Skip to main content

Advertisement

Log in

p73 isoforms meet evolution of metastasis

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang, A., & McKeon, F. (2000). P63 and P73: P53 mimics, menaces and more. Nature Reviews Molecular Cell Biology, 1(3), 199–207. https://doi.org/10.1038/35043127

    Article  CAS  Google Scholar 

  2. Graziano, V., & De Laurenzi, V. (2011). Role of p63 in cancer development. Biochimica et Biophysica Acta, 1816(1), 57–66. https://doi.org/10.1016/j.bbcan.2011.04.002

    Article  CAS  Google Scholar 

  3. Su, X., Chakravarti, D., & Flores, E. R. (2013). p63 steps into the limelight: Crucial roles in the suppression of tumorigenesis and metastasis. Nature Reviews Cancer, 13(2), 136–143. https://doi.org/10.1038/nrc3446

    Article  CAS  Google Scholar 

  4. Stiewe, T. (2007). The p53 family in differentiation and tumorigenesis. Nature Reviews Cancer, 7(3), 165–168. https://doi.org/10.1038/nrc2072

    Article  CAS  Google Scholar 

  5. Li, Y., & Prives, C. (2007). Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene, 26(15), 2220–2225. https://doi.org/10.1038/sj.onc.1210311

    Article  CAS  Google Scholar 

  6. Ramos, H., Raimundo, L., & Saraiva, L. (2020). p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacological Research, 162, 105245. https://doi.org/10.1016/j.phrs.2020.105245

    Article  CAS  Google Scholar 

  7. Stiewe, T., Theseling, C. C., & Pützer, B. M. (2002). Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: Implications for tumorigenesis. Journal of Biological Chemistry, 277(16), 14177–14185. https://doi.org/10.1074/jbc.M200480200

    Article  CAS  Google Scholar 

  8. Kartasheva, N. N., Contente, A., Lenz-Stöppler, C., Roth, J., & Dobbelstein, M. (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene, 21(31), 4715–4727. https://doi.org/10.1038/sj.onc.1205584

    Article  CAS  Google Scholar 

  9. Zaika, A. I., Slade, N., Erster, S. H., Sansome, C., Joseph, T. W., Pearl, M., et al. (2002). DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. Journal of Experimental Medicine, 196(6), 765–780. https://doi.org/10.1084/jem.20020179

    Article  CAS  Google Scholar 

  10. Grob, T. J., Novak, U., Maisse, C., Barcaroli, D., Lüthi, A. U., Pirnia, F., et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death and Differentiation, 8(12), 1213–1223. https://doi.org/10.1038/sj.cdd.4400962

    Article  CAS  Google Scholar 

  11. Marabese, M., Vikhanskaya, F., & Broggini, M. (2007). p73: A chiaroscuro gene in cancer. European Journal of Cancer, 43(9), 1361–1372. https://doi.org/10.1016/j.ejca.2007.01.042

    Article  CAS  Google Scholar 

  12. Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., et al. (2008). TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes and Development, 22(19), 2677–2691. https://doi.org/10.1101/gad.1695308

    Article  CAS  Google Scholar 

  13. Wilhelm, M. T., Rufini, A., Wetzel, M. K., Tsuchihara, K., Inoue, S., Tomasini, R., et al. (2010). Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes and Development, 24(6), 549–560. https://doi.org/10.1101/gad.1873910

    Article  CAS  Google Scholar 

  14. Stiewe, T., Zimmermann, S., Frilling, A., Esche, H., & Pützer, B. M. (2002). Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Research, 62(13), 3598–3602.

    CAS  Google Scholar 

  15. Steder, M., Alla, V., Meier, C., Spitschak, A., Pahnke, J., Fürst, K., et al. (2013). DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell, 24(4), 512–527. https://doi.org/10.1016/j.ccr.2013.08.023

    Article  CAS  Google Scholar 

  16. Lunghi, P., Costanzo, A., Mazzera, L., Rizzoli, V., Levrero, M., & Bonati, A. (2009). The p53 family protein p73 provides new insights into cancer chemosensitivity and targeting. Clinical Cancer Research, 15(21), 6495–6502. https://doi.org/10.1158/1078-0432.CCR-09-1229

    Article  CAS  Google Scholar 

  17. Amelio, I., Inoue, S., Markert, E. K., Levine, A. J., Knight, R. A., Mak, T. W., et al. (2015). TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci U S A, 112(1), 226–231. https://doi.org/10.1073/pnas.1410609111

    Article  CAS  Google Scholar 

  18. Stantic, M., Sakil, H. A., Zirath, H., Fang, T., Sanz, G., Fernandez-Woodbridge, A., et al. (2015). TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity. Proc Natl Acad Sci U S A, 112(1), 220–225. https://doi.org/10.1073/pnas.1421697112

    Article  CAS  Google Scholar 

  19. Dulloo, I., Phang, B. H., Othman, R., Tan, S. Y., Vijayaraghavan, A., Goh, L. K., et al. (2015). Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nature Cell Biology, 17(4), 511–523. https://doi.org/10.1038/ncb3130

    Article  CAS  Google Scholar 

  20. López-Ferreras, L., Martínez-García, N., Maeso-Alonso, L., Martín-López, M., Díez-Matilla, Á., Villoch-Fernandez, J., et al. (2021). Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific. Cancers (Basel), 13, 13. https://doi.org/10.3390/cancers13133182

    Article  CAS  Google Scholar 

  21. Gui, P., & Bivona, T. G. (2022). Evolution of metastasis: New tools and insights. Trends Cancer, 8(2), 98–109. https://doi.org/10.1016/j.trecan.2021.11.002

    Article  CAS  Google Scholar 

  22. Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6(12), 924–935. https://doi.org/10.1038/nrc2013

    Article  CAS  Google Scholar 

  23. McGranahan, N., & Swanton, C. (2017). Clonal heterogeneity and tumor evolution: Past, present, and the future. Cell, 168(4), 613–628. https://doi.org/10.1016/j.cell.2017.01.018

    Article  CAS  Google Scholar 

  24. Birkbak, N. J., & McGranahan, N. (2020). Cancer genome evolutionary trajectories in metastasis. Cancer Cell, 37(1), 8–19. https://doi.org/10.1016/j.ccell.2019.12.004

    Article  CAS  Google Scholar 

  25. Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science, 352(6282), 169–175. https://doi.org/10.1126/science.aaf2784

    Article  CAS  Google Scholar 

  26. Amirouchene-Angelozzi, N., Swanton, C., & Bardelli, A. (2017). Tumor evolution as a therapeutic target. Cancer Discov, https://doi.org/10.1158/2159-8290.Cd-17-0343

  27. Rodrigues, P., Patel, S. A., Harewood, L., Olan, I., Vojtasova, E., Syafruddin, S. E., et al. (2018). NF-κB-dependent lymphoid enhancer co-option promotes renal carcinoma metastasis. Cancer Discovery, 8(7), 850–865. https://doi.org/10.1158/2159-8290.Cd-17-1211

    Article  CAS  Google Scholar 

  28. Logotheti, S., Marquardt, S., Richter, C., Sophie Hain, R., Murr, N., Takan, I., et al. (2020). Neural networks recapitulation by cancer cells promotes disease progression: a novel role of p73 isoforms in cancer-neuronal crosstalk. Cancers, 12, 12. https://doi.org/10.3390/cancers12123789

    Article  CAS  Google Scholar 

  29. Patel, S. A., Rodrigues, P., Wesolowski, L., & Vanharanta, S. (2021). Genomic control of metastasis. British Journal of Cancer, 124(1), 3–12. https://doi.org/10.1038/s41416-020-01127-6

    Article  CAS  Google Scholar 

  30. Kerosuo, L., & Bronner-Fraser, M. (2012). What is bad in cancer is good in the embryo: Importance of EMT in neural crest development. Seminars in Cell & Developmental Biology, 23(3), 320–332. https://doi.org/10.1016/j.semcdb.2012.03.010

    Article  CAS  Google Scholar 

  31. Rousseaux, S., Debernardi, A., Jacquiau, B., Vitte, A. L., Vesin, A., Nagy-Mignotte, H., et al. (2013). Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med, 5(186), 186ra166. https://doi.org/10.1126/scitranslmed.3005723

    Article  CAS  Google Scholar 

  32. Richter, C., Marquardt, S., Li, F., Spitschak, A., Murr, N., Edelhäuser, B. A. H., et al. (2019). Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness. Journal of Experimental & Clinical Cancer Research, 38(1), 292. https://doi.org/10.1186/s13046-019-1286-9

    Article  CAS  Google Scholar 

  33. Costanzo, V., Bardelli, A., Siena, S., & Abrignani, S. (2018). Exploring the links between cancer and placenta development. Open Biol, 8, 6. https://doi.org/10.1098/rsob.180081

    Article  CAS  Google Scholar 

  34. Marquardt, S., Pavlopoulou, A., Takan, I., Dhar, P., Pützer, B. M., & Logotheti, S. (2021). A systems-based key innovation-driven approach infers co-option of jaw developmental programs during cancer progression. Front Cell Dev Biol, 9, 682619. https://doi.org/10.3389/fcell.2021.682619

    Article  Google Scholar 

  35. Yılmaz, H., Toy, H. I., Marquardt, S., Karakülah, G., Küçük, C., Kontou, P. I., et al. (2021). In silico methods for the identification of diagnostic and favorable prognostic markers in acute myeloid leukemia. International Journal of Molecular Sciences, 22, 17. https://doi.org/10.3390/ijms22179601

    Article  CAS  Google Scholar 

  36. Kerbel, R. S. (2000). Tumor angiogenesis: Past, present and the near future. Carcinogenesis, 21(3), 505–515. https://doi.org/10.1093/carcin/21.3.505

    Article  CAS  Google Scholar 

  37. Cervantes-Villagrana, R. D., Albores-García, D., Cervantes-Villagrana, A. R., & García-Acevez, S. J. (2020). Tumor-induced neurogenesis and immune evasion as targets of innovative anti-cancer therapies. Signal Transduction and Targeted Therapy, 5(1), 99. https://doi.org/10.1038/s41392-020-0205-z

    Article  CAS  Google Scholar 

  38. Mravec, B. (2022). Neurobiology of cancer: Definition, historical overview, and clinical implications. Cancer Medicine, 11(4), 903–921. https://doi.org/10.1002/cam4.4488

    Article  CAS  Google Scholar 

  39. Martik, M. L., & Bronner, M. E. (2017). Regulatory logic underlying diversification of the neural crest. Trends in Genetics, 33(10), 715–727. https://doi.org/10.1016/j.tig.2017.07.015

    Article  CAS  Google Scholar 

  40. Logotheti, S., & Pützer, B. M. (2019). STAT3 and STAT5 targeting for simultaneous management of melanoma and autoimmune diseases. Cancers (Basel), 11, 10. https://doi.org/10.3390/cancers11101448

    Article  CAS  Google Scholar 

  41. Logotheti, S., Pavlopoulou, A., Galtsidis, S., Vojtesek, B., & Zoumpourlis, V. (2013). Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer and Metastasis Reviews, 32(3–4), 511–534. https://doi.org/10.1007/s10555-013-9424-x

    Article  CAS  Google Scholar 

  42. Liu, G., Nozell, S., Xiao, H., & Chen, X. (2004). DeltaNp73beta is active in transactivation and growth suppression. Molecular and Cellular Biology, 24(2), 487–501. https://doi.org/10.1128/MCB.24.2.487-501.2004

    Article  CAS  Google Scholar 

  43. Sakil, H. A. M., Stantic, M., Wolfsberger, J., Brage, S. E., Hansson, J., & Wilhelm, M. T. (2017). ΔNp73 regulates the expression of the multidrug-resistance genes ABCB1 and ABCB5 in breast cancer and melanoma cells - a short report. Cell Oncol (Dordr).https://doi.org/10.1007/s13402-017-0340-x

  44. George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretić, L., Kong, G., et al. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524(7563), 47–53. https://doi.org/10.1038/nature14664

    Article  CAS  Google Scholar 

  45. Stiewe, T., Tuve, S., Peter, M., Tannapfel, A., Elmaagacli, A. H., & Pützer, B. M. (2004). Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clinical Cancer Research, 10(2), 626–633. https://doi.org/10.1158/1078-0432.ccr-0153-03

    Article  CAS  Google Scholar 

  46. Osterburg, C., & Dötsch, V. (2022). Structural diversity of p63 and p73 isoforms. Cell Death and Differentiation. https://doi.org/10.1038/s41418-022-00975-4

    Article  Google Scholar 

  47. Logotheti, S., Richter, C., Murr, N., Spitschak, A., Marquardt, S., & Putzer, B. M. (2021). Mechanisms of functional pleiotropy of p73 in cancer and beyond. Front Cell Dev Biol, 9, 737735. https://doi.org/10.3389/fcell.2021.737735

    Article  Google Scholar 

  48. Koeppel, M., van Heeringen, S. J., Kramer, D., Smeenk, L., Janssen-Megens, E., Hartmann, M., et al. (2011). Crosstalk between c-Jun and TAp73alpha/beta contributes to the apoptosis-survival balance. Nucleic Acids Research, 39(14), 6069–6085. https://doi.org/10.1093/nar/gkr028

    Article  CAS  Google Scholar 

  49. Oswald, C., & Stiewe, T. (2008). In good times and bad: P73 in cancer. Cell Cycle, 7(12), 1726–1731. https://doi.org/10.4161/cc.7.12.6148

    Article  CAS  Google Scholar 

  50. Muppani, N., Nyman, U., & Joseph, B. (2011). TAp73alpha protects small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget, 2(12), 1145–1154. https://doi.org/10.18632/oncotarget.391

    Article  Google Scholar 

  51. Cheng, C., Feng, S., Jiao, J., Huang, W., Huang, J., Wang, L., et al. (2018). DLC2 inhibits development of glioma through regulating the expression ratio of TAp73α/TAp73β. American Journal of Cancer Research, 8(7), 1200–1213.

    CAS  Google Scholar 

  52. Jiang, P., Du, W., & Yang, X. (2013). A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle, 12(24), 3720–3726. https://doi.org/10.4161/cc.27267

    Article  CAS  Google Scholar 

  53. Velletri, T., Romeo, F., Tucci, P., Peschiaroli, A., Annicchiarico-Petruzzelli, M., Niklison-Chirou, M. V., et al. (2013). GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle, 12(22), 3564–3573. https://doi.org/10.4161/cc.26771

    Article  CAS  Google Scholar 

  54. Amelio, I., Markert, E. K., Rufini, A., Antonov, A. V., Sayan, B. S., Tucci, P., et al. (2014). p73 regulates serine biosynthesis in cancer. Oncogene, 33(42), 5039–5046. https://doi.org/10.1038/onc.2013.456

    Article  CAS  Google Scholar 

  55. Subramanian, D., Bunjobpol, W., & Sabapathy, K. (2015). Interplay between TAp73 protein and selected activator protein-1 (AP-1) family members promotes AP-1 target gene activation and cellular Growth. Journal of Biological Chemistry, 290(30), 18636–18649. https://doi.org/10.1074/jbc.M115.636548

    Article  CAS  Google Scholar 

  56. Nemajerova, A., & Moll, U. M. (2019). Tissue-specific roles of p73 in development and homeostasis. Journal of Cell Science, 132, 19. https://doi.org/10.1242/jcs.233338

    Article  CAS  Google Scholar 

  57. Fernandez-Alonso, R., Martin-Lopez, M., Gonzalez-Cano, L., Garcia, S., Castrillo, F., Diez-Prieto, I., et al. (2015). p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death and Differentiation, 22(8), 1287–1299. https://doi.org/10.1038/cdd.2014.214

    Article  CAS  Google Scholar 

  58. Sabapathy, K. (2015). p73: A positive or negative regulator of angiogenesis, or both? Molecular and Cellular Biology, 36(6), 848–854. https://doi.org/10.1128/MCB.00929-15

    Article  CAS  Google Scholar 

  59. Dulloo, I., Hooi, P. B., & Sabapathy, K. (2015). Hypoxia-induced DNp73 stabilization regulates Vegf-A expression and tumor angiogenesis similar to TAp73. Cell Cycle, 14(22), 3533–3539. https://doi.org/10.1080/15384101.2015.1078038

    Article  CAS  Google Scholar 

  60. He, Z., Agostini, M., Liu, H., Melino, G., & Simon, H. U. (2015). p73 regulates basal and starvation-induced liver metabolism in vivo. Oncotarget, 6(32), 33178–33190. https://doi.org/10.18632/oncotarget.5090

    Article  Google Scholar 

  61. Amelio, I., Antonov, A. A., Catani, M. V., Massoud, R., Bernassola, F., Knight, R. A., et al. (2014). TAp73 promotes anabolism. Oncotarget, 5(24), 12820–12934. https://doi.org/10.18632/oncotarget.2667

    Article  Google Scholar 

  62. Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., et al. (2000). p73-Deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature, 404(6773), 99–103. https://doi.org/10.1038/35003607

    Article  CAS  Google Scholar 

  63. Tomasini, R., Secq, V., Pouyet, L., Thakur, A. K., Wilhelm, M., Nigri, J., et al. (2013). TAp73 is required for macrophage-mediated innate immunity and the resolution of inflammatory responses. Cell Death and Differentiation, 20(2), 293–301. https://doi.org/10.1038/cdd.2012.123

    Article  CAS  Google Scholar 

  64. Koshiba, S., Ichimiya, S., Nagashima, T., Tonooka, A., Kubo, T., Kikuchi, T., et al. (2008). Tonsillar crypt epithelium of palmoplantar pustulosis secretes interleukin-6 to support B-cell development via p63/p73 transcription factors. The Journal of Pathology, 214(1), 75–84. https://doi.org/10.1002/path.2266

    Article  CAS  Google Scholar 

  65. Kumagai, A., Kubo, T., Kawata, K., Kamekura, R., Yamashita, K., Jitsukawa, S., et al. (2017). Keratinocytes in atopic dermatitis express abundant ΔNp73 regulating thymic stromal lymphopoietin production via NF-κB. Journal of Dermatological Science, 88(2), 175–183. https://doi.org/10.1016/j.jdermsci.2017.06.017

    Article  CAS  Google Scholar 

  66. Vikhreva, P., Petrova, V., Gokbulut, T., Pestlikis, I., Mancini, M., Di Daniele, N., et al. (2017). TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer? Biochemical and Biophysical Research Communications, 482(3), 498–505. https://doi.org/10.1016/j.bbrc.2016.10.085

    Article  CAS  Google Scholar 

  67. Bent, R., Moll, L., Grabbe, S., & Bros, M. (2018). Interleukin-1 Beta-A friend or foe in malignancies? International Journal of Molecular Sciences, 19, 8. https://doi.org/10.3390/ijms19082155

    Article  CAS  Google Scholar 

  68. Wolfsberger, J., Sakil, H. A. M., Zhou, L., van Bree, N., Baldisseri, E., de Souza Ferreira, S., et al. (2021). TAp73 represses NF-κB-mediated recruitment of tumor-associated macrophages in breast cancer. Proceedings of the National Academy of Sciences, 118, 10. https://doi.org/10.1073/pnas.2017089118

    Article  CAS  Google Scholar 

  69. Rozenberg, J. M., Zvereva, S., Dalina, A., Blatov, I., Zubarev, I., Luppov, D., et al. (2021). Dual role of p73 in cancer microenvironment and dna damage response. Cells, 10, 12. https://doi.org/10.3390/cells10123516

    Article  CAS  Google Scholar 

  70. Ren, M., Kazemian, M., Zheng, M., He, J., Li, P., Oh, J., et al. (2020). Transcription factor p73 regulates Th1 differentiation. Nature Communications, 11(1), 1475. https://doi.org/10.1038/s41467-020-15172-5

    Article  CAS  Google Scholar 

  71. Niklison-Chirou, M. V., Agostini, M., Amelio, I., & Melino, G. (2020). Regulation of adult neurogenesis in mammalian brain. International Journal of Molecular Sciences, 21, 14. https://doi.org/10.3390/ijms21144869

    Article  CAS  Google Scholar 

  72. Griffin, N., Faulkner, S., Jobling, P., & Hondermarck, H. (2018). Targeting neurotrophin signaling in cancer: The renaissance. Pharmacological Research, 135, 12–17. https://doi.org/10.1016/j.phrs.2018.07.019

    Article  CAS  Google Scholar 

  73. Monje, M., Borniger, J. C., D’Silva, N. J., Deneen, B., Dirks, P. B., Fattahi, F., et al. (2020). Roadmap for the emerging field of cancer neuroscience. Cell, 181(2), 219–222. https://doi.org/10.1016/j.cell.2020.03.034

    Article  CAS  Google Scholar 

  74. Friedmann-Morvinski, D., & Verma, I. M. (2014). Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Reports, 15(3), 244–253. https://doi.org/10.1002/embr.201338254

    Article  CAS  Google Scholar 

  75. Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124–1134. https://doi.org/10.1038/nm.4409

    Article  CAS  Google Scholar 

  76. Talos, F., Abraham, A., Vaseva, A. V., Holembowski, L., Tsirka, S. E., Scheel, A., et al. (2010). p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death and Differentiation, 17(12), 1816–1829. https://doi.org/10.1038/cdd.2010.131

    Article  CAS  Google Scholar 

  77. Fujitani, M., Cancino, G. I., Dugani, C. B., Weaver, I. C., Gauthier-Fisher, A., Paquin, A., et al. (2010). TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors. Current Biology, 20(22), 2058–2065. https://doi.org/10.1016/j.cub.2010.10.029

    Article  CAS  Google Scholar 

  78. Gonzalez-Cano, L., Herreros-Villanueva, M., Fernandez-Alonso, R., Ayuso-Sacido, A., Meyer, G., Garcia-Verdugo, J. M., et al. (2010). p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death & Disease, 1, e109. https://doi.org/10.1038/cddis.2010.87

    Article  CAS  Google Scholar 

  79. Agostini, M., Tucci, P., Chen, H., Knight, R. A., Bano, D., Nicotera, P., et al. (2010). p73 regulates maintenance of neural stem cell. Biochemical and Biophysical Research Communications, 403(1), 13–17. https://doi.org/10.1016/j.bbrc.2010.10.087

    Article  CAS  Google Scholar 

  80. Killick, R., Niklison-Chirou, M., Tomasini, R., Bano, D., Rufini, A., Grespi, F., et al. (2011). p73: A multifunctional protein in neurobiology. Molecular Neurobiology, 43(2), 139–146. https://doi.org/10.1007/s12035-011-8172-6

    Article  CAS  Google Scholar 

  81. Meier, C., Hardtstock, P., Joost, S., Alla, V., & Pützer, B. M. (2016). p73 and IGF1R regulate emergence of aggressive cancer stem-like features via miR-885-5p control. Cancer Research, 76(2), 197–205. https://doi.org/10.1158/0008-5472.CAN-15-1228

    Article  CAS  Google Scholar 

  82. Galtsidis, S., Logotheti, S., Pavlopoulou, A., Zampetidis, C. P., Papachristopoulou, G., Scorilas, A., et al. (2017). Unravelling a p73-regulated network: The role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Letters, 388, 96–106. https://doi.org/10.1016/j.canlet.2016.11.036

    Article  CAS  Google Scholar 

  83. Daskalos, A., Logotheti, S., Markopoulou, S., Xinarianos, G., Gosney, J. R., Kastania, A. N., et al. (2011). Global DNA hypomethylation-induced ΔNp73 transcriptional activation in non-small cell lung cancer. Cancer Letters, 300(1), 79–86. https://doi.org/10.1016/j.canlet.2010.09.009

    Article  CAS  Google Scholar 

  84. Logotheti, S., Michalopoulos, I., Sideridou, M., Daskalos, A., Kossida, S., Spandidos, D. A., et al. (2010). Sp1 binds to the external promoter of the p73 gene and induces the expression of TAp73gamma in lung cancer. FEBS Journal, 277(14), 3014–3027. https://doi.org/10.1111/j.1742-4658.2010.07710.x

    Article  CAS  Google Scholar 

  85. Fürst, K., Steder, M., Logotheti, S., Angerilli, A., Spitschak, A., Marquardt, S., et al. (2019). DNp73-induced degradation of tyrosinase links depigmentation with EMT-driven melanoma progression. Cancer Letters, 442, 299–309. https://doi.org/10.1016/j.canlet.2018.11.009

    Article  CAS  Google Scholar 

  86. Sayan, A. E., Sayan, B. S., Findikli, N., & Ozturk, M. (2001). Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells. Oncogene, 20(37), 5111–5117. https://doi.org/10.1038/sj.onc.1204669

    Article  CAS  Google Scholar 

  87. Woodstock, D. L., Sammons, M. A., & Fischer, M. (2021). p63 and p53: Collaborative partners or dueling rivals? Front Cell Dev Biol, 9, 701986. https://doi.org/10.3389/fcell.2021.701986

    Article  Google Scholar 

  88. Coutandin, D., Löhr, F., Niesen, F. H., Ikeya, T., Weber, T. A., Schäfer, B., et al. (2009). Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death and Differentiation, 16(12), 1582–1589. https://doi.org/10.1038/cdd.2009.139

    Article  CAS  Google Scholar 

  89. Joerger, A. C., Rajagopalan, S., Natan, E., Veprintsev, D. B., Robinson, C. V., & Fersht, A. R. (2009). Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. Proc Natl Acad Sci U S A, 106(42), 17705–17710. https://doi.org/10.1073/pnas.0905867106

    Article  Google Scholar 

  90. Gebel, J., Luh, L. M., Coutandin, D., Osterburg, C., Löhr, F., Schäfer, B., et al. (2016). Mechanism of TAp73 inhibition by ΔNp63 and structural basis of p63/p73 hetero-tetramerization. Cell Death and Differentiation, 23(12), 1930–1940. https://doi.org/10.1038/cdd.2016.83

    Article  CAS  Google Scholar 

  91. Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P., & Ellisen, L. W. (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell, 9(1), 45–56. https://doi.org/10.1016/j.ccr.2005.12.013

    Article  CAS  Google Scholar 

  92. Marin, M. C., Jost, C. A., Brooks, L. A., Irwin, M. S., O’Nions, J., Tidy, J. A., et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature Genetics, 25(1), 47–54. https://doi.org/10.1038/75586

    Article  CAS  Google Scholar 

  93. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T., & Prives, C. (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Molecular and Cellular Biology, 21(5), 1874–1887. https://doi.org/10.1128/MCB.21.5.1874-1887.2001

    Article  CAS  Google Scholar 

  94. Stindt, M. H., Muller, P. A., Ludwig, R. L., Kehrloesser, S., Dötsch, V., & Vousden, K. H. (2015). Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene, 34(33), 4300–4310. https://doi.org/10.1038/onc.2014.359

    Article  CAS  Google Scholar 

  95. Kehrloesser, S., Osterburg, C., Tuppi, M., Schäfer, B., Vousden, K. H., & Dötsch, V. (2016). Intrinsic aggregation propensity of the p63 and p73 TI domains correlates with p53R175H interaction and suggests further significance of aggregation events in the p53 family. Cell Death and Differentiation, 23(12), 1952–1960. https://doi.org/10.1038/cdd.2016.75

    Article  CAS  Google Scholar 

  96. Xu, J., Reumers, J., Couceiro, J. R., De Smet, F., Gallardo, R., Rudyak, S., et al. (2011). Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 7(5), 285–295. https://doi.org/10.1038/nchembio.546

    Article  CAS  Google Scholar 

  97. Petronilho, E. C., Pedrote, M. M., Marques, M. A., Passos, Y. M., Mota, M. F., Jakobus, B., et al. (2021). Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chemical Science, 12(21), 7334–7349. https://doi.org/10.1039/d1sc01739j

    Article  CAS  Google Scholar 

  98. Wang, G., & Fersht, A. R. (2017). Multisite aggregation of p53 and implications for drug rescue. Proc Natl Acad Sci U S A, 114(13), E2634–E2643. https://doi.org/10.1073/pnas.1700308114

    Article  CAS  Google Scholar 

  99. Anbarasan, T., & Bourdon, J. C. (2019). The emerging landscape of p53 isoforms in physiology, cancer and degenerative diseases. International Journal of Molecular Sciences, 20, 24. https://doi.org/10.3390/ijms20246257

    Article  CAS  Google Scholar 

  100. Zorić, A., Horvat, A., & Slade, N. (2013). Differential effects of diverse p53 isoforms on TAp73 transcriptional activity and apoptosis. Carcinogenesis, 34(3), 522–529. https://doi.org/10.1093/carcin/bgs370

    Article  CAS  Google Scholar 

  101. Zhang, J., Sun, W., Kong, X., Zhang, Y., Yang, H. J., Ren, C., et al. (2019). Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proceedings of the National Academy of Sciences of the United States of America, 116(48), 24259–24267. https://doi.org/10.1073/pnas.1913919116

    Article  CAS  Google Scholar 

  102. Slade, N., Zaika, A. I., Erster, S., & Moll, U. M. (2004). DeltaNp73 stabilises TAp73 proteins but compromises their function due to inhibitory hetero-oligomer formation. Cell Death and Differentiation, 11(3), 357–360. https://doi.org/10.1038/sj.cdd.4401335

    Article  CAS  Google Scholar 

  103. Ferraiuolo, M., Di Agostino, S., Blandino, G., & Strano, S. (2016). Oncogenic intra-p53 family member interactions in human cancers. Frontiers in Oncology, 6, 77. https://doi.org/10.3389/fonc.2016.00077

    Article  Google Scholar 

  104. Nemajerova, A., Amelio, I., Gebel, J., Dötsch, V., Melino, G., & Moll, U. M. (2018). Non-oncogenic roles of TAp73: From multiciliogenesis to metabolism. Cell Death and Differentiation, 25(1), 144–153. https://doi.org/10.1038/cdd.2017.178

    Article  CAS  Google Scholar 

  105. Tang, Q., Su, Z., Gu, W., & Rustgi, A. K. (2020). Mutant p53 on the path to metastasis. Trends Cancer, 6(1), 62–73. https://doi.org/10.1016/j.trecan.2019.11.004

    Article  Google Scholar 

  106. Carroll, D. K., Carroll, J. S., Leong, C. O., Cheng, F., Brown, M., Mills, A. A., et al. (2006). p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 8(6), 551–561. https://doi.org/10.1038/ncb1420

    Article  CAS  Google Scholar 

  107. Barbieri, C. E., Tang, L. J., Brown, K. A., & Pietenpol, J. A. (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Research, 66(15), 7589–7597. https://doi.org/10.1158/0008-5472.CAN-06-2020

    Article  CAS  Google Scholar 

  108. Olive, K. P., Tuveson, D. A., Ruhe, Z. C., Yin, B., Willis, N. A., Bronson, R. T., et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 119(6), 847–860. https://doi.org/10.1016/j.cell.2004.11.004

    Article  CAS  Google Scholar 

  109. Lang, G. A., Iwakuma, T., Suh, Y. A., Liu, G., Rao, V. A., Parant, J. M., et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell, 119(6), 861–872. https://doi.org/10.1016/j.cell.2004.11.006

    Article  CAS  Google Scholar 

  110. Aubrey, B. J., Janic, A., Chen, Y., Chang, C., Lieschke, E. C., Diepstraten, S. T., et al. (2018). Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Genes and Development, 32(21–22), 1420–1429. https://doi.org/10.1101/gad.314286.118

    Article  CAS  Google Scholar 

  111. Amelio, I., Panatta, E., Niklison-Chirou, M. V., Steinert, J. R., Agostini, M., Morone, N., et al. (2020). The C terminus of p73 is essential for hippocampal development. Proc Natl Acad Sci U S A, 117(27), 15694–15701. https://doi.org/10.1073/pnas.2000917117

    Article  CAS  Google Scholar 

  112. Laubach, K. N., Yan, W., Kong, X., Sun, W., Chen, M., Zhang, J., et al. (2022). p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proc Natl Acad Sci U S A, 119(22), e2123202119. https://doi.org/10.1073/pnas.2123202119

    Article  CAS  Google Scholar 

  113. Denny, S. K., Yang, D., Chuang, C. H., Brady, J. J., Lim, J. S., Grüner, B. M., et al. (2016). Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell, 166(2), 328–342. https://doi.org/10.1016/j.cell.2016.05.052

    Article  CAS  Google Scholar 

  114. Baccin, C., Al-Sabah, J., Velten, L., Helbling, P. M., Grünschläger, F., Hernández-Malmierca, P., et al. (2020). Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 22(1), 38–48. https://doi.org/10.1038/s41556-019-0439-6

    Article  CAS  Google Scholar 

  115. Das, S., & Somasundaram, K. (2006). Therapeutic potential of an adenovirus expressing p73 beta, a p53 homologue, against human papilloma virus positive cervical cancer in vitro and in vivo. Cancer Biology & Therapy, 5(2), 210–217. https://doi.org/10.4161/cbt.5.2.2402

    Article  CAS  Google Scholar 

  116. Andrews, M. C., & Wargo, J. A. (2017). Cancer evolution during immunotherapy. Cell, 171(4), 740–742. https://doi.org/10.1016/j.cell.2017.10.027

    Article  CAS  Google Scholar 

  117. Zehir, A., Benayed, R., Shah, R. H., Syed, A., Middha, S., Kim, H. R., et al. (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 23(6), 703–713. https://doi.org/10.1038/nm.4333

    Article  CAS  Google Scholar 

  118. Ghatak, D., Das Ghosh, D., & Roychoudhury, S. (2020). Cancer stemness: P53 at the wheel. Frontiers in Oncology, 10, 604124. https://doi.org/10.3389/fonc.2020.604124

    Article  Google Scholar 

  119. Liu, J., Zhang, C., Hu, W., & Feng, Z. (2015). Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Letters, 356(2 Pt A), 197–203. https://doi.org/10.1016/j.canlet.2013.12.025

    Article  CAS  Google Scholar 

  120. Ghosh, M., Saha, S., Bettke, J., Nagar, R., Parrales, A., Iwakuma, T., et al. (2021). Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell, 39(4), 494-508.e495. https://doi.org/10.1016/j.ccell.2021.01.003

    Article  CAS  Google Scholar 

  121. Cooks, T., Pateras, I. S., Tarcic, O., Solomon, H., Schetter, A. J., Wilder, S., et al. (2013). Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell, 23(5), 634–646. https://doi.org/10.1016/j.ccr.2013.03.022

    Article  CAS  Google Scholar 

  122. Alvarado-Ortiz, E., de la Cruz-López, K. G., Becerril-Rico, J., Sarabia-Sánchez, M. A., Ortiz-Sánchez, E., & García-Carrancá, A. (2020). Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol, 8, 607670. https://doi.org/10.3389/fcell.2020.607670

    Article  Google Scholar 

  123. Moses, M. A., George, A. L., Sakakibara, N., Mahmood, K., Ponnamperuma, R. M., King, K. E., et al. (2019). Molecular mechanisms of p63-mediated squamous cancer pathogenesis. International Journal of Molecular Sciences, 20, 14. https://doi.org/10.3390/ijms20143590

    Article  CAS  Google Scholar 

  124. Bid, H. K., Roberts, R. D., Cam, M., Audino, A., Kurmasheva, R. T., Lin, J., et al. (2014). ΔNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Research, 74(1), 320–329. https://doi.org/10.1158/0008-5472.CAN-13-0894

    Article  CAS  Google Scholar 

  125. Gatti, V., Fierro, C., Annicchiarico-Petruzzelli, M., Melino, G., & Peschiaroli, A. (2019). ΔNp63 in squamous cell carcinoma: Defining the oncogenic routes affecting epigenetic landscape and tumour microenvironment. Molecular Oncology, 13(5), 981–1001. https://doi.org/10.1002/1878-0261.12473

    Article  Google Scholar 

Download references

Acknowledgements

All figures presented in this work were created using BioRender (biorender.com). AGG acknowledges Deutscher Akademischer Austauschdienst “Hochschulpartnerschaften mit Griechenland” (No. 57513880) and “DNA Damage and Repair and Their Relevance to Carcinogenesis” (No. 57339330).

Funding

This work was supported by Deutsche Forschungsgemeinschaft, TRR81/3 109546710 Project A10 to TS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Logotheti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logotheti, S., Pavlopoulou, A., Marquardt, S. et al. p73 isoforms meet evolution of metastasis. Cancer Metastasis Rev 41, 853–869 (2022). https://doi.org/10.1007/s10555-022-10057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10057-z

Keywords

Navigation