting regression through immune-medi-
ated clearance [10, 60, 61]. Although these mechanisms 
of senescence are intuitively tumor antagonistic, the same 

Table 1   Characteristics of quiescence and senescence

*shared characteristics bolded

Quiescence Senescence

Driver In vitro: serum deprivation, contact inhibition, loss of 
adhesion

Telomere shortening (RS), replication stress (OIS), DNA-
damaging agents (TIS) resulting in persistent DNA 
damage response (DDR)In vivo: niche factors, lack of mitogens, loss of cell/cell or 

cell/ECM contact
Key markers ↑p27, p21; S, G2/M cyclin – Enlarged, flattened, granular morphology; B-gal+; ↑p16, 

p21; SAHF; SASP
Cell cycle state G0 G1, G2?

Molecular regulators CDKis, Rb/E2F switch DDR components, CDKis, Rb/E2F switch
Reversible? Yes Possibly
Resistance to cell death Resistant to agents that target proliferative cells; immune 

evasive
Resistant to agents that target proliferative cells; upregu-

lated anti-apoptotic factors 
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mechanisms may actually be tumor promoting depending on 
the context.

3.2 � Pro‑tumor aspects of senescence

Although the role of cellular senescence in organismal aging 
is not entirely clear, it is now well understood that aged organ-
isms accumulate senescent cells in a variety of tissues. As 
cancer is often described as a ‘disease of aging,’ with inci-
dence rates increasing dramatically with age, it seems likely 
that senescence and cancer are related. In fact, Rudolf Vir-
chow touched on this over 100 years before the discovery 
of cellular senescence with his ‘irritation theory’ from 1858 
[62], where he proposed that chronic irritation and inflamma-
tion are drivers of tumorigenesis. Harold Dvorak subsequently 
characterized tumors as ‘wounds that do not heal’. Senescent 
cells, known to play a role in wound healing and inflamma-
tion through the action of the SASP, induce remodeling of the 
microenvironment that, while beneficial for wound healing, 
may contribute to the formation of neoplasia [63, 64]. In this 
way, the same process that halts proliferation of cells at risk 
for transformation may paradoxically drive tumor initiation. 
Halazonetis and colleagues proposed that oncogene-induced 
replication stress and subsequent DNA damage may drive 
not only OIS but also the genomic instability critical for the 
accumulation of mutations in cells that promote cancer devel-
opment [47]. While it is unclear under which circumstances 

cells would be induced to undergo senesce versus undergo-
ing transformation and tumor formation, it is likely that the 
same upstream events can promote both fates, further linking 
senescence to cancer development.

Much of the research on senescence in cancer has focused 
on elucidating the roles of aging stromal components in 
cancer progression. Senescent fibroblasts and other stro-
mal components have been shown to induce proliferation, 
motility, and angiogenesis in cancer cells, largely through 
the autocrine and paracrine actions of SASP components 
(Fig. 1) [65–68]. In the same way, however, components of 
the SASP secreted from a cancer cell that has undergone 
OIS or TIS may also impact other cancer cells in a par-
acrine fashion and impact tumor progression and response 
to therapy. In vitro, media conditioned by cells that have 
undergone TIS can stimulate proliferation, induction of 
hallmark epithelial-mesenchymal transition (EMT) markers, 
and increased invasiveness [69]. Additionally, responses to 
radiation and chemotherapy can be affected by cancer cells 
undergoing TIS. Senescence in response to these therapies 
can inhibit apoptosis and even lead to faster relapse than in 
tumors unable to undergo senescence [60, 70, 71].

3.3 � Cellular senescence: links to dormancy

The identity of dormant cancer cells remains elusive 
in general, and therefore, studies directly identifying 

Fig. 1   The pro-tumor and anti-tumor aspects of senescence. Tel-
omere loss, oncogene signaling, or therapies thattarget proliferative 
cells (e.g., chemotherapy and radiation) can all drive a cancer cell to 
senescence. Senescence is classically described as a permanentstate 
and would therefore impede tumor formation. Recent data suggest 
thatsenescence may be reversible, in which case, it could be an adap-

tive mechanism for therapy resistance. The SASP plays both pro- and 
anti-tumor roles. Incertain contexts, it signals to the immune system 
to promote clearance ofcancer cells by T cells and NK cells. In other 
contexts, factors secreted bysenescent tumor or stromal cells can pro-
mote inflammation, proliferation, and EMTin a paracrine fashion. 
Created with BioRender.com
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dormant cancer cells as senescent are scarce. The defini-
tion of a ‘dormant cancer cell’ requires that the cell be 
able to reawaken and proliferate to repopulate a tumor. 
Therefore, by the classical definition of senescence as 
permanent proliferative arrest, cells that have undergone 
senescence could not contribute to delayed relapse as a 
dormant seed. For a senescent cancer cell and a dormant 
cancer cell to be one in the same hinges on the contro-
versial claim that senescence is reversible. Data on the 
reversibility of senescence do exist, although none are 
definitive, and all are context dependent (Fig. 1) [9, 10, 
72–78].

Some of the studies linking senescence to tumor initia-
tion could also be relevant to the reawakening and colo-
nization of dormant cells. This may be especially true 
in TIS, as dormant tumor cells are relevant to disease 
progression during and after treatment. Senescent cells 
persisting after therapy would certainly be a component 
contributing to minimal residual disease (MRD). One 
study, for example, directly links a treatment-induced 
‘senescence-like state’ to dormancy in the context of 
EGFR targeted therapy in EGFR-mutant non-small-cell 
lung cancer [79].

If senescence is truly reversible in certain contexts, 
then senescent cells could plausibly be related to dor-
mant cells based on several shared characteristics. First, 
the duration of dormancy seen in patients and in pre-
clinical models lends itself to the idea that these dormant 
cells have undergone a durable arrest, much like senes-
cent cells. Other types of arrested cells, such as those in 
quiescence, could presumably resume proliferation more 
quickly than what is seen in dormancy models, although 
progression of a solitary dormant cell to so-called ‘tumor-
mass dormancy’ controlled by the immune system could 
account for this time before detectable relapse. Senes-
cent cells, like dormant cancer cells, are also refractory to 
apoptosis in response to therapies that target proliferative 
cells. This resistance is critical for dormant cells to sur-
vive long enough in a patient undergoing treatment to go 
on to seed relapse. Induction of a reversible senescence 
program could represent an adaptive mechanism for cells 
in response to chemotherapeutic stress.

In addition to the senescent cell playing the role of 
the dormant seed for delayed metastasis, a possibly less 
controversial role for senescent cells in dormancy and 
delayed relapse could be due to paracrine signaling from 
the senescent cells’ SASP. As has been proposed in the 
initial transformation and formation of a primary tumor, 
perhaps signals from a senescent tumor cell at the meta-
static site remodel the microenvironment to drive pro-
liferation, angiogenesis, and successful colonization of 
other tumor cells that have arrived at the site. Indeed, 
inflammation has been shown to push dormant cells 

toward re-entry into the cell cycle [18, 80–82], as has age-
related senescence in the stromal microenvironment [68].

4 � Cellular quiescence

Broadly defined, cellular quiescence describes a reversible 
state of cell cycle arrest. Quiescent cells exit the cell cycle 
from G1 to enter the reversible G0 phase. In adults, many 
cells are maintained a quiescent state, including lympho-
cytes, hepatocytes, dermal fibroblasts, and tissue-resident 
stem cells in the brain (neural stem cells), skeletal muscle 
(muscle stem cells or satellite cells), and bone marrow 
(hematopoietic stem cells) [83]. Careful coordination of 
quiescence and proliferation in these populations is criti-
cal for immunity and for tissue development and repair. T 
cells, for example, are maintained in a quiescent state until 
simulation of their T cell receptor by a recognized antigen, 
upon which they rapidly shift to a proliferative state to 
fight invading pathogens. Satellite cells are stimulated to 
exit quiescence upon muscle injury where they prolifer-
ate to regenerate damaged tissue. Dysregulation of T cell 
quiescence (either failure to maintain quiescence or failure 
to exit quiescence) can impair the immune response. Simi-
larly, dysregulated quiescence in tissue resident stem cells 
can have damaging effects on tissue homeostasis [83]. 
Analogous to these tissue resident stem cells, tumors may 
contain a stem cell-like population that may impact tumor 
growth, therapeutic resistance, and repopulation [84, 85].

4.1 � Cancer stem cells

A subpopulation of stem cell-like quiescent or slow-
cycling cells have been identified in multiple cancer types 
and termed cancer stem cells (CSCs). CSCs from tumors 
of different tissue origins are phenotypically diverse and 
are identified by different molecular markers [84], but all 
display the unifying feature of slow or absent cell division 
and the presence of tumor-formation capacity [85–87]. 
Their role(s) in tumor progression are still controversial, 
but several studies indicate that they are critical drivers 
of tumor growth [84]. For example, slow-cycling CSCs 
in melanoma have been demonstrated to be required for 
tumor maintenance, as when this population is disrupted, 
serial xenografts fail to proliferate and metastatic out-
growth is hampered [88]. In addition to slow proliferation 
and tumor formation capacity, CSCs display features of 
EMT and are therefore of interest in the context of meta-
static dormancy and delayed colonization [8–11, 89]. One 
study demonstrated that ~ 65% of disseminated breast can-
cer cells in the bone marrow display a CSC phenotype 
[90]. When compared to the < 10% of these CSCs that are 
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found in the primary tumors, this is strong evidence for a 
potential role for CSCs in disseminated disease. Regard-
ing delayed relapse, Meng et al. showed that circulating 
CSCs can be found in the blood of patients who have been 
disease-free for 20 years, indicating that CSCs may act as 
a latent reservoir of cells with tumor-forming capacity for 
late colonization [91].

Another hallmark that is shared by dormant cancer 
cells and CSCs is the ability to avoid destruction by the 
immune system [8, 10, 92]. CSCs appear to adopt programs 
employed by tissue-resident stem cells to avoid immune rec-
ognition. One such mechanism is quiescence itself, which 
promotes the downregulation of antigen presentation, pre-
venting recognition and killing by T cells and natural killer 
cells [92, 93].

Despite these connections, debate remains over whether 
CSCs represent a truly dormant population, as populations 
can be heterogeneous in their proliferative state [10] and 
have been shown to be proliferative, albeit at slow rates. 
Therefore, CSCs may more accurately described as ‘slow-
cycling’ vs. quiescent [8]. More evidence is needed to deter-
mine whether this debate is merely semantic and whether 
CSCs can play a role in cancer dormancy regardless.

4.2 � Quiescence and cancer dormancy

In cancer, “dormancy” and “quiescence” have overlapping, 
broad definitions — both describe cancer cells that are held 
in a reversible state of cell cycle arrest — and these terms 
are therefore commonly used interchangeably. Similar 
to cancer dormancy, however, the quiescent state is not a 
monolith. Entry into the quiescent state can be driven by 
intrinsic cell cycle–related programs or in response to new 
or newly absent signals from the microenvironment [83]. 
Induction of G0 arrest is commonly attributed to the actions 
of cyclin-dependent kinase inhibitors (CDKis), especially 
p27. Increased p27 activity reduces the ability of CDKs to 
phosphorylate retinoblastoma protein (Rb), and hypophos-
phorylated Rb inhibits E2F1 from transcribing target genes 
necessary for cell cycle progression [83]. Increased p27 
expression is commonly used as a marker of quiescence 
induction, and fluorescent p27 reporters can be used to track 
live cell entry to and exit from quiescence [94]. Especially 
in vivo, environmental cues are critical in the entry into, 
maintenance of, and exit from quiescence. Tissue-resident 
stem cells, for example, reside in specialized niches that con-
tain signals from other cells in the tissue, the extracellular 
matrix, and soluble factors from local vasculature that drive 
proliferation or quiescence in a context-dependent manner. A 
cancer cell also interacts with and responds to its surround-
ings, which change dramatically upon entrance into the met-
astatic cascade and eventual deposition in a foreign tissue. 
Niche factors- both cellular and acellular- in the secondary 

site may be unfamiliar, and newly present or absent signals 
from this microenvironment can drive the cell to enter qui-
escence or promote the maintenance of quiescence if the 
disseminated cell was previously dormant. Changes to the 
secondary microenvironment, some driven by the cancer 
cell itself, may then release the cell into a proliferative state 
toward eventual colonization and disease relapse [8]. Vari-
ous recent studies have begun to illustrate just how complex 
these communication networks are, describing how interac-
tions with immune cells, extracellular matrix components, 
tissue-specific stromal cells, and environmental factors like 
oxidative stress can all impact a DTC’s entry into or exit 
from the dormant state [68, 95–104]. With the increasing 
understanding that every facet of the cancer cell’s environ-
ment impacts its capability to actively divide, it becomes 
clear that even cells from the same tumor, once dissemi-
nated, will have much different fates. The majority will die, 
but those that survive circulation and extravasation at sec-
ondary sites and are destined for a period of dormancy will 
enter quiescence through different mechanisms depending 
on the integration of signals from the microenvironment. 
Even in vitro, where quiescence is commonly induced by 
either contact inhibition, serum deprivation, or loss of adhe-
sion, each of these methods induces G0 arrest through dif-
ferent mechanisms, and the resulting quiescent cells display 
different gene expression signatures [83, 105–107].

In addition to p27, the CDKis p21, p16, and p57 also play 
a role in quiescence. Interestingly, these are all also impli-
cated in driving senescence. p21, for instance, is a major 
player in the maintenance of hematopoietic stem cell quies-
cence and is also considered a canonical marker of senes-
cent cells [35, 81]. Moreover, the transcriptional signatures 
of quiescent and senescent cells overlap (Table 1) [108]. 
These common molecular pathways between quiescence and 
senescence point to the fact that the two states are not wholly 
unrelated. In fact, cells that have been growth arrested for 
long periods differ from those arrested for shorter periods 
in the ‘depth’ of their quiescence. Long-term quiescent cells 
require more intense growth stimulation and take longer 
to re-enter the cell cycle [83, 109], and deep quiescence 
appears to be a transitional state to senescence. The quies-
cence/deep quiescence/senescence transition is controlled by 
lysosomal function, which acts as a dimmer switch [110]. 
These overlaps in phenotype and molecular control indicate 
that quiescent and senescent states may not be completely 
binary but lie along a graded spectrum (Fig. 2).

5 � Conclusions/outlooks

Early dissemination or minimal residual disease remain-
ing after treatment may both lead to reservoirs of dormant 
cells that fuel eventual metastatic relapse. This period of 
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dormancy offers a unique therapeutic window where inter-
vention could hold these latent cells in their non-proliferative 
state or eradicate them altogether to halt disease progres-
sion before symptoms arise. A better understanding of the 
biology behind two commonly discussed forms of prolif-
erative arrest—senescence and quiescence—may inform 
our future thinking about cancer dormancy. Senescence is 
regularly defined as permanent cell cycle arrest and is there-
fore often discounted as a player in cancer dormancy. As 
discussed, some recent evidence suggests that senescence 
may be reversible in certain contexts, but even if not, it may 
still play a role in delayed relapse, especially through parac-
rine signaling from the components of the SASP. Dormant 
tumor cells are quiescent by definition, but quiescence is not 
a homogenous cell state. Cells in quiescence come in various 
forms depending on triggers and microenvironmental cues 
that can enforce growth arrest or prime cell cycle re-entry. 
These two forms of cell cycle arrest can present very differ-
ent phenotypes but are driven by some of the same underly-
ing cell biology and may exist on a quiescence-senescence 
spectrum as opposed to being binary cell states. Understand-
ing the plasticity and contextual cues that drive quiescence, 
senescence, and the transitions between them will be key to 
furthering our understanding of cancer progression.

Targeting cells during the window of cancer dormancy 
will require advancements in diagnostic tools that improve 
our ability to identify latent disease before the presence of 
resistant macroscopic lesions, along with a more thorough 
understanding of the biology driving the dormant phenotype 
in these cells. Toward both of these ends, ongoing efforts 
to define a ‘dormancy signature’ have yielded promising 

results, though the varying models and contexts in which 
these studies are carried out may limit their translatabil-
ity [111–113]. Computational analysis of the combined 
datasets of these types of studies, such as the one carried 
out by Uzuner and colleagues [114], may present a way to 
overcome these limitations and define disease- and context-
agnostic drivers of dormancy and recurrence. Further analy-
sis of these datasets may also help to better clarify the rela-
tionships between dormancy, quiescence, and senescence. 
Advances in methods of detecting biomarkers of dormancy 
and MRD, especially utilizing liquid biopsies for the iden-
tification and analysis of circulating tumor cells (CTCs) or 
circulating tumor DNA (ctDNA) from patients’ blood, have 
the potential to identify those patients with predisposition 
toward dormant disease and delayed recurrence based on 
gene expression signatures which may then help guide sub-
sequent treatment [115–121].

The aforementioned studies largely leverage the rapidly 
advancing ‘-omics’ technologies, which have been, and will 
continue to be, critical in providing novel ways to answer 
questions that were previously unanswerable. The advent 
of single-cell RNA sequencing (scRNAseq), cytometry by 
time of flight (CyTOF), matrix-assisted laser desorption/ion-
ization-imaging mass spectrometry (MALDI-IMS), digital 
special profiling (DSP), and other techniques now make it 
possible to resolve biological systems spatially (in the case 
of MALDI-IMS and DSP), and at the single-cell level (with 
scRNAseq, CyTOF) [122–125]. Coupled to novel molecu-
lar technologies such as techniques that enable barcoding 
and lineage tracing of individual cells, it is also possible to 
track these biological processes spatiotemporally (reviewed 

Fig. 2   Dormant cancer cells are 
quiescent but share somechar-
acteristics with a senescent 
cell. Likewise, quiescent and 
senescent cells share certain 
characteristics, and these states 
may exist on a spectrum
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in [126]). As successful metastatic colonization is an inher-
ently rare cellular event, this level of resolution is critical 
in uncovering transcriptomic signatures of dormancy that 
may have been hidden in previous bulk RNA sequencing 
experiments, for example. With lineage tracing, it is possible 
to then track the fates of each cell expressing a dormancy 
signature. Tracking differences in these populations during 
their progression through the metastatic cascade will better 
elucidate the molecular drivers of both maintenance of the 
dormant state and the escape from dormancy that drives 
lethal disease. Elegant studies using these techniques have 
already dramatically advanced our knowledge of these pro-
cesses, identifying various cell-intrinsic regulators of dor-
mancy. The processes are wide ranging and include roles for 
interferon signaling [127]; p38 MAP kinase pathway [128]; 
an axis including FGF2, the transcription factor ZFP281, and 
CDH11 [129]; and ECM interactions via COL17A1 [100], 
to name a few, highlighting just how complex and context-
dependent this cell state is. Future work that continues to 
rely on and advance these techniques will further clarify 
our understanding of the heterogenous states of tumor dor-
mancy, their relationships to quiescence and senescence, 
and will be invaluable in detecting dormant cancer cells, 
uncovering their underlying biology, and defining their role 
in metastatic relapse.

The end goal of studying the cellular mechanisms of can-
cer dormancy is to uncover new targets for the prevention of 
metastatic outgrowth. If this is achieved, then forcing cells 
to remain dormant or killing them before they outgrow into 
lethal metastases has the potential to prevent cancer deaths. 
Despite advancements toward recognizing targetable regula-
tors of cancer dormancy, there are clear challenges in design-
ing human trials that assess the efficacy of treatments targeted 
to undetectable populations of cancer cells. In addition to the 
advancement of cancer dormancy biomarkers as discussed, 
correlating data accumulated from in vitro and mouse stud-
ies with human data will be critical, and various studies have 
begun to do just that, opening viable routes toward clinical 
trials (for example, [130, 131] and well-reviewed in [13, 18]). 
Beyond these efforts, especially if senescence is reversible in 
certain contexts, as increasing evidence suggests, targeting 
senescence to prevent delayed relapse may be more efficient 
than targeting a quiescent cell, as the senescent phenotype 
likely offers more specific targets for intervention. Indeed, 
the development of senolytics (drugs that specifically target 
senescent cells) is well underway for the treatment of vari-
ous diseases, including cancer [132]. It has been shown, for 
example, that clearance of p16-positive senescent cells is 
possible using genetic perturbation and that it has a positive 
effect on age-related disorders (though cancer is not assessed) 
[46]. Since the two states share molecular machinery in many 
contexts, targeting these overlapping pathways (e.g., intrinsic 
cell cycle controllers such as CDKis) may have the beneficial 

effect of eliminating cells in either state. In addition to identi-
fying targetable pathways and developing molecules against 
them, the development of new animal models that recapitu-
late disease progression as seen in humans will be critical in 
advancing our understanding of these processes and how to 
efficiently target them.

The conflicting fields of senescence and quiescence may 
not be so conflicting after all, and cells in both states may 
play a part in cancer dormancy. Quiescence and senescence 
share some of the same triggers and regulators, so it is 
likely that cells in both states coexist in the patient and may 
play complementary roles in leading to delayed metastatic 
relapse. Utilizing new techniques to resolve these states 
spatiotemporally and at the single-cell level can detangle 
complex relationships between quiescent, senescent, and 
dormant cancer cells and their microenvironments. Under-
standing the unique programs and their overlaps, along with 
temporal and microenvironmental contexts, is critical to 
uncovering targetable pathways and developing treatment 
paradigms to combat the recurrence of lethal disease.
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