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Abstract
Current cancer therapies aim at eradicating cancer cells from the body. However, killing cells generates cell “debris” which 
can promote tumor progression. Thus, therapy can be a double-edged sword. Specifically, injury and debris generated by 
cancer therapies, including chemotherapy, radiation, and surgery, may offset their benefit by promoting the secretion of pro-
tumorigenic factors (e.g., eicosanoid-driven cytokines) that stimulate regrowth and metastasis of surviving cells. The debris 
produced by cytotoxic cancer therapy can also contribute to a tumor microenvironment that promotes tumor progression 
and recurrence. Although not well understood, several molecular mechanisms have been implicated in debris-stimulated 
tumor growth that we review here, such as the involvement of extracellular vesicles, exosomal miR-194-5p, Bax, Bak, 
Smac, HMGB1, cytokines, and caspase-3. We discuss the cases of pancreatic and other cancer types where debris promotes 
postoperative tumor recurrence and metastasis, thus offering a new opportunity to prevent cancer progression intrinsically 
linked to treatment by stimulating resolution of tumor-promoting debris.

Keywords  Debris · Tumor progression · Surgery · Radiation · Chemotherapy · Inflammation · Resolution of inflammation · 
Metastasis · Recurrence · Caspase-3 · Extracellular vesicles · Exosomal miR-194-5p · Bax · Bak · Smac · HMGB1 · Platelet 
activating factor · Specialized pro-resolving mediators

1  Introduction

The stimulation of tumor growth by dead cell debris is of 
high clinical relevance, independent of modality. Whether 
surgery, chemotherapy, radiation, anti-angiogenic, immu-
notherapy, or targeted therapy, interventions that seek the 
reduction of tumor burden involve tissue injury and cell 
death in the tumor bed. From numerous pre-clinical studies, 
the dead cell debris production has emerged as the material 
source of this paradoxical stimulation of tumor growth asso-
ciated with treatment, which underlies the inherent limitation 
of cancer treatment. A variety of animal tumor models have 
demonstrated the growth-stimulating activity of injection of 

tumor cell debris along with the tumor graft [1–3]. Estab-
lished living cell tumors in mice can also produce cell debris 
in situ by systemic administration of chemotherapy, support-
ing the biological relevance of the debris-stimulated tumor 
growth [1]. These studies on debris generated by chemo-
therapy are consistent with previous observations of debris 
produced by radiation therapy by Laszlo Révész in 1956 
who attributed the stimulation of tumor growth to diffus-
ible factors that conditioned the tumor microenvironment 
(Révész effect) [4–6]. Thus, debris-stimulated tumor growth 
may present a novel target for preventing tumor growth and 
metastasis following treatment.

2 � What is “debris”?

There are several mechanisms of cell death including apop-
totic cell death, “autophagic cell” death, and necrotic cell 
death [1, 7–11]. As one of the hallmarks of cancer is impaired 
deregulation of apoptosis, therapies target promoting cell 
death [12, 13]. Cellular “debris” is produced from this ther-
apy strategy. “Debris” is the resulting dead cell fragments 
that have yet to be cleared by the immune system [1]. Cancer 
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therapies, including radiation, chemotherapy, and surgery, 
trigger the release of soluble factors from dying tumor cells, 
which recruit immune cells to engulf the debris [2, 7, 8]. 
However, these therapies can be a double-edged sword as 
dying cells can also secrete pro-tumorigenic eicosanoids, 
cytokines, and other mediators between the dying tumor cells 
and the surviving tumor cells [1–3, 7, 12, 14–17]. The goal in 
cancer therapy over the past century has been to induce cell 
death in order to halt and regress tumor growth. However, the 
induction of cell death (production of “debris”) can also pos-
sess a “dark side” with oncogenic properties that can stimu-
late tumorigenesis [9, 11, 18]. For example, apoptotic cell 
death can exhibit oncogenic potential by stimulating immune 
and inflammatory responses as well as triggering tissue repair 
and regeneration leading to an “onco-regenerative niche” 
[10]. The rapid tumor growth of cancer can lead to apopto-
sis via hypoxia, and the continuous production of apoptotic 
debris promotes tumor growth via inflammation [1, 2, 17]. 
Therefore, even natural cell death in the tumor microenviron-
ment can promote tumor repopulation as tumorigenesis can 
be accelerated with treatment-induced cell death [1, 15, 19]. 
After the generation of debris by cancer therapies, tumors can 
initiate a process of accelerated repopulation leading to tumor 
recurrence [19–21]. Elevated cleaved caspase-3, a pro-apop-
totic effector molecule, is associated with shortened survival 
in several cancer types including gastric, ovarian, cervical, 
and colorectal cancers [11, 20]. Importantly, high levels of 
spontaneous apoptotic cell death (“tumor cell debris”) cor-
relate with poor patient prognosis and/or survival in many 
cancer types including breast, head and neck (e.g., squamous 
cell carcinoma of the tongue and laryngeal), bladder, synovial 
sarcoma, liver, colorectal, ovarian, prostate, non-Hodgkin’s 
lymphoma, and esophageal (as reviewed in [22]) [18, 23–34]. 
Elevated levels of tumor cell debris can lead to an aggres-
sive pro-tumorigenic phenotype in pre-clinical models and 
in humans [1–3, 17, 25, 26, 32–35]. Thus, every attempt 
to kill cancer cells and cause tumor cell death is a double-
edged sword as the resulting unresolved debris stimulates the 
growth of surviving tumor cells [1–3, 9, 11, 14, 15, 18, 21, 
36–39]. It is crucial to understand the mechanisms of debris-
stimulated cancer progression in order to enhance current 
cancer therapies to stimulate the clearance and resolution of 
tumor cell debris [21, 40].

3 � Radiation‑stimulated cancer

Over the past century, cancer therapy has focused on killing 
cancer cells, from broad cytotoxic therapy to the inhibition 
of specific molecular pathways, in order to reduce tumor 
burden as typified by chemotherapy and radiation. However, 
cancer therapy may inherently be a double-edged sword as 
radiation-induced apoptotic tumor cells can promote tumor 

growth (the Révész phenomenon) [4, 15, 41–44]. Radia-
tion induces DNA damage that relays a stress signal in cells 
which activates the mitochondrial pathway of apoptosis [10]. 
Stimulating cell apoptosis is a well-known mechanism for 
killing tumor cells, yet dying tumor cells can usurp the apop-
totic process to secrete pro-tumorigenesis signals to acceler-
ate repopulation of the radiation-treated tumors [19, 20].

The Révész phenomenon has been corroborated in several 
follow-up studies of radiation-induced cell death [15, 41, 42, 
45–47]. Thus, dead and dying tumor cells (“debris”) contrib-
ute to an underappreciated component of the tumor micro-
environment that may promote tumor progression and tumor 
dormancy escape [1–3, 9, 11, 14, 17, 36, 48]. Radiation is 
a therapy offered to patients with the treatment schedule 
consisting of daily fractions that are divided off to give time 
for normal tissues that have been affected by the radiation to 
recover [7]. It has previously been assumed that most of the 
dead cells created by radiation would be engulfed through 
phagocytosis and efferocytosis; thus, tumor recurrence 
would only proliferate slowly by the minimal tumor cells left 
behind from the radiation [5]. During the intervals between 
radiation treatments, surviving tumor cells are stimulated by 
the apoptotic debris to repopulate at an accelerating rate [7, 
49] (Fig. 1a). High expression of pro-apoptotic signals, such 
as caspase-3, correlates with tumor reoccurrence in patients 
with postoperative radiotherapy [50]. Unfortunately, radia-
tion therapy may not always be a complete treatment option 
for cancer patients. Further studies are urgently needed to 
combine radiation with “pro-resolving” therapies which 
stimulate the resolution of debris [21].

4 � Chemotherapy‑stimulated cancer

As apoptosis is the body’s main mechanism of cell death, 
most chemotherapies act to induce apoptosis of tumor cells 
[12]. After chemotherapy or targeted therapy, the dying 
tumor cells (“debris”) should then be engulfed by immune 
cells, such as macrophages, neutrophils, and dendritic cells. 
However, when tumor cell debris generated by chemother-
apy and a subthreshold inoculum of living tumor cells that 
would not otherwise proliferate into a tumor are co-injected 
into an animal model, there is potent stimulation of tumor 
growth [1–3]. Chemotherapy has the potential to directly 
promote tumor repopulation and/or metastasis through the 
production of tumor cell debris-stimulated eicosanoids and 
cytokines [1, 2, 14] (Fig. 1b). Chemotherapy-generated 
debris promotes tumorigenesis by stimulating the release of 
a cytokine storm of pro-inflammatory cytokines such as IL-6 
and TNF-α by macrophages [1, 2, 14] (Fig. 1b). This is simi-
lar to the cell-death stimulated eicosanoid-driven cytokine 
storm in infection such as COVID-19 [51, 52]. Discovering 
a way to overcome this paradoxical dilemma or Pandora’s 
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box is crucial in order to prevent tumor reoccurrence after 
cancer therapy.

Despite the effectiveness of chemotherapy as a frontline 
cancer therapy, accumulating compelling evidence from 
animal models suggests that chemotherapy may stimulate 
tumor growth and metastasis [1, 43, 53–70]. However, the 
mechanisms for chemotherapy-induced tumor metastasis 
remain poorly understood. In the subthreshold inoculum 
model, instead of suppressing tumor growth, chemotherapy 
promoted tumor growth in small or dormant tumors via 
tumor-promoting debris [1, 3]. Similarly, chemotherapy-
generated tumor cell “debris” (apoptotic and necrotic cells 
and cell fragments) promotes cancer progression and metas-
tasis via stimulating an eicosanoid-driven cytokine storm of 
pro-inflammatory and pro-angiogenic mediators [1, 2, 14, 
38, 39, 57, 76], polarizing tumor-associated macrophages 

(TAMs) as well as inducing immunosuppression and limit-
ing anti-tumor immunity [24, 77, 78]. Thus, new approaches 
to stimulate the clearance of tumor cell debris are urgently 
needed [1, 21, 40, 78–80].

5 � Surgery‑stimulated cancer

Surgery is usually a first-line therapy to eradicate the bulk 
mass of the tumor. However, similar to chemotherapy and 
radiation, surgery can be both beneficial and harmful to can-
cer patients. Surgery, including biopsies, can trigger tumor 
dormancy escape via multiple mechanisms including impair-
ing tumor-specific immunity, stimulating inflammation, dis-
rupting the resolution of inflammation, and enhancing tumor 
angiogenesis [1, 2, 4, 74, 81–93]. Additionally, through the 

Fig. 1   The general mechanisms for (a) radiation-stimulated can-
cer, (b) chemotherapy-stimulated cancer, and (c) surgery-stimulated 
cancer. (a) After stimulating the tumor cells with radiation ther-
apy, debris is created from the dead cells; however, when there are 
escaped living tumor cells, they are stimulated by the secreted pro-
inflammatory signals from the debris to increase tumor proliferation, 
growth, and regeneration. (b) Chemotherapy generates debris from 

killing the tumor cells, and the debris stimulates the release of pro-
tumorigenic cytokines and signals that leads to tumor reoccurrence. 
(c) Surgery induces systemic inflammation leading to impairment of 
the resolution of inflammation, increased tumor angiogenesis, and 
promotion of tumor dormancy escape, which stimulates tumor growth 
and metastasis
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systemic and local inflammation as well as immunosuppres-
sion induced by surgery, metastasis can be stimulated [81, 
83], which can promote proliferation and growth of dormant 
cancer cells at distant anatomical sites [81, 83] (Fig. 1c). 
Due to a bimodal pattern of tumor recurrence found in early-
stage breast and lung cancers, surgery may induce tumor 
dormancy escape in micrometastatic lesions thus promot-
ing metastasis [81, 94, 95]. Even healthy individuals exhibit 
microscopic dormant cancer cells that can be activated to 
proliferate into tumors from noncancer-related surgeries 
and anesthesia [81, 96]. Tumor recurrence and metastasis 
are common causes of death among various cancer types, 
including pancreatic, breast, liver, colon, and ovarian cancer 
[2, 3]. One-third of patients diagnosed with localized breast 
cancer exhibit metastatic spread to other locations since their 
initial diagnosis [83, 97, 98]. Breast cancer patients that have 
their primary tumor removed surgically have a higher risk 
for tumor relapse 12 to 18 months post-surgery [83, 90]. 
The link between surgery and the consequent wound-healing 
response can promote tumor cell proliferation after surgery, 
specifically the inflammation associated with wound repair 
[83, 99, 100]. Surgery is the desired and necessary treat-
ment option for many cancer types, so it is important to 
enhance the beneficial effects of surgery via pro-resolution 
(“debris-clearing”) lipid mediators to decrease the risk of 
distant metastasis and tumor recurrence [81].

6 � Mechanisms of debris‑stimulated tumor 
growth

6.1 � Extracellular vesicles

Apoptotic cells communicate with neighboring cells through 
several important mechanisms including direct contact, 
secretion of bioactive molecules into the extracellular 
matrix, and production of membrane-bound sub-cellular 
vesicles [10]. Extracellular vesicles (EVs) are a type of 
membrane-bound sub-cellular vesicle generated by apoptotic 
cells that vary in size, role, composition, and cargo [101]. 
EVs can transmit bioactive small molecules, proteins, and 
nucleic acids [101]. Radiation therapy, chemotherapy, and 
other cytotoxic therapies enhance the secretion of EVs from 
dying tumor cells [102]. Apoptotic derived extracellular ves-
icles (Apo-EVs) can secrete signals to initiate cell-to-cell 
communication, which aid in signaling surviving tumor cells 
to undergo tissue repair and accelerated regeneration [101]. 
The apoptotic tumor cell-derived signals trigger the mecha-
nistic pathways for tumor growth, metastasis, and post-ther-
apeutic relapse [101]. For example, in murine melanoma, 
EVs promote tumorigenesis through production of growth 
factors, suppression of anti-tumor immunity, and stimulation 
of angiogenesis [101, 103]. Another potential mechanism of 

the pro-tumorigenic activity of EVs is to transfer nutrients 
such as amino acids, lipids, citrate, and pyruvate to tumor 
cells to allow growth in a nutrient-deficient environment 
[101, 104]. In response to stressful conditions, Apo-EVs can 
also transfer organelles such as mitochondria to other cells 
[101]. In addition to nutrients and organelles, Apo-EVs, 
through horizontal transfer, can transfer DNA to neighbor-
ing cells, including tumor cells [101]. EVs can also alter the 
metabolic profile of pancreatic tumor cells [101, 104]. EVs 
play an important role in the tumor microenvironment by 
providing critical stress-induced signals to induce prolifera-
tion [101]. Further mechanistic studies of debris-stimulated 
tumor growth will be critical to uncover important targets 
to inhibit tumor-derived Apo-EVs and lead to novel cancer 
therapies [101].

6.2 � Exosomal miR‑194‑5p

Tumor repopulation is a major cause of treatment failure in 
cancer patients after chemotherapy and radiation, including 
a significant increased incidence in pancreatic cancer [46, 
102, 105–107]. As previously described, EVs play an impor-
tant role in intercellular communication and in promoting 
cancer progression [102]. MicroRNAs (miRNAs) are a type 
of small non-coding RNA that can be found as vital cargo 
inside of EVs [102]. Exosomal miR-194-5p derived from 
radiation-stimulated tumor cell death promotes tumor cell 
repopulation [102]. After radiation, there is an increase in 
exosomes released from dead cells, and when the miRNA 
contained inside was sequenced, a significant increase in 
miR-194-5p was found [102]. miR-194-5p can downregulate 
the transcription factor E2F3 to activate cell cycle arrest 
and repair in the surviving tumor cells [102]. Also, miR-
194-5p has been shown to act on tumor repopulating cells to 
facilitate repair from any damage done to the cell from the 
radiation [102]. In pancreatic ductal adenocarcinoma, miR-
194-5p can stimulate tumor growth and progression [102, 
108]. Fortunately, low-dose aspirin can inhibit tumor prolif-
eration in pancreatic cancer via suppression of the secretion 
of exosomes from dying tumor cells [102]. Aspirin triggers 
SPMs including resolvins and lipoxins that can mediate the 
intricate anti-tumor activity of aspirin [79]. Thus, aspirin and 
pro-resolution lipid mediators may enhance the anti-tumor 
activity of radiation via the clearance of tumor-promoting 
cell debris and the downregulation of exosomal miR-194-5p.

6.3 � Bax, Bak, and Smac

Pro-apoptotic proteins Bax, Bak, and Smac are potential 
markers of prognosis in patients with chemotherapy-
treated metastatic melanoma [12]. Chemotherapy inhibits 
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cancer by eliminating tumor cells through apoptosis, and 
Bax, Bak, and Smac are key apoptosis regulators [12]. 
When activated, Bax and Bak create pores in the outer 
membrane of the mitochondria, initiating mitochondrial 
outer membrane permeabilization (MOMP), which then 
releases pro-apoptotic factors, such as Smac [11, 12, 
109]. Paradoxically, low expression of Bax, Bak, and 
Smac is correlated with predicting prolonged progres-
sion-free survival (PFS) (> 12  months) in metastatic 
melanoma, and high levels of Bax can correlate with poor 
outcomes [11, 12, 110–114]. Similarly, high expression 
levels of Bax are associated with an increased risk of 
relapse in childhood acute lymphoblastic leukemia and 
poor prognosis in acute myeloid leukemia and non-Hodg-
kin lymphoma [12, 113–116]. High expression levels of 
the Bax antagonist Bcl-2 correlate with an improved 
prognosis in colorectal, breast, glioma, gastric, and non-
small cell lung cancer [11, 12, 112, 117–121]. Although 
seemingly counterintuitive, the paradox of debris-stim-
ulated tumors provides new mechanisms of how chemo-
therapy can stimulate tumor growth and metastasis.

6.4 � HMGB1

High mobility group box 1 (HMGB1) is released by dying 
cells treated with radiation therapy or chemotherapy [7]. 
HMGB1, a damage associated molecular pattern—DAMP, 
is released from cells undergoing necrosis or uncon-
trolled cellular and nuclear swelling in response to injury 
[7, 122, 123]. HMGB1 can stimulate remaining living 
tumor cells to promote angiogenesis, proliferation, and 
facilitate metastasis [7, 106]. This effect is in response to 
HMGB1 binding to the receptor for advanced glycation 
end-products (RAGE) [7]. RAGE then activates down-
stream pathways ERK and p38, which initiates cell pro-
liferation [7]. In addition to this mechanism, it was found 
that higher levels of HMGB1 expression correspond with 
lower overall survival of cancer patients [7]. When ana-
lyzing serum from patients treated with radiation, it was 
found that there were higher concentrations of HMGB1 
[7]. Under normal conditions, HMGB1 is located in the 
nucleus with roles in DNA repair; however, when secreted 
to the outside of the cell, this protein is associated with 
cell proliferation, autophagy, inflammation, and immunity 
[7, 124, 125]. Due to apoptotic cells being programed to 
hold HMGB1 within the cell, the extracellular levels of 
HMGB1 must originate from necrotic cells [7]. Radiation 
combined with a HMGB1 inhibitor may be a treatment 
option to suppress the cell proliferation of the escaped 
tumor cells [7].

6.5 � Caspase‑3

Various caspases can induce tumor cell resistance and tumor 
cell proliferation in response to various anti-cancer thera-
pies [126, 127]. Caspase-3 is a cysteine protease that rapidly 
induces apoptotic death at the termination of dying cells’ 
apoptotic mechanism [7, 12, 129]. High levels of the pro-
apoptotic effector caspase-3 are associated with aggressive 
disease, large tumor size, poor prognosis, and poor disease-
free survival in patients receiving postoperative radiotherapy 
[20, 50, 101, 116]. Similarly, patients in an early pathol-
ogy stage of buccal mucosa squamous cell carcinoma that 
had low co-expression of caspase-3 and cleaved caspase-3 
were associated with better disease-specific survival [50]. 
Activation of caspase-3 has been shown to stimulate cell 
proliferation in surviving tumor cells after radiation [7, 
128]. Caspase-3 activates downstream effector cytosolic 
calcium-independent phospholipase A2 (iPLA2) to gen-
erate arachidonic acid, which is the precursor of the pro-
inflammatory eicosanoid prostaglandin E2 (PGE2) [7, 16, 
50, 73, 130]. PGE2 critically regulates processes involved 
in tumor growth, metastasis, inflammation, and cancer stem 
cell regeneration [73, 131]. The secretion of PGE2 promotes 
the survival and rapid growth of escaped tumor cells leading 
to tumor recurrence [131]. In addition to survival and pro-
liferation, PGE2 can decrease the sensitivity of tumor cells 
to radiation, leading to tumor cell repopulation [50, 132]. 
The production of PGE2 by apoptotic tumor cells occurs in 
bladder cancer, leading to chemoresistance by stimulating 
cancer stem cell regrowth [132]. Elevated levels of caspase-3 
and cleaved caspase-3 have been observed in various tumor 
tissues including glioblastoma [133], melanoma [134], acute 
myelogenous leukemia [135], breast carcinoma [136, 137], 
non-small cell lung cancer [138], oral squamous cell carci-
noma [139], buccal mucosal squamous cell carcinoma [50], 
gastric cancer, ovarian cancer, cervical cancer, colorectal 
cancer, and pancreatic ductal carcinoma [20, 140, 141]. In 
pancreatic cancer, caspase-3 not only has been linked to 
tumor recurrence, but is also an indicator of invasiveness 
[140]. After investigating the immunoreactivity of caspase-3 
in tissue from patients with normal pancreatic tissue, pan-
creatic duct cell carcinoma (PDC), and intraductal papillary-
mucinous tumor of the pancreas (IPMT), an overexpression 
of caspase-3 in PDC and invasive IPMT tissues was identi-
fied [140]. This suggests that expression of caspase-3 may 
contribute to pancreatic cancer invasiveness. In the previ-
ously mentioned bladder cancer model, after neutralizing 
PGE2 signaling, there was a reduction in the emergence of 
chemoresistance [132]. Ongoing treatment studies are target-
ing patients that are undergoing chemotherapy or radiation 
with an inhibitor that would block PGE2 production or an 
inhibitor of caspase-3 to enhance the sensitivity of the can-
cer cells to the treatment [7, 11, 20, 50, 126, 132]. However, 
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a caveat is that PGE2 is critical for a lipid-mediator class 
switching from pro-inflammatory eicosanoids such as leu-
kotrienes and thromboxanes to the specialized pro-resolving 
mediators including lipoxins [74, 142].

7 � Potential therapies to target 
debris‑stimulated cancer

7.1 � Platelet activating factor

Tumor cells that survive during radiation and chemotherapy 
undergo accelerated repopulation [143]. The stress induced by 
these therapies stimulates the production of abundant platelet 
activating factor-like molecules and overexpression of their 
receptor in tumor cells [44, 143–147]. Platelet activating fac-
tor is a soluble lipid mediator that plays an important role in 
inflammation and tumorigenesis [143, 148, 149]. The G-protein 
coupled receptor for platelet activating factor can be found in 
both tumor cells and cells that penetrate tumors [143, 150]. 
During cancer therapies, the dying tumor cells release pro-
inflammatory cytokines such as IL-6, IL-8, and TNF-α, which 
then initiate the production of an agonist of platelet activating 
factor receptor [143, 151–153]. The platelet activating factor 
receptor induces tumor cell proliferation and production of sur-
vival signals and stimulates tumor angiogenesis [143]. After 
blocking platelet activating factor in experimental models, there 
was a decrease in tumor size and an increase in animal survival 
[143]. Antagonists of platelet activating factor reduce tumor 
repopulation [143]. Thus, a platelet activating factor antagonist, 
in combination with chemotherapy or radiation, may prevent 
debris-simulated repopulation of tumor cells [143].

7.2 � Resolution of inflammation

Inflammation plays an essential role in debris-stimulated 
cancers, as it promotes tumor cell growth, repair, and 
repopulation [21]. Debris-stimulated macrophages and other 
immune cells stimulate inflammation via secretion of pro-
inflammatory, pro-angiogenic, and pro-tumorigenic eicosa-
noid-driven cytokines [1, 2, 17]. The resolution of inflam-
mation has been discovered by the Serhan laboratory to be 
an active process regulated by endogenous specialized pro-
resolving mediators (SPMs), which promote the clearance of 
debris and terminate inflammation [74, 154–156]. Resolvins 
(Rv) are SPMs that can stimulate the natural debris-clearing 
process and terminate inflammatory mechanisms [21, 40, 
74]. Unlike conventional anti-inflammatories, resolvins are 
agonists for the resolution of inflammation, are not immu-
nosuppressive, and act at much lower doses [40].

Debris and cell death can induce tumor-promoting 
inflammation; therefore, the clearance of debris inhibits 
tumor growth via stimulation of the resolution of inflam-
mation via resolvins [1, 79, 81] (Fig. 2). In a pancreatic 
tumor model, resolvins were found to induce tumor regres-
sion in combination with chemotherapy [1]; thus, stimulat-
ing the resolution of inflammation via resolvins enhances 
chemotherapy in this model of cancer as well as geneti-
cally engineered models of breast and prostate cancer [1]. 
SPMs can convert macrophages from a pro-inflammatory 
phenotype into a pro-resolving phenotype, which enhances 
debris phagocytosis and inhibits further pro-tumorigenic 
and pro-inflammatory cytokine secretion [1]. D-series 
resolvin  (RvD)1, RvD2, and E-series resolvin  (RvE)1 
suppressed tumor repopulation in various tumor types 

Fig. 2   Cancer therapies need to have a balance between pro-inflam-
matory factors and pro-resolving mediators. Current therapies are 
focused on the direct killing or removal of tumor cells, which results 
in an unintentional abundance of proinflammatory/pro-tumorigene-
sis signals being released from the cancer therapy-generated debris. 

When there are superfluous pro-inflammatory signals, the environ-
ment can stimulate tumor recurrence and metastasis, whereas pro-
resolving mediators can stimulate immune cells to engulf the debris 
and mitigate the pro-tumor signals
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including lung, pancreatic, head and neck cancer, and 
prostate cancer mouse models [1]. In models of lung can-
cer and melanoma metastatic, RvD1 and RvD2 were able 
to suppress metastasis [1]. Resolvins (RvD2, RvD3, and 
RvD4) were also studied to determine resolvins role in 
the prevention of tumor dormancy escape and microme-
tastases from proliferating after surgery [81]. It was found 
that, if administered before surgery, resolvins suppressed 
metastasis, increased survival, and inhibited tumor-dor-
mancy escape [81]. Resolvins, in combination with other 
targeted therapies, can enhance anti-tumor activity and 
clearance of debris, suppress tumor and metastatic growth, 
and block further release of pro-inflammatory cytokines 
[1]. Thus, resolvins are a novel approach to suppress 
debris-stimulated tumor growth.

In addition to resolvins, omega-3 fatty acids may also 
inhibit inflammation in pancreatic cancer [157, 158]. Tar-
geting soluble epoxide hydrolase inhibition also inhibits 
debris-stimulated tumor growth in ovarian and liver cancer 
models via macrophage phagocytosis of debris as well as 
blocking of pro-inflammatory eicosanoids and cytokines [2, 
17]. Although radiation, chemotherapy, and surgery create 
cell debris, stimulate inflammation, and enhance the tumor 
microenvironment for repopulation, promoting the resolu-
tion of inflammation can stimulate macrophages to engulf 
debris, block pro-inflammatory factors, and suppress tumor 
growth and metastasis. Current therapies, such as NSAIDs 
can be “resolution toxic,” meaning they disrupt the endog-
enous mechanisms of the resolution of inflammation [74, 
81, 154]. Thus, agonists of the resolution of inflammation 
pathway including resolvins represent a promising approach 
to prevent debris-stimulated tumor growth and accelerated 
repopulation.

8 � Conclusion

Chemotherapy, surgery, and radiation all contribute to 
debris-stimulated cancer. The debris generated from these 
therapies secrete pro-tumorigenesis factors to promote 
tumor angiogenesis, proliferation, growth, metastasis, and 
recurrence. Cancers of all types fall victim to the para-
doxical dilemma of debris-stimulated cancer. Fortunately, 
there are novel approaches to stimulate the resolution or 
clearance of debris, such as promoting the resolution of 
inflammation via resolvins or soluble epoxide hydrolase 
inhibitors, that can be used in combination with traditional 
cytotoxic cancer therapies to prevent tumor growth and 
metastasis.
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