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Abstract
Obesity is an established risk factor for several human cancers. Given the association between excess body weight and 
cancer, the increasing rates of obesity worldwide are worrisome. A variety of obesity-related factors has been implicated 
in cancer initiation, progression, and response to therapy. These factors include circulating nutritional factors, hormones, 
and cytokines, causing hyperinsulinemia, inflammation, and adipose tissue dysfunction. The impact of these conditions on 
cancer development and progression has been the focus of extensive literature. In this review, we concentrate on processes 
that can link obesity and cancer, and which provide a novel perspective: extracellular matrix remodeling, angiogenesis, 
and adrenergic signaling. We describe molecular mechanisms involved in these processes, which represent putative targets 
for intervention. Liver, pancreas, and breast cancers were chosen as exemplary disease models. In view of the expanding 
epidemic of obesity, a better understanding of the tumorigenic process in obese individuals might lead to more effective 
treatments and preventive measures.
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1  Introduction

Obesity is a well-established risk factor for several human 
malignancies including hepatocellular carcinoma (HCC), 
pancreatic adenocarcinoma (PDAC), and breast cancer, 
among others [9]. We selected these three cancers as pri-
mary disease models for our review. Hepatocellular carci-
noma (HCC) is the 6th most commonly diagnosed cancer 

and the second most common cause of cancer-related deaths 
worldwide [27], with a 5-year survival rate of 18% in the 
USA (source: ACS 2022). Typically, liver cancer results 
from a series of pathological changes, which progress into 
fibrosis and subsequent cirrhosis, and ultimately to HCC. 
While traditionally linked to hepatitis B/C infection, HCC 
has been increasingly associated with metabolic diseases 
such as the metabolic syndrome or type 2 diabetes melli-
tus (T2DM), which often co-occur with non-alcoholic fatty 
liver disease (NAFLD) or non-alcoholic steatohepatitis 
(NASH) [5]. This link is predicted to cause an increasing 
cancer occurrence in the population in the near future [64]. 
Pancreatic ductal adenocarcinoma (PDAC) is the 12th most 
common cancer worldwide but is the 4th most frequent cause 
of cancer-related deaths. PDAC has the highest mortality 
rate of all major cancers, with a 5-year relative survival 
rate of only 11% (source: SEER database 2022). Efforts 
have been made to elucidate the early events promoting the 
neoplastic transformation of pancreatic cells. Acinar-to-
ductal reprogramming is a key event in cancer initiation, 
and acinar-to-ductal metaplasia (ADM) lesions represent the 
earliest pre-neoplastic lesions predisposing to PDAC [115]. 
Pancreatic intraepithelial neoplasia (PanIN), the most com-
mon precursor lesion for PDAC, can arise from ADM. Large 
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epidemiological studies have demonstrated that metabolic 
disorders such as obesity, insulin resistance, and T2DM 
increase the risk of developing PDAC [249].

Breast cancer is the most common invasive malignancy in 
women worldwide, and the second leading cause of cancer-
related deaths in women (source: ACS 2022). The overall 
5-year survival rate for breast cancer is 90%, with differences 
however depending on whether the disease is localized (up 
to almost 99%) or associated with metastatic spread (< 30%). 
Postmenopausal breast cancer is 1.2- to 1.4-fold more likely 
in patients affected by overweight or obesity [169].

In addition to the cancer types discussed herein, many 
other cancers are also affected by body weight. Indeed, a 
large population-based cohort study demonstrated that 17 
out of 22 cancer types were associated with body mass index 
(BMI), albeit not to the same extent [23].

There is compelling evidence that circulating nutritional 
factors (lipids, glucose), hormones (insulin, insulin-like 
growth factor, leptin), and cytokines (interleukins, tumor 
necrosis factor), among others, connect obesity and cancer. 
These have been discussed and reviewed in greater detail 
elsewhere and will not be the topic of this review. Instead, 
we here aim to describe novel potential links between ele-
vated body weight and cancer through exploring common 
molecular pathways between the two diseases, considering 
common treatment approaches, and outlining possible con-
nections. We highlight three potential links—extracellular 
matrix remodeling, angiogenesis, and adrenergic signal-
ing—and discuss their roles in cancer, focusing on HCC, 
PDAC, and breast cancer.

2 � Extracellular matrix remodeling 
and fibrosis linking obesity and cancer

2.1 � Pathological fibrosis is a consequence 
of excessive ECM deposition

Pathological fibrosis (or fibrotic scarring) results from 
increased deposition of extracellular matrix (ECM) compo-
nents such as collagens and fibronectin, leading to excessive 
formation of connective tissue replacing parenchymal tissue 
and affecting tissue architecture and normal organ function 
[89]. Fibrosis can develop in numerous organs as a conse-
quence of uncontrolled regenerative processes in response 
to many types of repetitive injuries and chronic inflamma-
tion, which can progress to irreversible tissue scaring, tissue 
dysfunction, and eventually organ failure [172].

In different organs exhibiting pathological fibrosis, myofi-
broblasts are the main source of excessive ECM components 
[154]. Interestingly, different progenitor cells can acquire a 
myofibroblastic phenotype in response to pro-fibrotic sig-
nals such as transforming growth factor (TGF)β1, the latter 

representing the prototypical inducer of a SMAD2/3 tran-
scription factors-mediated gene program driving myofibro-
blast differentiation [206]. Lineage tracing studies provided 
strong evidence indicating that myofibroblasts mainly origi-
nate from local mesenchymal cells [57, 130]. However, in 
renal, hepatic and pulmonary fibrosis, it has been suggested 
that myofibroblasts can arise from local epithelial (progeni-
tor) cells undergoing epithelial-to-mesenchymal transition 
(EMT) [248]. Generally, myofibroblasts are character-
ized by mesenchymal properties such as proliferation and 
mobility, as well as the production and secretion of ECM 
components [127, 248]. De novo expression of fibroblastic 
α-smooth muscle actin (αSMA) in stress fibers is a hallmark 
of mature myofibroblasts, enabling their high contractile 
activity. Myofibroblasts arising from different tissue-spe-
cific sets of progenitors and distinct molecular mechanisms 
might dictate fibrosis-related processes contributing to both, 
metabolic disease progression and tumorigenesis, as well as 
respective etiological interconnections.

2.2 � ECM remodeling and fibrosis in cancer

More than 30 years ago, Harold Dvorak presented his view 
on tumors as “wounds that do not heal,” a concept emphasiz-
ing the analogy between tumor stroma generation and wound 
healing, which he still advocates after decades of research 
[59]. Originally, this concept was based on the identification 
of tumor-derived vascular endothelial growth factor (VEGF) 
and its role in initiating the formation of a vascularized con-
nective tissue that solid tumors need to survive, grow and 
metastasize, which resembles that found in healing wounds 
[60].

In both wound healing and tumor development, fibroblast 
recruitment and activation are essential for ECM remodeling 
supporting tissue repair or tumorigenesis, respectively [189]. 
Similar to myofibroblasts, cancer-associated fibroblasts 
(CAFs) were originally identified as αSMA-positive cells 
characterized by a contractile phenotype and synthesis and 
secretion of ECM components. Notably, recent studies indi-
cated the co-existence of distinct subsets of CAFs within the 
tumor microenvironment and an association of CAF hetero-
geneity with tumor (sub-) types as well as their pleiotropic 
tumorigenic functions [47, 114].

The development of a fibrotic tumor stroma is known 
as a desmoplastic reaction to a neoplasm, representing 
a dynamic and multistep process, the characteristics of 
which vary between different tumors [251]. The early 
phase of provisional matrix generation, composed primar-
ily of fibrin and (to a lesser extent) fibronectin, plays a 
critical role in angiogenesis (in part induced by fibrin deg-
radation products). It is associated with pro-tumorigenic 
inflammation and initial activation of resident and invad-
ing immune and other stromal cell populations such as 
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perivascular cells, resident stem/progenitor cells, and qui-
escent fibroblasts. Subsequently, the increase in fibronectin 
deposition defines the late provisional ECM, which serves 
as a scaffold for growth factors and enables mechanical 
signaling, e.g., by representing a depot for TGFβ latent 
complex and contributing to additional differentiation of 
normal fibroblast to generate CAFs [93, 156]. The increas-
ingly stiff fibronectin matrix promotes the deposition of 
collagen fibers produced by cancer-associated fibroblasts 

and the transition to a more mature state of the fibrotic 
tumor stroma [224, 251]. Pro-fibrotic cytokines, most 
importantly TGFβ, and reduced collagen degradation drive 
this process, resulting in fibrillary collagen accumulation 
and further stiffening of the tumor stroma (Fig. 1). Of note, 
the degree of ECM density and rigidity of tumor tissue, 
in addition to playing a role in cancer diagnosis, is an 
important factor of cancer progression and response to 

Fig. 1   Overview of fibrosis in cancer and obesity. (1) ECM remod-
eling and fibrosis in cancer: The development of a fibrotic tumor 
stroma (desmoplastic reaction) is a multistep process in part driven 
by activation of cancer-associated fibroblasts (CAFs) and TGFbeta 
signaling. CAFs and ECM components exert different pro-tumori-
genic processes including epithelial-mesenchymal transition (EMT) 
in tumor cells, thereby inducing tumor progression (metastasis for-
mation). A fibrotic tumor stroma prevents immune cell infiltration, 
thereby reducing immune surveillance and responsiveness to cancer 
immunotherapy. (2) Adipose tissue fibrosis in obesity: Obesity-driven 
pathologic expansion of adipose tissue is characterized by adipocyte 
hypertrophy and cell death, chronic inflammation (including mac-
rophage infiltration), and enhanced fibrosis. Fibrosis limits the expan-
sion of adipose and contributes to metabolic dysfunction, including 
systemic inflammation and insulin resistance. Elevated TGFβ levels 
under obesity conditions contribute to adipose tissue fibrosis and 

inflammation. PDGF signaling induces a myofibroblast-like pheno-
type in a subset of adipocyte progenitors contributing to ECM dep-
osition. (3) ECM remodeling and fibrosis linking metabolism and 
cancer: Mammary adipose tissue fibrosis contributes to malignant 
transformation and breast cancer progression through various mecha-
nisms including collagen-derived endotrophin, increased tissue stiff-
ness activating mechano-sensitive pathways, and induced inflamma-
tion (e.g., inducing a tumor-promoting macrophage phenotype). The 
degree of liver fibrosis is a strong predictor of NAFLD progression 
towards HCC. Activation of stellate cells (myofibroblast phenotype) 
by TGFβ and other cytokines mainly contributes to hepatic fibro-
sis. Stellate cell-secreted cytokines (including TGFbeta, PDGF, and 
VEGF) induce angiogenesis, reduced immune surveillance, and HCC 
progression. Obesity-induced pancreatic inflammation and desmopla-
sis contribute to PDAC progression and chemotherapy resistance
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therapy due to changes in the biophysical properties and 
mechano-signaling [61, 210].

The central role of the tumor microenvironment (TME; 
or tumor stroma) in regulating various aspects of cancer 
biology is undisputed, although the complex and context-
dependent interplay between different cell types and their 
activation status, ECM components, and corresponding 
upstream regulators is far from being fully understood. 
Cancer-associated fibroblasts (CAFs), which are present in 
high numbers in the TME, were shown to elicit various pro-
tumorigenic functions. For example, both pre-malignant and 
malignant mammary epithelial cells adopted a mesenchymal 
phenotype and an induced metastatic potential when co-cul-
tured with CAFs, whereas exposure to normal fibroblasts 
promoted an epithelial phenotype and suppressed metasta-
sis formation [58]. Interestingly, this study showed that the 
capacity of CAFs to induce a mesenchymal-like phenotype 
(including mesenchymal morphology and induced marker 
expression) was at least in part mediated by distinct depo-
sition of ECM components, the effect of which could be 
blocked in the presence of collagenase [58]. In another study 
on breast cancer, tumors were classified based on ECM com-
position. Strikingly, the resulting ECM subclasses were pre-
dictive of patient outcome, emphasizing the impact of the 
ECM components on tumor progression [18]. In preclinical 
models of lung cancer, induced expression of lysyl hydroxy-
lases 2 (LH2) in CAFs induced a collagen cross-link switch 
in the tumor stroma, which in turn promoted the migratory 
and invasive properties of lung adenocarcinoma [181].

It has been proposed that the dense tumor stroma induced 
by the CAFs can represent a barrier preventing efficient 
immune cell infiltration, thereby contributing to impaired 
immune surveillance and supporting tumor growth [205]. 
In agreement, a large pan-cancer analysis defined a distinct 
set of ECM upregulated genes associated with worse prog-
nosis that was correlated with activated TGFβ signaling in 
CAFs and immunosuppression [36]. Indeed, another study in 
patients with metastatic urothelial cancer treated with anti-
PD-L1 agent atezolizumab demonstrated that lack of therapy 
response was associated with a signature of TGFβ signal-
ing in fibroblasts [155]. Treatment unresponsive tumors 
were characterized by exclusion of CD8( +) T cells from 
the tumor parenchyma that were located in the fibroblast- 
and collagen-rich peritumoral stroma. Interestingly, in a 
mouse model recapitulating the immune-excluding CD8( +) 
T phenotype, T-cell penetration, and tumor regression was 
induced by co-administration of TGFβ-blocking and anti-
PD-L1 antibodies, indicating that TGFβ shapes the tumor 
microenvironment to restrain anti-tumor immunity [155]. 
Conversely, it remains unclear to which extent (or in which 
specific context) treatments resulting in ECM remodeling 
could induce the release of growth factors and cytokines 
that in turn could promote tumor growth and unrestrained 

dissemination of tumor cells. However, re-educating the 
TME to exert anti-tumorigenic functions represents a 
promising approach as an anti-cancer therapy, particularly 
in combination with immune checkpoint inhibition [193]. 
However, despite the promising effects of pharmacological 
targeting of TGFβ signaling for anti-cancer therapy in cell 
culture and animal models, anti-TGFβ therapies resulted in 
poor or inconsistent outcomes in cancer clinical trials [234]. 
There might be various reasons underlying the discrepan-
cies between preclinical and clinical treatment outcomes, in 
particular, preclinical models only insufficiently reflect the 
cancers in patients (e.g., with respect to treatment timing and 
cancer stage). In addition, inappropriate patient selection 
in clinical trials, as well as the complexity and pleiotropic 
nature of TGFβ functions might contribute to the poor clini-
cal translation. Moreover, targeting of TGFβ with various 
approaches mainly aimed at inhibiting cancer cell inva-
sion and metastasis is associated with specific challenges 
concerning clinical study design and treatment endpoints 
in regard to demonstrating survival benefits [4]. Therefore, 
blocking the immunosuppressive function of TGFβ in com-
bination with established immune checkpoint inhibitors, 
as exemplified above [155], might improve the outcome of 
clinical studies.

2.3 � Adipose tissue fibrosis in obesity

Adipose tissue is classified as either white, brown, or beige/
brite based on whether it functions as an energy store or 
thermogenic organ. The white adipose tissue stores energy in 
the form of triglycerides in lipid droplets, and it is composed 
of adipocytes (40–50% of cells) but also of connective tissue 
matrix, neural cells, and non-adipocyte cells (e.g. preadi-
pocytes, immune cells, endothelial cells) that constitute 
the stromal vascular fraction (SVF) [204]. Obesity-driven 
pathological expansion of adipose tissue is characterized 
by adipocyte hypertrophy (increased cell size) accompanied 
by hypoxia (due to insufficient angiogenesis to support tis-
sue growth), a state of chronic inflammation, and enhanced 
fibrosis [132] (Fig. 1). In contrast, a high capacity for adi-
pocyte hyperplasia (increased cell number upon pre-adipo-
cyte recruitment) is metabolically more favorable, enabling 
“healthy” expansion of adipose tissue [218]. Enlarged adi-
pocytes exhibit different necrosis-like abnormalities contrib-
uting to inflammation by promoting elevated infiltrating of 
pro-inflammatory M1-polarized adipose tissue macrophages 
(ATMs) and other immune cells, as well as reducing the 
levels of M2-polarized anti-inflammatory ATMs and regu-
latory T cells (Tregs) [132, 154]. However, there are con-
tradicting findings concerning the functional phenotype of 
adipose tissue macrophages. Studies using human adipose 
tissue samples suggested that obesity is associated with 
enriched M2-polarized macrophages [83, 258]. Moreover, 

520 Cancer and Metastasis Reviews (2022) 41:517–547



1 3

there might be spatiotemporal differences in the origin and 
distribution of adipose tissue macrophages under obesity 
conditions [150]. Still, a state of unresolved chronic inflam-
mation and formation of crown-like structures is considered 
a central driver of pathological tissue remodeling including 
the development of adipose tissue fibrosis [154].

Pioneering studies in mice demonstrated that the expres-
sion of different collagens in adipose tissue, the latter 
representing major ECM components, is induced under 
metabolically challenging conditions such as obesity and 
diabetes [120]. Particularly the enhanced deposition of type 
VI collagen represents a hallmark of adipose tissue fibrosis, 
limiting the expandability of adipose tissue and impairing 
the capacity to store the surplus of lipids appropriately as 
obesity progresses. Dietary and genetic mouse models of 
obesity lacking type VI collagen (Col6) displayed increased 
adipose tissue storing capacity, which was associated with 
reduced ectopic lipid accumulation in non-adipose tissues 
such as the liver, and overall improved systemic glucose and 
lipid homeostasis [120]. The concept that ECM accumula-
tion represents a physical constrain to healthy adipose tissue 
expansion and plasticity, and thereby aggravates metabolic 
dysfunction, was corroborated by further studies. Induced 
expression of Col6 was confirmed in adipose tissue of obese 
humans, resulting in dysfunctional ECM that was associated 
with increased adiposity and chronic inflammation [186]. 
Conversely, inhibition of lysyl oxidase (LOX), an enzyme 
cross-linking collagen types I and III to form the fibrillary 
collagen fibers, ameliorated metabolic dysfunction and adi-
pose tissue inflammation in obese mice [85]. In the same 
study, the authors proposed a model in which adipose tissue 
hypoxia serves as an early upstream initiator for adipose tis-
sue dysfunction by inducing a local state of fibrosis. They 
found increased hypoxia and induced nuclear protein levels 
of the transcription factor hypoxia-inducible factor (HIF-) 
1α in adipose tissue from obese (ob/ob) mice in comparison 
with lean wild-type mice. Notably, adipose tissue-specific 
overexpression of a constitutively active form of the HIF-1α 
in mice failed to induce an angiogenic response but resulted 
in increased adipose tissue fibrosis as well as local inflam-
mation [85].

Besides the contribution of collagens to the structural 
remodeling of adipose tissue under metabolic conditions, 
ECM components play a role in disease-associated signal-
ing. For instance, the adipokine endotrophin represents a 
carboxy-terminal cleavage product of collagen type VIα3 
chain (Col6α3) and contributes to adipose tissue fibrosis 
and metabolic dysfunction [231]. Using mice with adipose 
tissue-specific overexpression of endotrophin, the study by 
Sun and colleagues demonstrated that endotrophin exerts 
local effects on the adipose tissue microenvironment, aggra-
vating fibrosis and contributing to systemic inflammation 
and insulin resistance [231], the latter suggesting a potential 

role in the risk connection between metabolic diseases and 
cancer (see below).

As stated above, TGFβ represents an important pro-
fibrotic signal, which, among its pleiotropic functions, 
induces myofibroblast differentiation from diverse precursor 
cell lines [206]. Notably, different studies demonstrated that 
both, circulating levels of TGFβ as well as TGFβ expres-
sion in adipose tissue are elevated under obesity conditions 
[242, 250]. Interestingly, the study by Vila et al. in obese 
mice suggested a direct link between metabolic endotoxemia 
(elevated bacterial lipopolysaccharide (LPS) levels), Toll-
like receptor (TLR) 4-dependent macrophage activation, 
and induced adipose tissue fibrosis, which was widely pre-
vented by antibody-mediated neutralization of TGFβ sign-
aling [242]. Different studies showed that platelet-derived 
growth factor (PDGF) and signaling through PDGF recep-
tor α (PDGFRα) importantly contributed to adipose tissue 
fibrosis [106, 153, 154]. In fibrotic adipose tissue, PDGFRα 
expressing (PDGFRα +) adipocyte progenitor cells adopted 
a myofibroblast-like phenotype expressing high levels of 
fibrosis markers such as collagens rather than differentiat-
ing to adipocytes [153]. Specifically, a subset of adipose 
tissue PDGFRα + progenitors with high levels of the sur-
face marker CD9 (CH9hi) accumulated under pro-fibrotic 
conditions, and the concomitant phenotype switch towards 
myofibroblast differentiation was associated with increased 
ECM deposition and metabolic alterations including the 
development of insulin resistance [153]. These findings indi-
cated that the composition of adipose tissue progenitor cell 
populations might affect the equilibrium between the adipo-
genic and the myofibroblast fate in response to pro-fibrotic 
signals [106, 153] (Fig. 1). The central role of liver fibrosis 
in NAFLD progression contributing to both, liver cirrhosis 
and HCC development is discussed in the next chapter.

2.4 � ECM remodeling and fibrosis linking 
metabolism and cancer

Various studies have provided evidence for the contribu-
tion of ECM remodeling in obese tissues to tumorigenesis, 
including breast, liver, and pancreatic cancer. As stated 
above, collagen type VI (Col6) strongly contributes to adi-
pose tissue fibrosis under obesity conditions [120] and the 
Col6α3-derived carboxy-terminal cleavage product endo-
trophin further promotes adipose tissue fibrosis and meta-
bolic dysfunction [231]. Interestingly, another study by the 
Scherer lab demonstrated that adipocyte-derived endotro-
phin augmented tumor growth and metastasis formation in 
the PyMT mouse model of breast cancer [183]. These find-
ings added a fibrosis-related factor to the list of adipokines 
contributing to tumorigenesis in the context of obesity, such 
as leptin and others [22, 200]. Interestingly, endotrophin 
synergized with the canonical TGFβ pathway to promote 
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EMT and lung metastasis [182]. A later study confirmed that 
endotrophin also contributes to breast cancer progression in 
humans, linking obesity to breast cancer aggressiveness and 
representing an interesting target for breast cancer therapy 
as well as anti-fibrotic treatments [28].

As exemplified by endotrophin, ECM remode-
ling–dependent alterations of adipose tissue endocrine 
functions and respective changes in adipokine and cytokine 
levels might exert pro-tumorigenic functions under obesity 
conditions. In addition, recent studies have pointed out that 
obesity-related changes in the structural properties of adi-
pose tissue due to fibrosis could also contribute to the risk 
connection between obesity and cancer [56]. Indeed, diet 
and genetically induced obese mice displayed enhanced 
interstitial fibrosis and myofibroblast enrichment in mam-
mary adipose tissue, suggesting a link between these estab-
lished risk factors in breast cancer [213]. Interestingly, the 
seeding of breast cancer cells on decellularized matrices 
from obese adipose stromal cells stimulated their mechano-
sensitive growth and induced the malignant potential of pre-
malignant human breast epithelial cells [213]. Moreover, the 
interaction of breast cancer cells with stiffness-promoting 
ECM components in mammary fat promoted tumor progres-
sion by inducing nuclear translocation of the transcription 
factor TWIST1, which in turn promoted EMT and metastasis 
formation [245]. The study deciphered a mechano-transduc-
tion pathway through which biomechanical properties of the 
TME alter tumor cell aggressiveness and possibly disease 
outcome.

The ECM remodeling in obesity could also have an 
impact on breast cancer through its effects on non-tumor 
cells of the TME. For example, a study using human breast 
cancer samples suggested that obesity increased the abun-
dance of M2-polarized macrophages in breast adipose 
tissue, the effect of which was correlated with the degree 
of interstitial fibrosis [227]. The authors emphasized the 
notion that the phenotype of macrophages accumulating 
under obesity and fibrotic conditions were more similar to 
tumor-associated macrophages, and might therefore support 
tumor growth. A study by Hermano et al. proposed a differ-
ent link between the tumor-promoting effects of the impact 
of obesity on ECM composition in estrogen receptor (ER)-
positive breast cancer [90]. Interestingly, in mice deficient 
for heparanase, an endoglucuronidase that cleaves heparan 
sulfate in ECM, the acceleration of tumor progression in 
diet-induced obesity was abolished. The authors proposed a 
complex mechanism in which heparanase, which is prefer-
entially expressed in obesity-associated breast tumors, pro-
moted the secretion of inflammatory mediators by adipose 
tissue macrophages (TAMs), which induced local induction 
of aromatase, the latter representing a rate-limiting enzyme 
in estrogen biosynthesis. In turn, elevated estrogen levels 
further promoted heparanase production by ER-positive 

tumor cells, which contributed to the acquisition of a tumor-
promoting phenotype of tumor-associated macrophages [90]. 
This study represents a good example of the complex mutual 
interplay of different cellular compartments contributing to 
the development of a specific cancer subtype. Besides its 
effects on the local environment of the primary tumor, obe-
sity might render distant sites more susceptible to metasta-
sis formation, the effect of which might also imply fibrotic 
processes. For example, obesity promoted the recruitment 
of myeloid lineage cells and induced the deposition of col-
lagen fibers in the lung, thereby creating a microenvironment 
similar to described tumor-induced pre-metastatic niche and 
promoting metastasis formation [92].

Non-alcoholic fatty liver disease (NAFLD) represents 
the hepatic manifestation of the metabolic syndrome and 
encompasses different components of progressive liver 
disease ranging from hepatic steatosis (or non-alcoholic 
fatty liver (NAFL); without substantial hepatocellular 
injury) and non-alcoholic steatohepatitis (NASH; steato-
sis with inflammation and hepatocyte ballooning degen-
eration) to fibrosis, liver cirrhosis and hepatocellular 
carcinoma (HCC) [5] (Fig. 1). Only subsets of patients 
will progress along the sequence of worsened pathophysi-
ological states from NAFL to NASH and further to cirrho-
sis, thereby being exposed to an increasing risk for HCC 
development [246]. The pathophysiological mechanisms 
underlying the risk connection between NAFLD and HCC 
include various components such as immune and inflam-
matory responses, DNA damage, oxidative stress, changes 
in the microbiome, and others that go beyond the scope 
of this review and have been comprehensively summa-
rized elsewhere [5]. However, the degree of liver fibrosis 
has been shown to be the strongest predictor of overall 
and liver disease-specific mortality [62, 84], suggesting 
that this histological feature, at least in more advanced 
stages, might define irreversible states of progressive liver 
disease. Though, against the previous dogma that fibro-
sis is an irreversible process, other studies demonstrated 
that fibrosis can regress upon removal of the responsible 
driver, including weight reduction upon gastric band plac-
ing [54]. Besides the treatment of the underlying metabolic 
syndrome, therapies that would prevent or regress liver 
fibrosis could markedly reduce HCC and overall mortal-
ity risk in patients with progressive NAFLD. This notion 
is supported by a retrospective Korean study, in which 
the associations between features of NAFLD and HCC 
as well as other neoplastic diseases have been analyzed 
in more than 25.000 subjects over an average of 7.5 years 
[123, 124]. Strikingly, a high fibrosis score, rather than the 
degree of steatosis, was most strongly associated with the 
development of HCC as well as extrahepatic cancer. How-
ever, there is currently no approved antifibrotic pharmaco-
therapy for the treatment of NASH. Further understanding 
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of the molecular mechanisms underlying NASH develop-
ment might provide novel therapeutic targets in the future. 
For example, a recent study identified transcription factor 
networks directing intra-hepatic crosstalk between hepato-
cytes and stellate cells necessary for NASH and fibrosis 
progression [147]. Therefore, “regulatory hub-centered” 
targeting might provide novel strategies for the treatment 
of NASH.

Although different cells have been proposed to give rise 
to hepatic myofibroblasts through epithelial–mesenchymal 
transition (EMT), most studies suggest that hepatic stellate 
cells (HSC) are the main contributor to liver fibrosis in vivo 
[160, 168]. Upon progression of NAFLD to NASH, death of 
hepatocytes and cholangiocytes due to chronic liver injury 
causes activation of HSCs directly and through different 
inflammatory cytokines, chemokines, and growth factors 
released by resident Kupffer cells, infiltrating monocytes 
and other cell types [53]. Among other pro-fibrogenic fac-
tors, TGFβ represents a central player in the development 
of liver fibrosis by promoting the activation of HSCs into 
myofibroblasts and inducing the synthesis of ECM compo-
nents such as type I and type II collagens [53, 55]. Addition-
ally, activated HSCs can contribute to tumor development by 
secretion of cytokines and growth factors (including TGFβ, 
PDGF, and VEGF) inducing angiogenesis, reduced immune 
surveillance, and tumor progression [2, 53] (Fig. 1). Fur-
thermore, liver fibrosis is a central feature of a pre-malig-
nant environment favoring the development of liver cancer 
by various mechanisms [2]. Qualitative and quantitative 
changes in the ECM, besides affecting the structural prop-
erties of the tissue, have profound effects on cell signaling 
through direct interaction as well as the regulation of soluble 
growth factor activity [99]. Surrounding cells sense changes 
in the ECM by discoidin domain receptors (DDRs) and 
integrins that regulate intracellular signaling pathways and 
responsiveness to additional extracellular stimuli. For exam-
ple, integrin activation can induce phosphoinositide 3 kinase 
(PI3Kinase) and mitogen-activated protein kinase (MAPK) 
signaling, both pathways with central roles in tumor devel-
opment [260].

Obesity also significantly increases pancreatic cancer risk 
[74]. Similar to breast and liver cancer, fibrosis might con-
tribute to pancreatic ductal adenocarcinoma (PDAC) devel-
opment [102]. The study by Incio et al. demonstrated that 
obesity-induced pancreatic inflammation and desmoplasia 
contributed to PDAC progression and chemotherapy resist-
ance [102]. The authors proposed a model in which adipo-
cyte-derived IL-1β resulted in tumor-associated neutrophil 
recruitment which in turn activated pancreatic stellate cells. 
Besides several differences in the underlying molecular 
mechanisms, fibrotic and ECM remodeling processes might 
importantly contribute to obesity-driven cancer development 
in different tissues.

3 � Angiogenesis and angiogenesis‑related 
proteins linking obesity and cancer

3.1 � Angiogenesis is tightly controlled 
through angiogenic factors

The term angiogenesis describes the sprouting of new cap-
illaries from a pre-existing vasculature (Fig. 2). In adult 
tissues, vascular homeostasis is strictly controlled in both 
time and space by a variety of pro- and anti-angiogenic 
factors. When these factors are in balance, the vascula-
ture is quiescent and endothelial cells do not proliferate. 
When pro-angiogenic signals prevail over anti-angiogenic 
signals, new blood vessel formation takes place. Physi-
ological angiogenesis is stimulated by various conditions, 
including tissue ischemia, hypoxia, and inflammation. In 
hypoxia, there is a stabilization of the hypoxia-inducible 
factor (HIF)-1α, an oxygen-sensitive transcription factor, 
which in turn promotes the expression of numerous pro-
angiogenic genes, such as VEGFA, encoding the vascular 
endothelial growth factor (VEGF), genes coding for VEGF 
receptors, and for angiopoietin-like 4 (ANGPTL4), among 
others [95].

3.1.1 � Angiogenesis is a critical component of cancer 
initiation and progression

In tumorigenesis, early activation of angiogenic processes 
is mandatory to sustain the higher energetic demands asso-
ciated with the enhanced proliferation of the tumor cells 
and the associated tumor tissue growth. As stated above, 
new blood vessel formation occurs when pro-angiogenic 
signals surpass anti-angiogenic signals, and in tumors, 
this process is termed the “angiogenic switch” [13]. The 
pioneering work of Douglas Hanahan and Judah Folk-
man using the Rip-Tag transgenic mice overexpressing 
the SV40 large T antigen in pancreatic β-cells established 
the role of the angiogenic switch as a rate-limiting factor 
sustaining tumor growth and progression [1, 68, 87]. The 
angiogenic switch promotes the growth of the malignant 
cells and allows the escape of tumors from dormancy. 
Thanks to Judah Folkman’s revolutionary hypothesis that 
blocking angiogenesis might stop tumor growth, two dec-
ades ago, anti-angiogenic therapy became a new modal-
ity in cancer treatment in addition to surgery, radio- and 
chemo-therapy.

Tumor angiogenesis is typically initiated from the cap-
illaries and includes distinct cellular processes, including 
sprouting angiogenesis, intussusceptive angiogenesis, vas-
culogenesis, and transdifferentiation of cancer stem cells 
(reviewed in [149]). Mechanistically, activation of angio-
genic processes involves the degradation of the vascular 
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ECM, followed by endothelial cell proliferation and migra-
tion [263]. ECM remodeling is essential for the migration 
of endothelial cells and the formation of capillary sprouts, 
a process that requires the activation of matrix metallopro-
teases (MMPs), which degrade the basal membrane and 
the ECM. The Rip-Tag mouse model was instrumental in 
establishing a role for VEGF in the activation of ECM-
degrading enzymes, thereby supporting the angiogenic 
switch [19, 112, 176] (Fig. 2).

Tumor angiogenesis results in the formation of poorly 
organized and malformed vascular networks, character-
ized by a loss of endothelial cell junctions. This increases 
both vessel permeabilization and interstitial pressure, which 

reduce tumor tissue perfusion. Hypoxia, the condition of low 
oxygen in tissues, is typically associated with the progres-
sion of solid tumors since with the expansion of the tumor 
mass, the distance between tumor cells and vessels increases, 
leading to local regions of poor oxygenation. Hypoxia is also 
a plausible cause of obesity-associated tissue inflammation 
(Fig. 2). Hypoxia is also a consequence of the malformed 
and dysfunctional vasculature and the low perfusion of the 
tumors. To overcome the limited oxygen and nutrient supply, 
hypoxic tumor cells upregulate the hypoxia-inducible fac-
tors, which then initiate pro-angiogenic programs by upregu-
lating the transcription of downstream targets involved in 
angiogenesis, cell survival, and proliferation [197].

Fig. 2   Angiogenesis and angiogenic signaling linking cancer and 
obesity. In the tumor microenvironment (TME), hypoxia induces 
pro-angiogenic signals, and the “angiogenic switch”, which in turn 
supports tumor growth, vascular leakiness, and extracellular matrix 
(ECM) remodeling. VEGF signaling and ANGPTL4 are important 
players in these processes and are associated with more aggressive 
tumor behavior. In obesity, the expansion of the adipose tissue (AT) 
leads to hypoxia, dysfunctional angiogenesis, inflammation, and ele-
vated expression of VEGF and ANGPTL4. The obese AT secretes 

angiogenic factors and cytokines that promote tumor progression, 
including VEGF and ANGPTL4, which also act on the  AT itself. 
Therefore, these two factors are an example of molecules at the cross-
road between cancer and obesity, and represent targets for therapeu-
tic intervention in both pathological conditions: inhibition of VEGF 
signaling and ANGPTL4 can inhibit tumor progression, and improve 
metabolic conditions in obesity, albeit in the latter the different role of 
VEGF in early and late disease stages needs to be taken into account
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Noteworthy, in addition to serving as nutrient, oxygen, 
and waste transport providers, vessels also facilitate the dis-
semination of tumor cells to distant sites, thereby promot-
ing metastasis. The development of metastases is the major 
cause of cancer morbidity and mortality and accounts for the 
vast majority (up to 90%) of cancer deaths [135].

3.1.2 � Angiogenesis mediators and anti‑angiogenic 
therapies in cancer

Hypoxia-mediated HIF activation increases the expression 
of VEGFA and ANGPTL4, among others. VEGFA is a mem-
ber of a family of growth factors comprising also VEGFB, 
VEGFC, VEGFD, and PGF (placental growth factor), and 
functions as the main endothelial cell survival factor. It 
binds to two tyrosine kinase receptors, i.e., VEGF receptor 
1 (VEGFR1) and receptor 2 (VEGFR2) and prompts their 
homo- and heterodimerization, transphosphorylation, and 
the activation of downstream signaling. VEGFA is primar-
ily secreted by tumor and stromal cells in the TME and acts 
chiefly on endothelial cells by interacting with VEGFR2, the 
principal mediator of the cellular responses to the growth 
factor. VEGFR2 activation promotes endothelial cell prolif-
eration, survival, and migration via the stimulation of PLCγ-
PKC, MAPK-ERK1/2, and PI3K-AKT pathways [122, 232, 
233, 244]. The function of VEGFR1 is less defined: it has 
been shown that a soluble version of VEGFR1 (sVEGFR1) 
is secreted by endothelial cells and can act as an endog-
enous decoy for VEGFA by sequestering it and blocking 
its access to VEGF receptors [105]. VEGFA also induces 
vascular permeability by activating mechanisms such as the 
phosphorylation of vascular-endothelial (VE)-cadherin and 
β-catenin, which cause the destabilization of endothelial 
cell–cell contacts and the opening of endothelial cell junc-
tions [10]. Interestingly, adipocytes also produce VEGF and 
other pro-angiogenic factors (Fig. 2).

Given its central role in angiogenesis, VEGF signaling is 
upregulated in a variety of human cancers. The expression 
of VEGFR2 is elevated in HCC patients [8], as well as the 
levels of circulating VEGFA, which correlate with tumor 
angiogenesis, rapid disease progression, and decreased sur-
vival [209]. Based on these observations, therapies target-
ing the VEGFA pathway have been first evaluated in pre-
clinical models of HCC, and then implemented in clinics 
with promising results [66, 143]. Sorafenib, a multikinase 
inhibitor targeting VEGFR, PDGFR, c-Kit, and RAF, has 
been the standard of care for patients with advanced, unre-
sectable HCC for over a decade given its ability to increase 
patients’ survival [144]. Lenvatinib, another anti-angiogenic 
drug inhibiting VEGFR, fibroblast growth factor (FGF), and 
PDGFR with higher potency than sorafenib, is also used for 
unresectable HCC and showed an improvement in overall 
survival of the patients which was comparable to sorafenib 

[131]. Additionally, bevacizumab (a humanized monoclonal 
antibody that sequesters VEGFA) in combination with ate-
zolizumab (immune checkpoint inhibitor) was approved by 
the FDA in 2020 for the treatment of patients with unresect-
able or metastatic HCC. Currently, this combination therapy 
is the first-line systemic therapy for such patients [67].

While HCC is a highly vascular tumor, with angiogen-
esis playing an important role in its growth and dissemi-
nation, PDAC exhibits poor vasculature, low blood flow, 
and reduced perfusion compared with normal pancreas. The 
resulting hypoxic environment further exacerbates patho-
logical changes, such as the development of stromal fibrosis, 
a hallmark of PDAC. Tissue hypoxia promotes the release 
of various pro-angiogenic factors including VEGFA [261]. 
Accordingly, it was initially reported that PDAC tissues 
show an increase in VEGFA gene expression when compared 
to the normal human pancreas and that 60–65% of human 
PDAC samples show detectable VEGFA immunoreactiv-
ity[100, 104, 214]. However, recent RNA-Seq data (The 
Cancer Genome Atlas-TCGA dataset) challenged these find-
ings given that only 8 out of 178 (4%) human PDAC samples 
were found to overexpress VEGFA, thereby suggesting that 
it may not be as relevant a player in PDAC tumorigenesis 
as firstly assumed [243]. Several genetically engineered 
mouse models of PDAC that successfully recapitulated the 
histological and molecular evolution of the tumors have 
been generated and proven to be instrumental in assessing 
the efficacy of drugs targeting the TME and angiogenesis. 
Among the tested drugs is sunitinib, a multi-kinase inhibi-
tor targeting VEGFR and PDGFR signaling [178], which 
could not reduce tumor burden in PDAC mouse models. 
Clinical trials mirrored these results by showing a lack of 
efficacy of sunitinib when combined with gemcitabine for 
treating patients with advanced/metastatic PDAC[20], or 
when used as second-line therapy after failure to respond to 
gemcitabine [177]. Two additional anti-angiogenic drugs, 
bevacizumab and axitinib, also failed to improve the sur-
vival of PDAC patients [137]. Altogether, targeting VEGF 
signaling does not seem to represent a valuable strategy for 
the treatment of PDAC.

The interaction of VEGFA and VEGF receptors 
(VEGFR) and the resulting angiogenesis have been heav-
ily implicated in breast cancer development, progression, 
and metastasis. High VEGFA and VEGFR expression in 
breast cancer patients correlates with worse outcomes and 
resistance to systemic therapy. Drugs with anti-angiogenic 
effects have shown beneficial effects in breast cancer 
patients, starting from tamoxifen, the mainstay adjuvant 
therapy for hormone-positive breast cancer. Originally 
believed to be a mere competitor of estradiol, tamoxifen 
was later found to inhibit VEGFA and angiogenesis [24, 
72]. VEGFA is upregulated in breast cancers overexpress-
ing the receptor tyrosine kinase human epidermal growth 
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factor 2 (HER2). For these patients, the standard-of-care 
therapy is the anti-HER2 antibody trastuzumab alone or in 
combination with chemotherapy. Trastuzumab was shown 
to inhibit angiogenesis and normalize the tumor vascula-
ture [107].

Another important mediator of angiogenesis is 
ANGPTL4, a secreted factor belonging to a superfamily 
of proteins structurally related to angiopoietins, which are 
growth factors binding the receptor tyrosine kinase Tie2 
on endothelial cells and regulating vasculogenesis, vessel 
homeostasis, and vascular remodeling [107]. Unlike angi-
opoietins, however, ANGPTLs do not bind to either the Tie2 
receptor, or the related protein Tie1, and are therefore con-
sidered orphan ligands. ANGPTL4 is considered a mem-
ber of a new class of proteins named matricellular proteins, 
which are nonstructural glycoproteins secreted by cancer 
cells and neighboring stromal cells into the TME, where 
they associate with the ECM. ANGPTL4 was discovered 
independently by three groups in the year 2000 as a fasting-
induced factor, prevalently expressed in the liver and in the 
adipose tissue [119]. We now know that ANGPTL4 is a 
multifaceted protein involved in several metabolic and non-
metabolic conditions, in both physiological and pathologi-
cal situations, including angiogenesis, vascular permeabil-
ity, tumorigenesis, lipid metabolism, glucose homeostasis, 
wound healing, and inflammation, among others.

A C-terminal circulating ANGPTL4 fragment 
(cANGPTL4) binds to ECM proteins and integrins, and 
this was originally shown to facilitate wound healing [75, 
94]. Later, it was found that the binding of cANGPTL4 to 
integrins β1 and β5 and their subsequent activation regulates 
cell migration via the focal adhesion kinase (FAK)/p21-acti-
vated kinase (PAK)–signaling cascade [25]. Recently, it 
was demonstrated that cANGPTL4, via the activation of 
integrin α5β1, increases vascular leakiness by binding to 
VE-cadherin and claudin-5 and disrupting their intercellu-
lar clusters [97]. Furthermore, cANGPTL4 can also associ-
ate with specific ECM proteins and delay their proteolytic 
degradation by MMPs [97]. Thus, ANGPTL4 expression 
disrupts vascular endothelial tight junctions, augments ves-
sel permeability, and alters trans-endothelial barriers [180], 
ultimately facilitating tumor cell motility and the forma-
tion of metastases. Accordingly, ANGPTL4 was reported 
to promote venous invasion and distant spread in colorectal 
and renal cell cancer, as well as in gastric and breast can-
cer [262]. However, not in every tumor type, ANGPTL4 
promotes tumor progression. Indeed, ANGPTL4 was found 
to prevent lung carcinoma and melanoma metastases via 
the inhibition of vascular permeability, tumor cell motility, 
and invasiveness [70]. These contradicting findings may be 
caused by the different functions of the cleaved forms of 
ANGPTL4 (N‐or C‐terminus), and highlight the dual role 
of ANGPTL4 in tumorigenesis.

In HCC and in chronic hepatitis patients, the amount of 
circulating ANGPTL4 at both mRNA and protein levels is 
significantly elevated when compared to control individu-
als [63]. Similarly, in patients with alcoholic liver cirrho-
sis, serum levels of ANGPTL4 are increased versus healthy 
controls [192]. While these data are suggestive of an onco-
genic role of ANGPTL4, other studies reported that both 
the levels of ANGPT4 mRNA and the copy number of the 
gene are lower in HCC samples than in non-tumor tissues 
of the same patients. A possible mechanism for ANGPTL4 
downregulation in tumors is increased methylation at CpG 
sites located in the gene promoter [173]. Lower expression 
levels of ANGPTL4 mRNA are significantly associated with 
advanced tumor stage, poor differentiation, tumor recur-
rence, and decreased post-operative overall and disease-free 
survival of HCC patients, thereby pointing to a tumor sup-
pressive role of ANGPTL4 [173]. Studies in animal models 
helped elucidate the role of this protein in liver tumorigen-
esis. Indeed, the injection of ANGPTL4-overexpressing ade-
noviral vectors via the portal vein in mice bearing orthotopic 
liver cancer xenografts resulted in the suppression of both 
tumor growth and metastasis formation [173]. These find-
ings further supported the inhibitory role of ANGPTL4 in 
HCC development.

Mutation of the KRAS oncogene is a driver event in 
PDAC initiation and lineage tracing studies in mice showed 
that introducing a KRASG12D activating mutation in acinar/
centroacinar cells promotes their differentiation in ductal-
like cells and the formation of ADM/PanIN lesions [80]. It 
was later found that Angptl4 overexpression in these mice 
increased the number of ADM lesions. Additionally, upregu-
lation of Angptl4 enhanced tumor growth in a xenograft 
model of PDAC (Panc-1) cells [252]. These findings point 
to a role for ANGPTL4 in promoting the initiation and pro-
gression of pancreatic tumorigenesis.

In patients, four molecularly-defined PDAC subtypes have 
been identified by integrated genomic analyses, one of them 
being the squamous subtype associated with mutations in 
TP53 and KDM6A [14]. ANGPTL4 expression was the high-
est in tumors belonging to this subtype, which is associated 
with a particularly poor prognosis. In an independent study, 
transcriptome analysis showed that low expression levels of 
the ANGPTL4 gene are associated with longer post-operative 
survival of the patients [125]. Conversely, high ANGPTL4 
expression was observed in patients with shorter survival, 
as well as in PDAC cell lines resistant to gemcitabine, the 
standard first-line treatment for advanced or metastatic 
PDAC [125]. Functionally, knockdown of ANGPTL4 in a 
gemcitabine-resistant PDAC line (Panc-1 cells) led to a sig-
nificant reduction in cell proliferation [125]. Based on these 
results, ANGPTL4 emerges as a promising candidate target 
for tumors resistant to gemcitabine, and a potential marker 
for patients’ stratification in view of this treatment strategy.
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Overexpression of ANGPTL4 is associated with lower 
disease‐free survival in young breast cancer patients [111]. 
Moreover, in circulating tumor cells from women with breast 
cancer, ANGPTL4 copy number gain was found to be part of 
a signature of tumor aggressiveness and increased metastatic 
potential [116].

Triple-negative breast cancer (TNBC) is an aggressive 
subtype having a dismal prognosis due to its propensity to 
metastasize to the brain or liver [69]. ANGPTL4 is upreg-
ulated in primary tumors, in serum, and in metastases of 
TNBC patients [26, 96, 97, 161, 180, 216, 256]. Ectopic 
ANGPTL4 overexpression in a TNBC cell line promoted 
the formation of 3D mammosphere cultures in vitro and led 
to the development of larger primary tumors, and to more 
liver and brain metastases in xenograft models in vivo when 
compared to cells with endogenous ANGPTL4 levels [220].

Mechanistically, it was shown that soluble ANGPTL4 
secreted by metastatic TNBC cells disrupts the integrity of 
endothelial cell junctions in capillaries within the lungs and 
brain, thereby allowing tumor cells to access and seed in the 
respective parenchyma [26, 76, 180].

In conclusion, VEGF signaling promotes disease progres-
sion and aggressive behavior in HCC and breast cancer, and 
consequently, its inhibition has significant anti-tumor effects. 
In contrast, it does not seem to play a role in PDAC, and this 
is compatible with PDAC being intrinsically a hypovascular 
cancer. ANGPTL4 plays a tumor suppressive role in HCC, 
whereas in PDAC and breast cancer it promotes aggressive-
ness thanks to its effects on endothelial integrity and cel-
lular migration. The different properties of full-length and 
truncated ANGPTL4 variants and their tissue distribution 
likely explain the different phenotypes associated with its 
upregulation in tumors. Targeting ANGPTL4 is considered 
a promising strategy to reduce tumor growth in PDAC and 
metastases formation in breast cancer (Fig. 2).

3.2 � Angiogenesis in healthy and pathological 
adipose tissue

The adipose tissue is a highly vascularized tissue. In addition 
to nutrients and oxygen, the blood vessels transport growth 
factors, cytokines, and hormones that are required for adi-
pocyte function, growth, and survival [35]. Furthermore, 
the vasculature regulates the transport of adipokines from 
the adipose tissue to other organs, thereby mediating the 
endocrine role of this tissue in controlling systemic energy 
balance and metabolic activity in peripheral tissues.

The adipose tissue is the most plastic tissue in multicel-
lular organisms, as it constantly undergoes dynamic remod-
eling to adapt to ever-changing nutritional conditions. This 
plasticity goes hand-in-hand with a remarkable angiogenic 
capacity. While during weight gain, expansion of the adipose 
tissue is accompanied by an increase in vascularization via 

angiogenesis, weight loss is associated with the regression 
of blood vessels. In the adipose tissue, the vasculature is 
also critical for the effective local removal of free fatty acids 
(FFAs) during fasting, making angiogenesis a rate-limiting 
step for fat tissue expansion [230] (Fig. 2).

In obesity, substantial changes in adipose tissue structure 
are observed, which are not limited to adipogenesis, but also 
involve angiogenesis. Higher nutrient availability causes an 
increase in the number (hyperplasia) and size (hypertrophy) 
of the adipocytes, which reduces oxygen availability and 
induces a mild hypoxic state. To reduce hypoxia, adipose tis-
sue promotes angiogenesis. HIF1α was found to be increased 
in the adipose tissue of obese patients, and its expression 
was reduced upon weight loss following bypass surgery [32]. 
As for tumor tissues, upregulation of HIF1α activates the 
transcription of the pro-angiogenic factors ANGPTL4 and 
VEGFA [34, 48, 223].

3.2.1 � Angiogenesis mediators in obesity: potential 
therapeutic targets.

A functional vasculature is essential for both physiological 
adipose tissue expansion and for its expansion in obesity. 
Thus, not surprisingly, circulating VEGFA levels are ele-
vated in overweight and obese individuals [162] and have 
been found positively correlated to BMI in healthy male 
subjects [145].

Several studies in animal models have shown that dis-
ruption of angiogenesis prevents the onset of obesity [50]. 
VEGFA mediates most of the pro-angiogenic activity in 
adipose tissue by binding to VEGFR1 and VEGFR2 on 
endothelial cells, and leading to proliferation, mitogenesis, 
and growth factor secretion. Using doxycycline-inducible 
transgenic mice overexpressing VEGFA specifically in adi-
pose tissue, it was demonstrated that angiogenesis expedites 
the expansion of healthy fat pads following a high-fat diet 
(HFD) regimen [230]. Moreover, these mice had improved 
insulin sensitivity and increased energy expenditure on 
HFD, as well as a lack of fibrosis and inflammation in adi-
pose tissue. This was likely due to VEGFA-mediated new 
vessel formation and the related decrease in hypoxia. These 
data suggest that, in mice, promoting angiogenesis in the 
early stages of obesity may be beneficial, thereby opening 
new avenues for the potential use of manipulating angio-
genesis via VEGFA administration in obese patients. It was 
recently reported that high fat-high sucrose feeding in mice 
increases HIF1α-mediated VEGF expression in hypotha-
lamic astrocytes, and this promotes microvascular remode-
ling and could then lead to obesity-related hypertension [79].

Originally identified as a fasting-induced factor, 
ANGPTL4 was later shown to regulate lipid metabolism by 
inhibiting the lipoprotein lipase (LPL) enzyme. ANGPTL4 
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binds to and inhibits extracellular LPL activity, and stimu-
lates the lipolysis of triacylglycerol stored by adipocytes. 
The binding to LPL occurs via the N-terminal nANGPTL4 
fragment, the fragment responsible for the oligomeric 
assembly of the protein. Mutations that prevent ANGPTL4 
oligomerization severely compromise its ability to inhibit 
LPL [73]. LPL is an enzyme that hydrolyzes triglycerides 
embedded in lipoproteins, such as very low-density lipo-
proteins (VLDL), and in chylomicrons travelling through 
the bloodstream. The normal function and activity of LPL 
are essential for maintaining a well-balanced metabolism 
of plasma triglycerides, and as such are tightly regulated, 
mostly at post-translational level. Indeed, while the mRNA 
levels of LPL in adipose tissue are similar in both the fed 
and fasted states [118], the rate of LPL degradation within 
the Golgi/postGolgi secretory compartment increases dur-
ing fasting. Moreover, in the fasted state, there is a con-
version of active LPL into its inactive form [21], and this 
shift is caused by the induction of ANGPTL4 expression 
in adipose tissue [229].

While the CCD fragment is responsible for the inhibi-
tion of LPL activity, the purified FLD fragment of Angptl4 
stimulates lipolysis in mouse primary adipocytes in vitro 
[159]. Moreover, adenovirus-mediated overexpression of 
the FLD fragment (Ad-FLD) in mice, which increases the 
circulating FLD levels, was found to promote adipose tis-
sue lipolysis in vivo, as well as to reduce diet-induced obe-
sity. Noteworthy, decreased adiposity in Ad-FLD mice was 
associated with increased oxygen consumption, fat utiliza-
tion, and expression of thermogenic genes in subcutaneous 
adipose tissue [159]. These studies revealed that the FLD 
fragment, when separated from the CCD LPL-inhibitory 
fragment, displays lipolytic and thermogenic properties, 
which could be relevant in the context of the identification 
of novel treatments for obesity and diabetes.

In humans, a large population study demonstrated a 
positive correlation between plasma ANGPTL4 concentra-
tions and fasting plasma glucose [117]. Additional human 
genetics studies further supported the role of ANGPTL4 
in regulating plasma lipid levels by showing that carri-
ers of loss-of-function variants in ANGPTL4 (the most 
common being E40K) show lower plasma TG levels than 
non-carriers [52, 203]. The E40K variant, which encodes 
an unstable ANGPTL4 protein [228, 255], is also associ-
ated with a significantly reduced risk of coronary artery 
disease [126, 148, 228, 255].

Interestingly, circulating ANGPTL4 levels were found 
to be elevated in obese patients with different metabolic 
phenotypes, i.e., metabolically unhealthy, type 2 diabetes 
(T2D), and metabolically healthy, and this was associ-
ated with endothelial dysfunction, an early abnormality 
in atherosclerosis [207]. ANGPTL4 levels were especially 
higher in the group of patients with T2D than in any other 

group, in agreement with another study showing that the 
plasma levels of ANGPTL4 are almost two-fold higher 
in patients with T2D than in nondiabetic controls [253]. 
Further clues about the role of Angptl4 in metabolism 
and obesity came from genetically engineered mice with 
deletion of the gene. Angptl4-knockout mice fed a HFD 
were reported to develop a severe inflammatory pheno-
type, which led to their premature death and precluded 
further studies on the role of Angptl4 in diet-induced 
obesity [138]. However, when unsaturated fatty acids and 
cholesterol were added to a chow diet, and fructose to the 
drinking water, Angptl4-knockout mice had much better 
glucose tolerance than wild-type mice, despite being more 
obese [108]. It should be noted that the phenotype can 
vary depending on the genetic background of the mice 
[12]. Studies of mice with the conditional depletion of 
Angptl4 in adipose tissue demonstrated that, under condi-
tions of diet-induced obesity, gene deletion reduces cir-
culating triglycerides and improves insulin sensitivity, 
whereas body weight and glucose homeostasis remained 
unchanged [7]. Mice with hepatocyte-specific Angptl4 
gene fed a chow diet showed early changes in lipid metab-
olism, with reduced circulating triglycerides, total cho-
lesterol, and HDL cholesterol [221]. Noteworthy, liver-
specific Angptl4-deficient mice fed a HFD for 16 weeks 
showed decreased body weight, plasma lipids, and liver 
steatosis, together with improved glucose tolerance and 
insulin sensitivity [221]. These phenotypes were mediated 
by an increase in FFA uptake in hepatocytes, which led 
to their oxidation, and ultimately to ROS production, and 
AMPK activation [221]. The observation that pharmaco-
logic inhibition of Angptl4 in the liver recapitulates the 
amelioration of metabolic parameters observed following 
its genetic ablation (i.e., protection against diet-induced 
obesity, dyslipidemia, glucose intolerance, and liver dam-
age) highlighted the potential of this factor as a therapeutic 
target for metabolic diseases.

In conclusion, the inactivation of Angptl4 in mice plays 
a protective role against the metabolic complications of 
diet-induced obesity, so that it is currently investigated 
as a therapeutic strategy for dyslipidemia and to improve 
glucose intolerance [108].

3.3 � Angiogenesis linking obesity and cancer

Epidemiological studies have shown that obesity increases 
the risk of developing liver cancer [30] because of its role 
in the progression of NAFLD to cirrhosis [29], the single 
most potent risk factor for the development of HCC. Given 
that angiogenesis is associated with the progression from 
cirrhosis to HCC, it could be hypothesized that increased 
angiogenesis links obesity to worse outcome in HCC 
patients. To verify this hypothesis, Siegel and colleagues 
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set out to investigate the amount of microvascular inva-
sion (MVI), a sign of angiogenic activity associated with 
poorer prognosis, and found that it positively correlated 
with BMI in HCC patients [219]. In the TME, adipokines 
secreted by the adipose tissue (e.g., leptin) impinge on the 
increase of VEGF and sustain neovascularization, further 
strengthening the importance of angiogenesis in the rela-
tionship between obesity and HCC development (Fig. 2).

A similar situation occurs in PDAC, where excess adi-
posity is causally related to the development and the sever-
ity of the disease, and where excess in intrapancreatic fat 
is an indicator of PDAC [38]. Noteworthy, fatty pancreas 
and fatty liver are strongly correlated, and both are asso-
ciated with obesity [241]. In orthotopic PDAC models, 
HFD resulted in a more aggressive tumor phenotype and 
this was accompanied by an increase in angiogenesis [71]. 
Whether the increased expression of pro-angiogenic fac-
tors (e.g. VEGFA, ANGPTL4) is involved in mediating 
tumor progression was not investigated.

Obesity is associated with a higher risk of developing 
estrogen receptor-positive breast cancer, particularly in 
postmenopausal women, as well as with a worse clini-
cal outcome for women of all ages. Several studies have 
demonstrated that the secretion of inflammatory cytokines, 
growth factors, and fatty acids by the adipose tissue in the 
TME exerts protumorigenic effects, which ultimately pro-
mote breast cancer progression (Fig. 2). In mouse models 
of breast cancer,  the adipose tissue sustains the growth 
of the new vasculature and supports the development and 
progression of the tumors via the secretion of VEGFA 
and other angiogenic factors [40]. Blücher and colleagues 
analyzed the effects of factors secreted by adipose cells of 
obese mice or obese patients on several oncogenic features 
of breast cancer cells [25]. They found that these factors 
activate the expression of genes involved in inflammation 
and lipid metabolism, including ANGPTL4, and this was 
associated with increased tumor cell proliferation and 
invasion (Fig. 2). In mice, obesity-related inflammation 
causes an increase in IL-1β production, which then pro-
motes angiogenesis and tumor progression by upregulating 
Angptl4, thereby setting the rationale for future exploita-
tion of this factor as a potential therapeutic target for obese 
breast cancer patients [129]. To the local pro-tumorigenic 
effects of the adipose tissue are added systemic endocrine 
changes, such as increased estrogens, insulin, and leptin 
levels, that may promote breast cancer development and 
progression. Leptin signaling, known to be associated with 
breast cancer aggressiveness and worse prognosis [158, 
200], activates transcription factors that upregulate VEGF/
VEGFR2 to promote angiogenesis [41].

The response to therapy is affected by body weight. For 
instance, it has been shown that syngeneic murine breast 
cancer models fed a HFD versus a low-fat diet, as well as 

obese breast cancer patients, are resistant to anti-VEGF 
therapy [101]. This results from increased production of 
IL-6 and FGF2 by adipocytes and myeloid cells, given that 
blocking IL-6 or inhibiting FGF in preclinical models of 
primary and metastatic breast cancer restores the response 
to anti-VEGF therapy [101]. Whether obesity also affects 
the response of HCC patients to the anti-angiogenic drug 
sorafenib is still unclear. Indeed, while a small retrospec-
tive study reported that HCC patients with high visceral 
fat display both shorter overall survival (OS) and primary 
resistance to sorafenib [171], another one failed to confirm 
a negative prognostic value of individual components of 
the metabolic syndrome (including obesity) on OS [133]. 
Despite these inconclusive findings, there is a need to 
develop specific therapies for better treating obese cancer 
patients.

Based on animal studies, administration of VEGF in the 
early stages of obesity could be beneficial in reducing the 
tissue-related changes associated with this condition, and 
could therefore prevent the development of tumors which 
are associated with obesity. However, once tumors occur, 
VEGF signaling should be blocked to prevent angiogene-
sis and further tumor growth and spread. Similarly, block-
ing Angptl4 is expected to lead to tumor inhibition in the 
context of obesity, as it reduces the angiogenic potential 
of the tumors (Fig. 2).

4 � Adrenergic signaling linking obesity 
and cancer

4.1 � Adrenergic signaling mediates our body’s 
fight‑or‑flight response

Activation of adrenergic receptors through the catechola-
mines norepinephrine or epinephrine triggers our body’s 
fight-or-flight response, the reaction to immediate stress. 
It also activates multiple downstream cascades involved 
in metabolism, proliferation, inflammation, DNA damage 
response, and other processes relevant for both cancer 
and obesity. Adrenergic receptors are G-protein-coupled 
receptors. In humans, there are three classes of adren-
ergic receptors (α1, α2, β) and 9 subtypes in total. The 
different adrenergic receptors are expressed in a tissue-
specific manner and signal through distinct biochemical 
pathways [49]. Depending on the G-protein to which they 
are coupled, they can activate multiple pathways, most 
prominently the cAMP signaling cascade, activation of 
which leads to adenylate cyclase activation and cyclic 
3′–5′ adenosine monophosphate (cAMP) production. 
cAMP then activates the effector proteins protein kinase 
A (PKA) or exchange protein activated by adenylyl cyclase 
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(EPAC), ultimately resulting in transcriptional regulation 
of a multitude of genes regulating cell fate [43].

4.2 � Increased local and systemic adrenergic 
signaling contributes to cancer development 
and progression

Adrenergic signaling is an important regulator of different 
cellular processes linked to cancer development and progres-
sion, such as angiogenesis, cell motility, and inflammation. 
Adrenergic receptors are expressed not only on tumor cells 
[195] but also on cells of the TME, such as immune cells 
or vascular cells [128, 257]. Catecholamines can act both 
locally and systemically, and both pathways seem to play a 
role in cancer. Several studies argue that the local adrenergic 
signaling is of high importance for cancer progression: In 
mouse models of prostate cancer, catecholamines derived 
from adrenergic nerves activated β-adrenergic receptor 
signaling in endothelial cells, which led to an angiogenic 
switch promoting tumor growth [257]. In patients with oral 
cancer, nerve density was associated with p53 status, which 
correlated with poor clinical outcomes [3]. Thus, the tumor-
nerve crosstalk seemed to play an important role in adren-
ergic signaling in cancer. Catecholamine levels in ovarian 
carcinomas were higher in tumor tissue than in blood, and 
intra-tumor but not circulating norepinephrine levels cor-
related with tumor grade and stage [151], again arguing for 
the importance of local adrenergic signaling in cancer.

In addition to local signaling, there is also compelling 
evidence for the importance of systemic catecholamine 
signaling in cancer: Increased cancer cell proliferation upon 
treatment with the synthetic β-adrenergic receptor agonist 
isoproterenol, which could be prevented through blockage 
of β-adrenergic signaling [211], first gave rise to the idea that 
catecholamines might play a role in cancer growth. Inter-
est in adrenergic signaling in cancer was further sparked 
by the observation that chronic stress, which is linked to 
the activation of adrenergic signaling, was associated with a 
higher cancer incidence. Social isolation, which is an enor-
mous stressor in rats, vastly increased cancer occurrence and 
malignancy such that mammary tumor burden in isolated 
rats was increased to > 80 times that of age-matched control 
animals housed in groups [91]. Likewise, although much less 
drastic, chronic behavioral stress resulted in greater tumor 
burden and more invasive cancer cell growth in mice ortho-
topically implanted with ovarian carcinoma cells [235]. This 
was linked to over-activation of the β2-adrenergic receptor 
(ADRB2)-cAMP-PKA pathway and increased angiogenesis 
in the stressed situation. There is now a large body of data 
from animals showing that adrenergic signaling is involved 
in tumor growth, metastasis, and overall mortality associated 
with multiple cancers, such as melanoma [17], colorectal 
cancer [141], breast cancer [222], and many more. In line 

with the rodent data, an early cohort study investigating over 
10,000 women found significantly increased breast cancer 
risk in patients who had experienced a stressful life event, 
such as a divorce or death of a close family member [139]. 
The risk was also increased by stressful events among twin 
pairs, although the cohort size was small in this case. More 
recently, a large meta-analysis showed a significant associa-
tion between work stress and the risk of different cancers, 
including those of the colon, lung, and esophagus [254].

4.3 � Beta‑blockers in cancer treatment

Beta-blockers are antagonists of beta-adrenergic receptor 
signaling which belong to a class of drugs used primar-
ily for the treatment of cardiovascular diseases. There are 
both nonselective agents and agents selective to certain 
β-adrenergic receptors. Common examples include pro-
pranolol, carvedilol (nonselective), atenolol, and meto-
prolol (β1-selective). Initially shown and later confirmed 
many times in preclinical studies [157, 235, 247] antago-
nism of β-adrenergic signaling inhibited multiple pathways 
involved in cancer progression and metastasis. Given the 
large body of evidence linking adrenergic signaling and 
cancer from both preclinical and clinical studies, the use 
of beta-blockers in cancer treatment seemed promising. 
Evidence of a positive effect of beta-blockers on cancer 
outcomes is most compelling for breast cancer: A series 
of population-based observational studies demonstrated 
significantly reduced breast cancer progression and mor-
tality in patients treated with the nonselective beta-blocker 
propranolol [16]. Herein, the authors confirmed observa-
tions of the positive effect of this beta-blocker in preclini-
cal trials. In patients with triple-negative breast cancer, 
beta-blocker use was linked to improved relapse-free sur-
vival [146]. Beta-blocker therapy was also beneficial in the 
context of metastasis formation, as a significantly lower 
rate of distant metastasis, reduced cancer recurrence, and 
improved cancer-specific survival were observed upon 
beta-blocker therapy in breast cancer [191]. This study 
concluded that cancer patients receiving beta-blockers for 
hypertension had improved overall outcomes, but larger 
studies are needed to make definitive conclusions. In addi-
tion to direct effects of tumor growth and/or metastasis for-
mation, there seem to also be additional advantages of beta-
blockers, for instance when considering chemotherapy: 
Many traditional chemotherapies induce cardiotoxic side 
effects, such as reported for cisplatin (arrhythmias, angina, 
myocarditis, acute myocardial infarction, and chronic heart 
failure, and more [187]. Due to their beneficial function on 
the heart, beta-blockers may be useful to improve cardiac 
health during chemotherapy. Indeed, beta-blocker treat-
ment reduced the risk of new heart failure diagnosis in 
breast cancer patients undergoing chemotherapy [81].
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Beta-blockers have also been discussed in the context of 
pancreatic cancer. Stress-induced neural activation increased 
tumor growth and cancer cell migration in a mouse model 
of pancreatic cancer, which was blocked by pharmacologi-
cal β-blockade [121]. Herein, optical imaging was used 
to track pancreatic cancer cells in vivo. Pharmacological 
activation of beta-adrenergic signaling induced increased 
primary tumor growth as well as cancer cell migration to 
the same extent as stress through repeated daily restraint, 
underlining the relevance of this pathway to stress-induced 
aggravation of cancer progression. A recent study showed 
that catecholamines promoted the development of PDAC 
through ADRB2 in a feedforward loop involving neurotro-
phins, sympathetic innervation, and local norepinephrine 
[198]. In turn, ADRB2 blockade increased the survival of 
mice prone to pancreatic cancer. This effect was mediated 
primarily through local catecholamine action, as indicated 
by the protection from cancer growth by surgical sympa-
thectomy [198]. In a syngeneic murine model of pancreatic 
cancer, animals with high circulating catecholamines, as in 
chronic stress, also had larger tumors and reduced survival 
[185]. Propranolol treatment significantly improved both 
tumor growth and survival of the animals. In patients with 
PDAC, beta-blocker treatment was associated with signifi-
cantly reduced cancer-specific mortality—an effect that was 
particularly pronounced in patients with localized disease 
at diagnosis [239]. Likewise, the beta-blocker propranolol 
reduced mortality in patients suffering from hepatocellular 
carcinoma [39, 238]. Despite this compelling evidence of a 
beneficial role of beta-blockers in cancer, other studies fail 
to observe beneficial effects: a recent large meta-analysis 
including > 18,000 patients has not shown any advantages 
of beta-blockers regarding overall deaths, cancer-specific 
deaths, and recurrences in breast cancer [123, 124]. This 
was also true for other cancer types [263], and there now 
is considerable debate whether or not the stress-cancer link 
is true, as there are also several large studies demonstrating 
no increased cancer incidence in different stress conditions 
[88, 208]. Overall, there is no clear and uniform picture, both 
regarding the stress-and-cancer link and regarding the ben-
efit of beta-blockers in cancer treatment—although multiple 
clinical studies are currently ongoing. It should be noted that 
none of these studies has systematically addressed obesity. 
The link between adrenergic signaling and cancer may be 
influenced by the interaction with the metabolic action of 
adrenergic receptors as discussed below.

4.4 � Beta‑blockers in the treatment of cancer 
cachexia

Beta-blockers have not only been assessed for the treatment 
of cardiovascular disease and tumors, but also for cancer-
associated metabolic dysfunction. Cancer is frequently 

associated with cancer cachexia, a wasting disorder caused 
by various tumor entities, that is estimated to cause every 
third cancer-related death and strongly impairs quality of 
life, and negatively affects outcomes of anti-cancer thera-
pies [65]. Cachexia leads to the involuntary, progressive 
loss of adipose tissue and muscle mass and cardiac dysfunc-
tion [166, 201, 226]. Being a systemic metabolic disease, 
weight loss in cachexia is associated with increased adren-
ergic signaling, which increases energy expenditure, and can 
be blocked by β3-adrenergic receptor antagonists in mouse 
models [110, 188]. Beta-adrenergic signaling is a key activa-
tor of adipocyte lipolysis and regulation of which contributes 
not only to adipose tissue size but also overall body weight 
and metabolic health [202]. Over activation of adipocyte 
lipolysis is a hallmark of cancer cachexia, and blockage of 
this process counteracts cancer-induced wasting [51, 201]. 
Prominently, ADRB1 was shown to be over-expressed in the 
adipose tissue of patients with cachexia, correlating with ele-
vated expression of hormone-sensitive lipase, a rate-limiting 
enzyme in lipolysis, and the lipolytic rate [33]. Given the 
relevance of cardiac function for survival in cancer patients, 
the finding that beta-blockers also reduced the negative con-
sequences of cancer on the heart and reduced mortality in 
rodents [226] proposes that beta-blockers may also be useful 
treatment options in cancer-associated cachexia. In addition, 
cancer cachexia has been associated with increased intratu-
moral TGFβ signaling and tumor fibrosis [140]. Notably, 
cancer cachexia represents a systemic metabolic syndrome 
associated with malignancy, which in turn might contrib-
ute to tumor aggressiveness through the outlined processes, 
namely induced tumor fibrosis and angiogenesis.

4.5 � Adrenergic signaling affects cancer progression 
through multiple mechanisms

There are multiple ways through which adrenergic signaling 
may contribute to cancer growth and progression. Catecho-
lamines directly activate proliferation, and beta-blockers 
may function through inhibiting this pathway as shown by 
Montoya et al. [164]. In this study, the authors demonstrate 
overexpression of β1- and β3-adrenergic receptors in breast 
cancer and reduced tumor proliferation in primary breast 
cancer cells and a panel of mammary epithelial cell lines. 
Mechanistically, this was due to decreased phosphoryla-
tion of the mitogenic signaling regulators p44/42 MAPK, 
p38 MAPK, JNK, and CREB, and increased phosphoryla-
tion of the cell survival/apoptosis regulators AKT, p53, 
and GSK3β. This direct proliferative effect—and block-
age through beta-blockers—was also observed in multi-
ple other cancer cell lines [42, 142, 211]. Beta-blockers 
were not only able to block the increased proliferation of 
cancer cells induced by beta-adrenergic receptor agonists 
but also reduced baseline proliferation. In addition to the 
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above-mentioned p44/42 MAPK and AKT, also Bcl-2, 
cyclin D1, and cyclin E were suppressed by beta-blockers, 
causing G1/S-phase arrest, and ultimately caspase activation 
and apoptosis, as shown by [259]. Interestingly, however, 
there are also reports on reduced cancer cell proliferation 
upon β-adrenergic signaling [103]. In addition to cell lines, 
increased tumor cell proliferation mediated by catechola-
mines was also observed in vivo in mice [185]. However, 
the same study also noted an even more pronounced effect 
of catecholamines on cell migration, which was inhibited by 
beta-blockers. In this study, chronic stress-induced higher 
expression of VEGF, increased micro vessel density, and 
increased expression of MMP9. Augmented migration of 
human prostate cancer cells upon norepinephrine treatment 
was also seen in a mouse xenograft model [15]. Herein, nor-
epinephrine directly activated the migration of cancer cells. 
Knockdown of β2-adrenergic receptor in breast cancer cells 
reduced tumor cell invasive capacity and abolished stress-
induced metastasis, whereas overexpression of the receptor 
in low metastatic cells induced an invasive phenotype [37]. 
One potential explanation for this increased metastasizing 
behavior may be the elevated expression of matrix metallo-
proteases, most importantly MMP2 and MMP9, which has 
been shown in multiple cancer cell lines upon β-adrenergic 
signaling, and importantly improved by propranolol treat-
ment [15, 82]. When treated with norepinephrine, pancreatic 
cancer cells secreted significant amounts of these MMPs. 
Being important molecules involved in the degradation of 
ECM components, MMPs are critical to both metastasis 
and angiogenesis processes [194], as well as to liver fibrosis 
[134]. Likewise, increased VEGF secretion upon NE treat-
ment facilitated angiogenesis and metastasis formation, as 
outlined in chapter 2. Angiogenic processes were vital for 
mediating the effects of stress on tumor growth in a mouse 
model of ovarian cancer [235], which again showed an 
increased expression of VEGF, MMP2, and MMP9. MMPs 
are also associated with EMT, a crucial factor determining 
cancer cell invasion and metastasis. In addition to induc-
ing MMP expression and secretion, catecholamines activate 
other processes typical for EMT, as they induce morphologi-
cal characteristics of EMT as well as increased vimentin and 
decreased E-cadherin expression [217]. Mechanistically, this 
was driven through a β2-adrenergic receptor—HIF1α—Snail 
axis, as HIF1α knockdown prevented EMT in cancer cells.

In addition to these direct effects, a possible explanation 
for the increased migratory capacity upon adrenergic signal-
ing might be the interconnection with the immune system 
[222]. Catecholamines induced the expression and secre-
tion of inflammatory mediators, such as interleukin 6 or 8 
(IL6, IL8) from human cancer cells [165]. Here, the main 
role of IL6 was to participate in the activation of stromal 
fibroblasts towards a myofibroblastic phenotype, supporting 
metastasis. In addition, inflammatory mediators have vital 

roles in orchestrating the various cell types and responses 
of the immune system. β-adrenergic signaling increased 
the infiltration of CD11b + F4/80 + macrophages into the 
primary tumor and thereby induced a prometastatic gene 
expression signature accompanied by indications of M2 
(non-tumoricidal) macrophage differentiation [222]. While 
stress-induced neuroendocrine activation had a negligible 
effect on the growth of the primary tumor in this study, it led 
to a 30-fold increase in metastasis to distant tissues including 
the lymph nodes and lung, underlining the close intercon-
nection of these two processes. In addition, beta-adrenergic 
signaling enhanced the production of prostaglandins, specifi-
cally prostaglandin E2 (PGE2), through a mechanism involv-
ing nuclear factor kappa b (NFκB) signaling, which proved 
essential for mediating the stress-induced increase in tumor 
growth and metastasis formation in mice [170]. Increased 
expression levels of key proteins involved in PGE2 produc-
tion were also observed in human ovarian cancer samples 
and were linked to reduced survival of these patients. Con-
sequently, there have already been small trials investigating 
the effects or propranolol and a COX2 inhibitor, etodolac—
reducing PGE2 synthesis—in cancer patients, which showed 
promising first results in terms of metastatic potential and 
inflammatory signatures [86, 215]. Lastly, beta-adrenergic 
signaling was also shown to impair CD8 + T cell activation 
by suppressing the metabolic switch leading to activation of 
effector function, thereby limiting anti-tumor T cell action 
and efficacy of immunotherapies [175].

Overall, there is a very strong link between adrenergic 
signaling and cancer, and multiple pathways important for 
cancer development and progression are affected by stress 
signaling which also interconnect with angiogenic and ECM 
pathways as outlined above. Despite this, clinical evidence 
for the effectiveness of beta-blockers is not unequivocal, 
which may be due to the so far neglected connection to meta-
bolic pathways as discussed below.

4.6 � Adrenergic signaling and obesity

Dysfunction of the adrenergic system has been proposed 
in obesity, as the sympathetic nervous system influences 
both energy intake and energy expenditure. Beta-adrenergic 
receptors regulate on the one hand metabolic rate and sub-
strate utilization, and on the other hand contribute to the 
regulation of the function of multiple tissues important for 
metabolic control [236]: Adrenergic signaling regulates car-
bohydrate metabolism in liver and skeletal muscle, insulin 
and glucagon secretion from the pancreas (thereby influenc-
ing systemic glucose homeostasis), and lipid metabolism in 
the adipose tissue. Low sympathetic nervous activity has 
been suggested as potential mechanism of weight gain in 
humans [225]. Adipose tissue adrenergic signaling seems 
key to most effects linking adrenergic signaling and body 
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weight regulation. Beta-adrenergic receptor expression 
is strongly reduced in adipose tissues of several different 
mouse models of obesity, making impaired expression a 
general feature of both genetic and diet-induced obesity. 
Comparing different models, the degree of obesity was 
correlated with the extent of loss of β1- and β3-adrenergic 
receptor expression in the adipose tissue [45]. Likewise, it 
was noted that factors that downregulate β-adrenergic recep-
tor expression induce both obesity and associated metabolic 
dysfunction due to impaired lipid mobilization [202]. On 
the other hand, chronic activation of β-adrenergic signaling 
by CL316,243 treatment prevented the reduction in β1- and 
β3-adrenergic receptor expression in the adipose depots, and 
prevented diet-induced obesity [44]. Catecholamines are key 
regulators of lipolysis in the adipose tissue, and β-adrenergic 
signaling also activates thermogenesis, leading to energy 
expenditure through heat. This not only renders adipose tis-
sue adrenergic signaling important for cancer-associated 
cachexia as mentioned previously but also makes adipose 
tissue β-ARs attractive drug targets to counteract obesity 
[6]. Obesity-associated catecholamine resistance of adipo-
cytes is well established in both rodent models and patients 
[199]. A recent report has highlighted a novel regulatory 
pathway involved in β3-adrenergic receptor desensitization 
in obese adipocytes which involves the pseudokinase Trib-
bles 1[179], the EPAC pathway, and the transcription factor 
CEBPα [240]. Previously, inflammatory processes asso-
ciated with obesity have been shown to mediate obesity-
induced catecholamine resistance in adipose tissue [167]. 
In that regard, inflammatory macrophages have been shown 
to reduce adrenergic output by degrading catecholamines in 
the adipose tissue, thereby limiting catecholamine bioavail-
ability [31, 190]. This highlights an important point: while 
catecholamines are either locally reduced or less functional 
in the adipose tissue of the obese—a mechanism that has 
been pursued intensively as a drug target in recent years—
obesity is actually associated with increased circulating cat-
echolamines and elevated sympathetic tone [237]. Multiple 
factors may induce increased sympathetic activity in obesity: 
overfeeding-induced disruption of hypothalamic insulin-
signaling, hyperinsulinemia, hyperleptinemia, and increased 
release of nonesterified fatty acids from adipose tissue [236]. 
Activation of the sympathetic nervous system may also 
explain the markedly increased risk of hypertension and 
cardiovascular disease in obesity [113], although multiple 
additional factors such as adipokines or the renin–angioten-
sin–aldosterone system contribute to mediating blood pres-
sure and cardiac outcomes. Plasma norepinephrine levels 
are significantly higher in obese patients, and weight loss 
in obese subjects is correlated with reductions in plasma 
norepinephrine [237]. This elevated sympathetic activation 
is further highlighted by the study by Grassi et al. demon-
strating that muscle sympathetic nerve activity was much 

higher in obese compared to healthy subjects [78]. A recent 
meta-analysis combining data from 45 studies has shown 
that muscle sympathetic nerve traffic, a sign of sympathetic 
activation, was higher in overweight subjects compared to 
subjects with normal weight, and higher still in obese sub-
jects. Indeed, muscle sympathetic nerve traffic was directly 
related to body mass index and waist-to-hip ratio [77].

4.7 � Elevated adrenergic signaling may link obesity 
to enhanced cancer progression

The pronounced elevation of the sympathetic nervous system 
in obesity may contribute to enhanced cancer progression in 
obese patients (Fig. 3). A polymorphism in the β3-adrenergic 
receptor gene was associated with obesity and metabolic 
syndrome and was also highly significantly enriched in 
patients with endometrial cancer [11]. Likewise, an associa-
tion between the risk of breast cancer and polymorphisms in 
ADRB2 and ADRB3 was described [98]. Herein, the authors 
suggested that variations in adrenergic receptors linked to 
obesity may also be crucial risk factors for postmenopausal 
breast cancer. In addition to the direct effects of elevated 
sympathetic activation on cancer cells through the molecular 
mechanisms described above, it is conceivable that catecho-
lamines also indirectly advance tumor growth, for instance 
by altering the lipid metabolism in the adipose tissue. There 
may also be an interesting connection with leptin: increased 
leptin secretion from adipose tissue and elevated circulating 
leptin are seen in obesity, and indeed an association between 
leptin and norepinephrine exists, for instance during a glu-
cose tolerance test [46]. This association may reflect the lack 
of leptin suppression by catecholamines in obesity, which 
occurs in the dependence of β1- and β2-adrenergic receptors 
in healthy human adipocytes [212]. In addition, sympathetic 
nervous system overactivation is associated with hyperten-
sion, which itself is a risk factor for the increased incidence 
of developing certain cancers and increased cancer-related 
mortality [163]. Over activation of beta-adrenergic signal-
ing, as seen in obesity, may additionally potentiate insulin 
resistance by directly interfering with glucose uptake and 
insulin signaling as recently shown in response to acute 
stress, and this mechanism might also occur in obesity [196].

There are also important implications for cancer-associ-
ated complications such as cachexia. As cachexia is clas-
sically associated with increased activation of adrenergic 
receptors, for instance in the adipose tissue [188], a so-
far unknown connection with obesity may exist. Lastly, it 
should be noted that adrenergic signaling is also activated 
in exercise, which has known anti-tumor effects, and that 
blocking adrenergic signaling upon exercise prevented the 
anti-tumor action of exercise in mouse models of cancer 
through interaction with the immune system [109]. Pre-
clinical studies have shown primarily positive effects of 
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beta-blockers on cancer, whereas this was not always the 
case in the clinical data. One difference may be weight 
homogeneity in mouse models, and future studies inves-
tigating adrenergic signaling and effects of beta-blockers 
in cancer should pay closer attention to body mass and 
body composition. It remains an interesting question if and 
how we can use our knowledge on obesity for cancer ther-
apy. For instance, as outlined above, macrophages locally 

degrade catecholamines in obese adipose tissue—could we 
train them to perform the same action in cancer, thereby 
reducing local catecholamine bioavailability in the tumor? 
Many open questions regarding spatio-temporal actions of 
adrenergic signaling in obesity and cancer still exist, and 
carefully assessing the metabolic status of patients may aid 
in understanding the benefit of intervening with adrenergic 
signaling in a more personalized setting in the future.

Fig. 3   Overview of adrenergic signaling in cancer and obesity. Adr-
energic signaling activates lipolysis, thermogenesis, and energy 
expenditure in the adipose tissue. Within tumor and tumor microen-
vironment, adrenergic signaling activates different pro-tumorigenic 
processes including tumor cell proliferation, angiogenic switch, and 
epithelial-mesenchymal transition (EMT). Obesity is associated with 
elevated circulating catecholamines, which can be reduced upon 
weight loss, but adrenergic signaling is dampened locally within 
the adipose tissue, contributing to reduced energy expenditure and 

impaired adipose tissue function. This affects tumors through indi-
rect catecholamine-mediated effects including bioreactive lipids and 
adipokines. Elevated circulating catecholamines are also present in 
stress. Many direct tumor-promoting processes, as well as tumor-
associated complications (cardiovascular events, cachexia), can be 
counteracted by beta-blockers. The lack of associations between 
stress or beta-blockers and cancer outcomes in some studies may 
result from variabilities in adrenergic signaling due to obesity
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5 � Conclusions

Treatment options for cancer patients are the same whether 
they occur in obese or lean individuals, but body weight 
and composition might affect therapy response and toxic-
ity. Therefore, there is a need to develop more effective 
and tailored therapies that take into account the patients’ 
metabolic status. Several processes, including fibrosis, 
angiogenesis, and adrenergic signaling, are located at the 
crossroad between obesity and cancer (Fig. 4). Molecules 
involved in these processes represent putative therapeutic 
targets that may be exploited in view of future clinical 
applications. Importantly, the role that each molecular 
mediator plays in the individual cancer types (pro- or anti-
oncogenic), as well as in the development of obesity-asso-
ciated complications, needs to be taken into account when 
planning a targeting strategy. Considering body weight and 

body composition in a systematic manner when design-
ing and interpreting cancer data will further increase the 
impact of these studies.

While obesity represents an undisputed risk factor for 
cancer development and is associated with more aggressive 
cancer behavior, weight loss has been correlated to reduced 
cancer incidence, especially of breast and endometrial can-
cers in post-menopausal women [184]. Studies in experi-
mental animals back up this finding by showing that caloric 
restriction decreases tumor formation and slows tumor 
growth (reviewed in Lv et al. [152]. For instance, caloric 
restriction reduces sympathetic activity to an extent com-
parable to beta-blockers in rodents [174]. Thus, weight loss 
represents a good intervention measure for the prevention of 
several human cancers, including HCC, PDAC, and breast 
cancer. This is especially true for interventions leading to 
durable and significant weight loss such as bariatric surgery. 

Fig. 4   Schematic representation of fibrosis-, angiogenesis- and beta-adrenergic signaling-related processes and factors contributing to the risk 
connection between obesity and cancer
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A recent population-based study has shown that bariatric 
surgery decreases the risk of obesity-associated cancers, 
but does not change the incidence of cancers not related 
to obesity [136]. In the future, raising awareness about the 
connections between metabolic diseases and their long-
term consequence on cancer among patients, physicians, 
and the research community will be critical to prevent the 
disease or improve treatment outcomes in cancer. In those 
patients unable to lose weight, exploring the mechanistic 
links between obesity and cancer progression may provide 
novel treatment options in the future and potentially improve 
the current standard of care.
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