Skip to main content

Advertisement

Log in

Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin’s function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin’s role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

Abbreviations

ALDH:

aldehyde dehydrogenase

AML:

acute myeloid leukemia

CSC:

cancer stem cells

EGFR:

epidermal growth factor receptor

EMT:

epithelial-mesenchymal transition

FAK:

focal adhesion kinase

FOXO3:

forkhead box O-3

hCNT1:

human concentrative nucleoside transporter 1

HER2:

human epidermal growth factor receptor 2

HIF-1α:

hypoxia-inducible factor 1, alpha

JNK1/2:

c-Jun N-terminal kinases

Lgr5:

leucine-rich-repeat-containing G protein-coupled receptor 5

LIMO2:

LIM domain only 2

LRP6:

low density lipoprotein receptor protein 6

LSC:

leukemia stem cells

MDR:

multiple drug resistance

MKK7:

mitogen-activated protein kinase kinases 7

mTORC1:

mammalian target of rapamycin complex 1

NFkB:

nuclear factor-kappa B

PTX:

paclitaxel

RCC:

renal cell carcinoma

SP:

side population

STAT3:

signal transducer and activator of transcription 3

TGFβ:

transforming growth factor-beta

TGFβR I/ II:

transforming growth factor-beta type I/II receptor

TIGAR:

TP53-induced glycolysis and apoptosis regulator

TNBC:

triple negative breast cancer

5FU:

5-Fluorouracil

References

  1. van Putten, J. P. M., & Strijbis, K. (2017). Transmembrane mucins: Signaling receptors at the intersection of inflammation and cancer. Journal of Innate Immunity, 9(3), 281–299. https://doi.org/10.1159/000453594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forstner, J. F. (1978). Intestinal mucins in health and disease. Digestion, 17(3), 234–263. https://doi.org/10.1159/000198115.

    Article  CAS  PubMed  Google Scholar 

  3. Kaur, S., Kumar, S., Momi, N., Sasson, A. R., & Batra, S. K. (2013). Mucins in pancreatic cancer and its microenvironment. Nature Reviews. Gastroenterology & Hepatology, 10(10), 607–620. https://doi.org/10.1038/nrgastro.2013.120.

    Article  CAS  Google Scholar 

  4. Chaturvedi, P., Singh, A. P., & Batra, S. K. (2008). Structure, evolution, and biology of the MUC4 mucin. The FASEB Journal, 22(4), 966–981. https://doi.org/10.1096/fj.07-9673rev.

    Article  CAS  PubMed  Google Scholar 

  5. Dhanisha, S. S., Guruvayoorappan, C., Drishya, S., & Abeesh, P. (2018). Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Critical Reviews in Oncology/Hematology, 122, 98–122. https://doi.org/10.1016/j.critrevonc.2017.12.006.

    Article  PubMed  Google Scholar 

  6. Krishn, S. R., Ganguly, K., Kaur, S., & Batra, S. K. (2018). Ramifications of secreted mucin MUC5AC in malignant journey: A holistic view. Carcinogenesis, 39(5), 633–651. https://doi.org/10.1093/carcin/bgy019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ganguly, K., Rauth, S., Marimuthu, S., Kumar, S., & Batra, S. K. (2020). Unraveling mucin domains in cancer and metastasis: When protectors become predators. Cancer Metastasis Reviews, 39(3), 647–659. https://doi.org/10.1007/s10555-020-09896-5.

    Article  CAS  PubMed  Google Scholar 

  8. Lakshmanan, I., Ponnusamy, M. P., Macha, M. A., Haridas, D., Majhi, P. D., Kaur, S., Jain, M., Batra, S. K., & Ganti, A. K. (2015). Mucins in lung cancer: Diagnostic, prognostic, and therapeutic implications. Journal of Thoracic Oncology, 10(1), 19–27. https://doi.org/10.1097/jto.0000000000000404.

    Article  CAS  PubMed  Google Scholar 

  9. Pothuraju, R., Krishn, S. R., Gautam, S. K., Pai, P., Ganguly, K., Chaudhary, S., Rachagani, S., Kaur, S., & Batra, S. K. (2020). Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel), 12(3). https://doi.org/10.3390/cancers12030649.

  10. Gautam, S. K., Kumar, S., Dam, V., Ghersi, D., Jain, M., & Batra, S. K. (2020). MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Seminars in Immunology, 47, 101391. https://doi.org/10.1016/j.smim.2020.101391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bafna, S., Kaur, S., & Batra, S. K. (2010). Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20), 2893–2904. https://doi.org/10.1038/onc.2010.87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, C. V., Janakiram, N. B., & Mohammed, A. (2017). Molecular pathways: Mucins and drug delivery in cancer. Clinical Cancer Research, 23(6), 1373–1378. https://doi.org/10.1158/1078-0432.Ccr-16-0862.

    Article  CAS  PubMed  Google Scholar 

  13. Moniaux, N., Escande, F., Porchet, N., Aubert, J. P., & Batra, S. K. (2001). Structural organization and classification of the human mucin genes. Frontiers in Bioscience, 6, D1192–D1206. https://doi.org/10.2741/moniaux.

    Article  CAS  PubMed  Google Scholar 

  14. Messager, M., Lefevre, J. H., Pichot-Delahaye, V., Souadka, A., Piessen, G., & Mariette, C. (2011). The impact of perioperative chemotherapy on survival in patients with gastric signet ring cell adenocarcinoma: A multicenter comparative study. Annals of Surgery, 254(5), 684–693; discussion 693. https://doi.org/10.1097/SLA.0b013e3182352647.

    Article  PubMed  Google Scholar 

  15. Leal, J., Smyth, H. D. C., & Ghosh, D. (2017). Physicochemical properties of mucus and their impact on transmucosal drug delivery. International Journal of Pharmaceutics, 532(1), 555–572. https://doi.org/10.1016/j.ijpharm.2017.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhat, P. G., Flanagan, D. R., & Donovan, M. D. (1996). Drug diffusion through cystic fibrotic mucus: Steady-state permeation, rheologic properties, and glycoprotein morphology. Journal of Pharmaceutical Sciences, 85(6), 624–630. https://doi.org/10.1021/js950381s.

    Article  CAS  PubMed  Google Scholar 

  17. Suh, H., Pillai, K., & Morris, D. L. (2017). Mucins in pancreatic cancer: Biological role, implications in carcinogenesis and applications in diagnosis and therapy. American Journal of Cancer Research, 7(6), 1372–1383.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalra, A. V., & Campbell, R. B. (2009). Mucin overexpression limits the effectiveness of 5-FU by reducing intracellular drug uptake and antineoplastic drug effects in pancreatic tumours. European Journal of Cancer, 45(1), 164–173. https://doi.org/10.1016/j.ejca.2008.10.008.

    Article  CAS  PubMed  Google Scholar 

  19. Shaw, L. R., Irwin, W. J., Grattan, T. J., & Conway, B. R. (2005). The influence of excipients on the diffusion of ibuprofen and paracetamol in gastric mucus. International Journal of Pharmaceutics, 290(1-2), 145–154. https://doi.org/10.1016/j.ijpharm.2004.11.028.

    Article  CAS  PubMed  Google Scholar 

  20. Sigurdsson, H. H., Kirch, J., & Lehr, C. M. (2013). Mucus as a barrier to lipophilic drugs. International Journal of Pharmaceutics, 453(1), 56–64. https://doi.org/10.1016/j.ijpharm.2013.05.040.

    Article  CAS  PubMed  Google Scholar 

  21. Jonckheere, N., Skrypek, N., & Van Seuningen, I. (2014). Mucins and tumor resistance to chemotherapeutic drugs. Biochimica et Biophysica Acta, 1846(1), 142–151. https://doi.org/10.1016/j.bbcan.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  22. Jentoft, N. (1990). Why are proteins O-glycosylated? Trends in Biochemical Sciences, 15(8), 291–294. https://doi.org/10.1016/0968-0004(90)90014-3.

    Article  CAS  PubMed  Google Scholar 

  23. van de Wiel-van Kemenade, E., Ligtenberg, M. J., de Boer, A. J., Buijs, F., Vos, H. L., Melief, C. J., Hilkens, J., & Figdor, C. G. (1993). Episialin (MUC1) inhibits cytotoxic lymphocyte-target cell interaction. Journal of Immunology, 151(2), 767–776.

  24. Bhatia, R., Gautam, S. K., Cannon, A., Thompson, C., Hall, B. R., Aithal, A., Banerjee, K., Jain, M., Solheim, J. C., Kumar, S., & Batra, S. K. (2019). Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Reviews, 38(1-2), 223–236. https://doi.org/10.1007/s10555-018-09775-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: Protection and control of the cell surface. Nature Reviews. Cancer, 4(1), 45–60. https://doi.org/10.1038/nrc1251.

    Article  CAS  PubMed  Google Scholar 

  26. Nath, S., & Mukherjee, P. (2014). MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 20(6), 332–342. https://doi.org/10.1016/j.molmed.2014.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nath, S., Daneshvar, K., Roy, L. D., Grover, P., Kidiyoor, A., Mosley, L., Sahraei, M., & Mukherjee, P. (2013). MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis, 2(6), e51. https://doi.org/10.1038/oncsis.2013.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pitroda, S. P., Khodarev, N. N., Beckett, M. A., Kufe, D. W., & Weichselbaum, R. R. (2009). MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5837–5841. https://doi.org/10.1073/pnas.0812029106.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jin, W., Liao, X., Lv, Y., Pang, Z., Wang, Y., Li, Q., Liao, Y., Ye, Q., Chen, G., Zhao, K., & Huang, L. (2017). MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death & Disease, 8(8), e2980. https://doi.org/10.1038/cddis.2017.378.

    Article  CAS  Google Scholar 

  30. Ham, S. Y., Kwon, T., Bak, Y., Yu, J. H., Hong, J., Lee, S. K., Yu, D. Y., & Yoon, D. Y. (2016). Mucin 1-mediated chemoresistance in lung cancer cells. Oncogenesis, 5(1), e185. https://doi.org/10.1038/oncsis.2015.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hagmann, W., Jesnowski, R., & Löhr, J. M. (2010). Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia, 12(9), 740–747. https://doi.org/10.1593/neo.10576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., & Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 5(1), 119–127.

    CAS  PubMed  Google Scholar 

  33. Arlt, A., Gehrz, A., Müerköster, S., Vorndamm, J., Kruse, M. L., Fölsch, U. R., & Schäfer, H. (2003). Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene, 22(21), 3243–3251. https://doi.org/10.1038/sj.onc.1206390.

    Article  CAS  PubMed  Google Scholar 

  34. Skrypek, N., Duchêne, B., Hebbar, M., Leteurtre, E., van Seuningen, I., & Jonckheere, N. (2013). The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene, 32(13), 1714–1723. https://doi.org/10.1038/onc.2012.179.

    Article  CAS  PubMed  Google Scholar 

  35. Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L., & Batra, S. K. (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Research, 64(2), 622–630. https://doi.org/10.1158/0008-5472.can-03-2636.

    Article  CAS  PubMed  Google Scholar 

  36. Carraway, K. L., Perez, A., Idris, N., Jepson, S., Arango, M., Komatsu, M., Haq, B., Price-Schiavi A., Zhang, J., & Carraway, C. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to survive. Progress in Nucleic Acid Research and Molecular Biology, 71, 149–185. https://doi.org/10.1016/s0079-6603(02)71043-x.

  37. Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., Singh, P. K., Hollingsworth, M. A., Mehta, P. P., & Batra, S. K. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68(7), 2065–2070. https://doi.org/10.1158/0008-5472.Can-07-6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramsauer, V. P., Pino, V., Farooq, A., Carothers Carraway, C. A., Salas, P. J., & Carraway, K. L. (2006). Muc4-ErbB2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for ErbB2. Molecular Biology of the Cell, 17(7), 2931–2941. https://doi.org/10.1091/mbc.e05-09-0895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park, S. H., Lee, J. H., Berek, J. S., & Hu, M. C. (2014). Auranofin displays anticancer activity against ovarian cancer cells through FOXO3 activation independent of p53. International Journal of Oncology, 45(4), 1691–1698. https://doi.org/10.3892/ijo.2014.2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae, J. S., Lee, J., Park, Y., Park, K., Kim, J. R., Cho, D. H., Jang, K. Y., & Park, S. H. (2017). Attenuation of MUC4 potentiates the anticancer activity of auranofin via regulation of the Her2/Akt/FOXO3 pathway in ovarian cancer cells. Oncology Reports, 38(4), 2417–2425. https://doi.org/10.3892/or.2017.5853.

    Article  CAS  PubMed  Google Scholar 

  41. Pothuraju, R., Rachagani, S., Krishn, S. R., Chaudhary, S., Nimmakayala, R. K., Siddiqui, J. A., Ganguly, K., Lakshmanan, I., Cox, J. L., Mallya, K., Kaur, S., & Batra, S. K. (2020). Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Molecular Cancer, 19(1), 37. https://doi.org/10.1186/s12943-020-01156-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., Seim, I., Oancea, I., Morais, C., Jeffery, P. L., Hooper, J., Gobe, G. C., & McGuckin, M. A. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363. https://doi.org/10.1002/ijc.30651.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, Z., Liu, Y., Yang, Y., Wang, J., Zhang, G., Liu, Z., Fu, H., Wang, Z., Liu, H., & Xu, J. (2017). High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 8(5), 7548–7558. https://doi.org/10.18632/oncotarget.13692.

  44. Lakshmanan, I., Salfity, S., Seshacharyulu, P., Rachagani, S., Thomas, A., Das, S., Majhi, P. D., Nimmakayala, R. K., Vengoji, R., Lele, S. M., Ponnusamy, M. P., Batra, S. K., & Ganti, A. K. (2017). MUC16 regulates TSPYL5 for lung cancer cell growth and chemoresistance by suppressing p53. Clinical Cancer Research, 23(14), 3906–3917. https://doi.org/10.1158/1078-0432.Ccr-16-2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., Wagner, K., & Batra, S. K. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787. https://doi.org/10.18632/oncotarget.3308.

  46. Boivin, M., Lane, D., Piché, A., & Rancourt, C. (2009). CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecologic Oncology, 115(3), 407–413. https://doi.org/10.1016/j.ygyno.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  47. Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100(1), 157–168. https://doi.org/10.1016/s0092-8674(00)81692-x.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, W., Ji, X., Zhang, F., Li, L., & Ma, L. (2012). Embryonic stem cell markers. Molecules, 17(6), 6196–6236. https://doi.org/10.3390/molecules17066196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan, Q., Yao, D., Wei, L. L., Huang, Y., Myers, J., Zhang, L., Xin, W., Shim, J., Man, Y., Petryniak, B., Gerson, S., Lowe, J. B., & Zhou, L. (2010). O-fucose modulates Notch-controlled blood lineage commitment. The American Journal of Pathology, 176(6), 2921–2934. https://doi.org/10.2353/ajpath.2010.090702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seth, A., Machingo, Q. J., Fritz, A., & Shur, B. D. (2010). Core fucosylation is required for midline patterning during zebrafish development. Developmental Dynamics, 239(12), 3380–3390. https://doi.org/10.1002/dvdy.22475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313. https://doi.org/10.1038/nature10762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138(4), 645–659. https://doi.org/10.1016/j.cell.2009.06.034.

  53. Alam, M., Ahmad, R., Rajabi, H., Kharbanda, A., & Kufe, D. (2013). MUC1-C oncoprotein activates ERK → C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. The Journal of Biological Chemistry, 288(43), 30892–30903. https://doi.org/10.1074/jbc.M113.477158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Engelmann, K., Shen, H., & Finn, O. J. (2008). MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Research, 68(7), 2419–2426. https://doi.org/10.1158/0008-5472.Can-07-2249.

    Article  CAS  PubMed  Google Scholar 

  55. Stroopinsky, D., Rosenblatt, J., Ito, K., Mills, H., Yin, L., Rajabi, H., Vasir, B., Kufe, T., Luptakova, K., Arnason, J., Nardella, C., Levine, J. D., Joyce, R. M., Galinsky, I., Reiter, Y., Stone, R. M., Pandolfi, P. P., Kufe, D., & Avigan, D. (2013). MUC1 is a potential target for the treatment of acute myeloid leukemia stem cells. Cancer Research, 73(17), 5569–5579. https://doi.org/10.1158/0008-5472.Can-13-0677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo, M., Luo, B., Pan, M., Li, M., Xu, H., Zhao, F., & Dou, J. (2020). Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer. International Immunopharmacology, 88, 106850. https://doi.org/10.1016/j.intimp.2020.106850.

    Article  CAS  PubMed  Google Scholar 

  57. Guo, M., You, C., Dong, W., Luo, B., Wu, Y., Chen, Y., Li, J., Pan, M., Li, M., Zhao, F., & Dou, J. (2020). The surface dominant antigen MUC1 is required for colorectal cancer stem cell vaccine to exert anti-tumor efficacy. Biomedicine & Pharmacotherapy, 132, 110804. https://doi.org/10.1016/j.biopha.2020.110804.

    Article  CAS  Google Scholar 

  58. Curry, J. M., Thompson, K. J., Rao, S. G., Besmer, D. M., Murphy, A. M., Grdzelishvili, V. Z., Ahrens, W. A., McKillop, I. H., Sindram, D., Iannitti, D. A., Martinie, J. B., & Mukherjee, P. (2013). The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. Journal of Surgical Oncology, 107(7), 713–722. https://doi.org/10.1002/jso.23316.

    Article  CAS  PubMed  Google Scholar 

  59. Ponnusamy, M. P., Seshacharyulu, P., Vaz, A., Dey, P., & Batra, S. K. (2011). MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells. Journal of Ovarian Research, 4(1), 7. https://doi.org/10.1186/1757-2215-4-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mimeault, M., Johansson, S. L., Senapati, S., Momi, N., Chakraborty, S., & Batra, S. K. (2010). MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Letters, 295(1), 69–84. https://doi.org/10.1016/j.canlet.2010.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jimeno, A., Feldmann, G., Suárez-Gauthier, A., Rasheed, Z., Solomon, A., Zou, G. M., Rubio-Viqueira, B., García-García, E., López-Ríos, F., Matsui, W., Maitra, A., & Hidalgo, M. (2009). A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Molecular Cancer Therapeutics, 8(2), 310–314. https://doi.org/10.1158/1535-7163.Mct-08-0924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, J., Wang, C. Y., Liu, T., Wu, B., Zhou, F., Xiong, J. X., Wu, H. S., Tao, J., Zhao, G., Yang, M., & Gou, S. M. (2008). Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World Journal of Gastroenterology, 14(6), 925–930. https://doi.org/10.3748/wjg.14.925.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ganguly, K., Krishn, S. R., Rachagani, S., Jahan, R., Shah, A., Nallasamy, P., Rauth, S., Atri, P., Cox, J. L., Pothuraju, R., Smith, L. M., Ayala, S., Evans, C., Ponusamy, M. P., Kumar, S., Kaur, S., & Batra, S. K. (2020). Secretory mucin 5 AC promotes neoplastic progression by augmenting KLF4-mediated pancreatic cancer cell stemness. Cancer Research. https://doi.org/10.1158/0008-5472.Can-20-1293.

  64. Zhang, H., Yang, Y., Wang, Y., Gao, X., Wang, W., Liu, H., He, H., Liang, Y., Pan, K., Wu, H., Shi, J., Xue, H., Liang, L., Cai, Z., Fan, Y., & Zhang, Y. (2015). Relationship of tumor marker CA125 and ovarian tumor stem cells: Preliminary identification. Journal of Ovarian Research, 8, 19. https://doi.org/10.1186/s13048-015-0132-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lim, S., Becker, A., Zimmer, A., Lu, J., Buettner, R., & Kirfel, J. (2013). SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One, 8(6), e66558. https://doi.org/10.1371/journal.pone.0066558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamada, S., Fuchs, B. C., Fujii, T., Shimoyama, Y., Sugimoto, H., Nomoto, S., Takeda, S., Tanabe, K. K., Kodera, Y., & Nakao, A. (2013). Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery, 154(5), 946–954. https://doi.org/10.1016/j.surg.2013.05.004.

    Article  PubMed  Google Scholar 

  67. Comamala, M., Pinard, M., Thériault, C., Matte, I., Albert, A., Boivin, M., Beaudin, J., Piché, A., & Rancourt, C. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999. https://doi.org/10.1038/bjc.2011.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Horn, G., Gaziel, A., Wreschner, D. H., Smorodinsky, N. I., & Ehrlich, M. (2009). ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1. Experimental Cell Research, 315(8), 1490–1504. https://doi.org/10.1016/j.yexcr.2009.02.011.

    Article  CAS  PubMed  Google Scholar 

  69. Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459. https://doi.org/10.1038/onc.2010.526.

    Article  CAS  PubMed  Google Scholar 

  70. Ponnusamy, M. P., Lakshmanan, I., Jain, M., Das, S., Chakraborty, S., Dey, P., & Batra, S. K. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: A novel mechanism for metastasis of human ovarian cancer cells. Oncogene, 29(42), 5741–5754. https://doi.org/10.1038/onc.2010.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., Karmakar, S., Nimmakayala, R. K., Kaushik, G., Johansson, S. L., Carey, G. B., Ponnusamy, M. P., Kaur, S., Batra, S. K., & Ganti, A. K. (2016). MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121. https://doi.org/10.1038/onc.2015.478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hata, T., Rajabi, H., Yamamoto, M., Jin, C., Ahmad, R., Zhang, Y., Kui, L., Li, W., Yasumizu, Y., Hong, D., Miyo, M., Hiraki, M., Maeda, T., Suzuki, Y., Takahashi, H., Samur, M., & Kufe, D. (2019). Targeting MUC1-C inhibits TWIST1 signaling in triple-negative breast cancer. Molecular Cancer Therapeutics, 18(10), 1744–1754. https://doi.org/10.1158/1535-7163.Mct-19-0156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rajabi, H., Alam, M., Takahashi, H., Kharbanda, A., Guha, M., Ahmad, R., & Kufe, D. (2014). MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene, 33(13), 1680–1689. https://doi.org/10.1038/onc.2013.114.

    Article  CAS  PubMed  Google Scholar 

  74. Grover, P., Nath, S., Nye, M. D., Zhou, R., Ahmad, M., & Mukherjee, P. (2018). SMAD4-independent activation of TGF-β signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget, 9(6), 6897–6910. https://doi.org/10.18632/oncotarget.23966.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rachagani, S., Macha, M. A., Ponnusamy, M. P., Haridas, D., Kaur, S., Jain, M., & Batra, S. K. (2012). MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 33(10), 1953–1964. https://doi.org/10.1093/carcin/bgs225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., Seshacharyulu, P., Smith, L. M., Ponnusamy, M. P., & Batra S. K. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. https://doi.org/10.18632/genesandcancer.104.

  77. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  78. Frezza, C. (2020). Metabolism and cancer: The future is now. British Journal of Cancer, 122(2), 133–135. https://doi.org/10.1038/s41416-019-0667-3.

    Article  PubMed  Google Scholar 

  79. Jung, J. G., & Le, A. (2018). Targeting metabolic cross talk between cancer cells and cancer-associated fibroblasts. Advances in Experimental Medicine and Biology, 1063, 167–178. https://doi.org/10.1007/978-3-319-77736-8_12.

    Article  CAS  PubMed  Google Scholar 

  80. Chaika, N. V., Gebregiworgis, T., Lewallen, M. E., Purohit, V., Radhakrishnan, P., Liu, X., Zhang, B., Mehla, K., Brown, R. B., Caffrey, T., Yu, F., Johnson, K. R., Powers, R., Hollingsworth, M. A., & Singh, P. K. (2012). MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13787–13792. https://doi.org/10.1073/pnas.1203339109.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kosugi, M., Ahmad, R., Alam, M., Uchida, Y., & Kufe, D. (2011). MUC1-C oncoprotein regulates glycolysis and pyruvate kinase M2 activity in cancer cells. PLoS One, 6(11), e28234. https://doi.org/10.1371/journal.pone.0028234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Raina, D., Kharbanda, S., & Kufe, D. (2004). The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. The Journal of Biological Chemistry, 279(20), 20607–20612. https://doi.org/10.1074/jbc.M310538200.

    Article  CAS  PubMed  Google Scholar 

  83. Mehla, K., & Singh, P. K. (2014). MUC1: A novel metabolic master regulator. Biochimica et Biophysica Acta, 1845(2), 126–135. https://doi.org/10.1016/j.bbcan.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshida, K., & Miki, Y. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science, 95(11), 866–871. https://doi.org/10.1111/j.1349-7006.2004.tb02195.x.

    Article  CAS  PubMed  Google Scholar 

  85. Gunda, V., Souchek, J., Abrego, J., Shukla, S. K., Goode, G. D., Vernucci, E., Dasgupta, A., Chaika, N. V., King, R. J., Li, S., Wang, S., Yu, F., Bessho, T., Lin, C., & Singh, P. K. (2017). MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer. Clinical Cancer Research, 23(19), 5881–5891. https://doi.org/10.1158/1078-0432.Ccr-17-1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chiyoda, T., Hart, P. C., Eckert, M. A., McGregor, S. M., Lastra, R. R., Hamamoto, R., Nakamura, Y., Yamada, S. D., Olopade, O. I., Lengyel, E., & Romero, I. L. (2017). Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer Chemoprevention. Cancer Prevention Research (Philadelphia, Pa.), 10(4), 255–266. https://doi.org/10.1158/1940-6207.Capr-16-0281.

    Article  CAS  Google Scholar 

  87. Fu, X., Tang, N., Xie, W. Q., Mao, L., & Qiu, Y. D. (2020). MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chinese Journal of Natural Medicines, 18(3), 178–185. https://doi.org/10.1016/s1875-5364(20)30019-4.

    Article  PubMed  Google Scholar 

  88. Leng, Y., Cao, C., Ren, J., Huang, L., Chen, D., Ito, M., & Kufe, D. (2007). Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. The Journal of Biological Chemistry, 282(27), 19321–19330. https://doi.org/10.1074/jbc.M703222200.

    Article  CAS  PubMed  Google Scholar 

  89. Raina, D., Ahmad, R., Rajabi, H., Panchamoorthy, G., Kharbanda, S., & Kufe, D. (2012). Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells. International Journal of Oncology, 40(5), 1643–1649. https://doi.org/10.3892/ijo.2011.1308.

    Article  CAS  PubMed  Google Scholar 

  90. Raina, D., Kosugi, M., Ahmad, R., Panchamoorthy, G., Rajabi, H., Alam, M., Shimamura, T., Shapiro, G. I., Supko, J., Kharbanda, S., & Kufe, D. (2011). Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Molecular Cancer Therapeutics, 10(5), 806–816. https://doi.org/10.1158/1535-7163.Mct-10-1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. GongSun, X., Zhao, Y., Jiang, B., Xin, Z., Shi, M., Song, L., Qin, Q. M., Wang, Q., & Liu, X. Y. (2019). Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma. Journal of Cellular Physiology, 234(7), 12019–12028. https://doi.org/10.1002/jcp.27863.

    Article  CAS  PubMed  Google Scholar 

  92. Kumari, S., Khan, S., Gupta, S. C., Kashyap, V. K., Yallapu, M. M., Chauhan, S. C., & Jaggi, M. (2018). MUC13 contributes to rewiring of glucose metabolism in pancreatic cancer. Oncogenesis, 7(2), 19. https://doi.org/10.1038/s41389-018-0031-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haridas, D., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Rachagani, S., Cruz, E., Kumar, S., Das, S., Lele, S. M., Anderson, J. M., Wittel, U. A., Hollingsworth, M. A., & Batra, S. K. (2011). Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One, 6(10), e26839. https://doi.org/10.1371/journal.pone.0026839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., Chaika, N. V., Yu, F., Sasson, A. R., Lazenby, A. J., Batra, S. K., & Singh, P. K. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131. https://doi.org/10.18632/oncotarget.4078.

  95. Shimobayashi, M., & Hall, M. N. (2014). Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nature Reviews. Molecular Cell Biology, 15(3), 155–162. https://doi.org/10.1038/nrm3757.

    Article  CAS  PubMed  Google Scholar 

  96. Düvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., Triantafellow, E., Ma, Q., Gorski, R., Cleaver, S., Vander Heiden, M. G., MacKeigan, J. P., Finan, P. M., Clish, C. B., Murphy, L. O., & Manning, B. D. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Molecular Cell, 39(2), 171–183. https://doi.org/10.1016/j.molcel.2010.06.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nomura, D. K., & Cravatt, B. F. (2013). Lipid metabolism in cancer. Biochimica et Biophysica Acta, 1831(10), 1497–1498. https://doi.org/10.1016/j.bbalip.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  98. Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100(9), 1369–1372. https://doi.org/10.1038/sj.bjc.6605007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases, 9(3), 230–234. https://doi.org/10.1038/sj.pcan.4500879.

    Article  CAS  PubMed  Google Scholar 

  100. Mukherjee, A., Wu, J., Barbour, S., & Fang, X. (2012). Lysophosphatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells. The Journal of Biological Chemistry, 287(30), 24990–25000. https://doi.org/10.1074/jbc.M112.340083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martel, P. M., Bingham, C. M., McGraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., Armstrong, J. M., Moncur, J. T., & Kinlaw, W. B., (2006). S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312(3), 278–288. https://doi.org/10.1016/j.yexcr.2005.10.022.

  102. Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K., & Ishikawa, Y. (2008). ATP citrate lyase: Activation and therapeutic implications in non-small cell lung cancer. Cancer Research, 68(20), 8547–8554. https://doi.org/10.1158/0008-5472.Can-08-1235.

    Article  CAS  PubMed  Google Scholar 

  103. Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews. Cancer, 7(10), 763–777. https://doi.org/10.1038/nrc2222.

    Article  CAS  PubMed  Google Scholar 

  104. Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Kamada, S., Saito, K., Iiizumi, M., Liu, W., Ericsson, J., & Watabe, K. (2008). Fatty acid synthase gene is upregulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1011. https://doi.org/10.1158/0008-5472.Can-07-2489.

    Article  CAS  PubMed  Google Scholar 

  105. Taylor-Papadimitriou, J., Burchell, J. M., Graham, R., & Beatson, R. (2018). Latest developments in MUC1 immunotherapy. Biochemical Society Transactions, 46(3), 659–668. https://doi.org/10.1042/bst20170400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Panchamoorthy, G., Jin, C., Raina, D., Bharti, A., Yamamoto, M., Adeebge, D., Zhao, Q., Bronson, R., Jiang, S., Li, L., Suzuki, Y., Tagde, A., Ghoroghchian, P. P., Wong, K. K., Kharbanda, S., & Kufe, D. (2018). Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 3(12). https://doi.org/10.1172/jci.insight.99880.

  107. Liberelle, M., Magnez, R., Thuru, X., Bencheikh, Y., Ravez, S., Quenon, C., Drucbert, A. S., Foulon, C., Melnyk, P., van Seuningen, I., & Lebègue, N. (2019). MUC4-ErbB2 oncogenic complex: Binding studies using microscale thermophoresis. Scientific Reports, 9(1), 16678. https://doi.org/10.1038/s41598-019-53099-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Das, S., & Batra, S. K. (2015). Understanding the unique attributes of MUC16 (CA125): Potential implications in targeted therapy. Cancer Research, 75(22), 4669–4674. https://doi.org/10.1158/0008-5472.Can-15-1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aithal, A., Rauth, S., Kshirsagar, P., Shah, A., Lakshmanan, I., Junker, W. M., Jain, M., Ponnusamy, M. P., & Batra, S. K. (2018). MUC16 as a novel target for cancer therapy. Expert Opinion on Therapeutic Targets, 22(8), 675–686. https://doi.org/10.1080/14728222.2018.1498845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Patel, S. P., Bristol, A., Saric, O., Wang, X. P., Dubeykovskiy, A., Arlen, P. M., & Morse, M. A. (2013). Anti-tumor activity of a novel monoclonal antibody, NPC-1C, optimized for recognition of tumor antigen MUC5AC variant in preclinical models. Cancer Immunology, Immunotherapy, 62(6), 1011–1019. https://doi.org/10.1007/s00262-013-1420-z.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kavita Mallya and Corinn E Grabow for their support.

Funding

The authors in this article were supported primarily by the following grants from the National Institutes of Health P01 CA217798, R01 CA210637, R01 CA183459, R01 CA195586, R01 CA201444, R01 CA228524, F99 CA234962, U01 CA200466, and U01 CA210240, and the Nebraska Department of Health and Human Services LB595.

Author information

Authors and Affiliations

Authors

Contributions

SM, SR, CZ, and KG, collected the related literature and drafted the manuscript. SM, SR, CZ, KG, IL, MPP, and SKB participated in the manuscript’s draft. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Surinder K. Batra or Moorthy P. Ponnusamy.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest/Competing interests

SKB is one of the co-founders of Sanguine Diagnostics and Therapeutics, Inc. The other authors disclosed no potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, S., Rauth, S., Ganguly, K. et al. Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 40, 575–588 (2021). https://doi.org/10.1007/s10555-021-09959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09959-1

Keywords

Navigation