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Abstract Head and neck squamous cell carcinoma (HNSCC)
is the sixth most common malignancy worldwide. There is an
urgent need to develop effective therapeutic approaches to
prevent and treat HNSCC. Recent deep sequencing of the
HNSCC genomic landscape revealed a multiplicity and diver-
sity of genetic alterations in this malignancy. Although a large
variety of specific molecules were found altered in each indi-
vidual tumor, they all participate in only a handful of driver
signaling pathways. Among them, the PI3K/mTOR pathway
is the most frequently activated, which plays a central role in
cancer initiation and progression. In turn, targeting of mTOR
may represent a precision therapeutic approach for HNSCC.
Indeed, mTOR inhibition exerts potent anti-tumor activity in
HNSCC experimental systems, and mTOR targeting clinical
trials show encouraging results. However, advanced HNSCC
patients may exhibit unpredictable drug resistance, and the
analysis of its molecular basis suggests that co-targeting strat-
egies may provide a more effective option. In addition, al-
though counterintuitive, emerging evidence suggests that
mTOR inhibition may enhance the anti-tumor immune re-
sponse. These new findings raise the possibility that the

combination of mTOR inhibitors and immune oncology
agents may provide novel precision therapeutic options for
HNSCC.

Keywords mTOR . Head and neck cancer . Precision
therapy . Immune oncology

1 Background

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most commonmalignancyworldwide. As a major public
health concern, HNSCC arises in the oral cavity, larynx, and
pharynx, affecting approximate 600,000 patients each year
[1], only 40–50% of which will survive more than 5 years
[2]. The leading risk factors include the use of tobacco, alco-
hol, and betel quid and areca nut chewing, while high-risk
human papillomavirus (HPV) infection has emerged as a ma-
jor risk factor, nowadays accounting for more than 20% of all
HNSCC cases [3]. Currently, the main therapeutic modalities
include surgery, radiation, and chemotherapy. However, these
nonselective treatments may cause associated morbidity and
mortality and usually have high systemic toxicities.
Cetuximab, a monoclonal antibody-inhibiting EGFR, is the
only cancer-targeting agent approved for HNSCC, although
only ~10% of HNSCC patients respond to this agent and often
for a short period of time [4, 5]. Two immune check point
inhibitors targeting PD-1 have been recently approved by
the FDA for HNSCC patients, albeit the rate of response is
approximately 20%, lower than that of other malignancies,
such as melanoma [6–14]. There is an urgent need to develop
new effective strategies to prevent and treat HNSCC.
Understanding the contribution of genomic alterations driving
HNSCC initiation and progression may help explore novel
precision therapeutic options.
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2 Genomic landscape in head and neck cancer

Deep sequencing approaches for the study of cancer genomes
have recently revolutionized medical oncology [15]. By pro-
viding an unprecedented knowledge of the multiplicity and
diversity of genomic and epigenetic alterations which underlie
every individual cancer lesion, these approaches deepen the
understanding of dysregulated signaling circuitries andmolec-
ular mechanisms driving cancer development. Based on these
information, novel druggable targets for therapeutic interven-
tions in various human malignancies have been revealed.
Several recent reports [16–19] and a landmark study from
the Cancer Genome Atlas (TCGA) Network [1] has provided
a comprehensive genomic characterization of HNSCC, re-
vealing hundreds of mutations in each HNSCC lesion. This
complexity of genomic alterations makes it daunting to search
for molecular events driving the development of cancer, espe-
cially to differentiate driver from passenger mutations, the
latter having a minimal influence on tumor progression and/
or therapeutic response. However, in-depth analysis of the
HNSCC oncogenome suggests that despite the complexity
of the distinct molecular alterations in individual lesions, they
all fall within a limited number of dysregulated molecular
pathways that may contribute to most HNSCC patients [1, 3].

Specifically, the most frequently identified alterations in
HNSCC participate in biologic processes regulated by the
TP53 (71% mutated), FAT1 (23% mutated and 5% deleted),
NOTCH1 (9% mutated and 66% signaling pathway alter-
ations), CASP8 (10% mutated), CDKN2A (22% mutated and
60% gene copy loss) genes, and PIK3CA (~20% mutated and
30% signaling pathway alterations) [3]. This reductionist ap-
proach based on comprehensive genomic profiling may be
exploited to distinguish oncogenic signaling-related subgroups
from unselected cancer cohorts and facilitate the identification
of actionable therapeutic targets for HNSCC patients.

3 Activation of PI3K-mTOR signaling pathway
in head and neck cancer

A more pathway-specific analysis of the HNSCC
oncogenome suggests that most genomic alterations are in-
volved in aberrant mitogenic signaling routes, including the
PI3K, MAPK, and JAK/STAT pathways [17]. Remarkably,
the PI3K-mTOR pathway is mutated in the highest percentage
of the cases. In contrasts, MAPK and JAK/STAT pathways
harbor mutations in less than 10% of the lesions. Specifically
for PI3K, the in-depth analysis of TCGA data from 428 HPV−
and 76 HPV+ HNSCC samples [20] revealed that PIK3CA is
the highest mutated gene when considering all HNSCC cases
(16.8%), and PI3K mutations (PIK3CA, PIK3CB, PIK3CG,
and PIK3CD) are frequently mutated genes in 30% of the
HPV+ lesions. Moreover, PI3K mutations are not the only

genomic alterations causing the persistent activation of
PI3K/AKT/mTOR pathway in HNSCC. Various genetic and
epigenetic changes coordinate with PI3K mutations to sustain
activation of this pathway in HNSCC (Fig. 1).

For instance, DNA copy number gain and messenger RNA
(mRNA) overexpression of PIK3CA frequently occur in
HNSCC (20 and 52%, respectively). Other PI3K isoforms
and multiple PI3K regulatory subunits also have mutations
and copy number gains (0.5–11%). Over 90% of HNSCC
lesions overexpressed the epidermal growth factor receptor
(EGFR), which is upstream of PI3K/AKT signaling, a major
driver of epithelial cell proliferation. And a low frequency of
HNSCC cases has mutations in AKT2 and mTOR or its regu-
latory subunits, RICTOR and RAPTOR. A network-based
analysis of the HNSCC oncogene revealed that a high percent-
age of lesions also exhibit loss of at least one copy of a can-
didate PI3K/mTOR pathway tumor suppressor gene (TSG),
PTEN (31%), TSC1 (11%), TSC2 (13%), STK11 (34%), and
EIF4EBP1 (36%) [20]. Interestingly, co-occurrence of their
gene loss is a highly statistically significant event (Table 1).
Similarly, PIK3CA amplification co-occurs in a highly statis-
tically significant fashion with gene copy gains in PI3KCB,
encoding the PI3Kβ subunit. These occurrences of multiple
alterations may cooperate to persistently activate PI3K/AKT/
mTOR pathway in most HNSCC lesions.

HPV infection has been recently recognized as a viral eti-
ologic agent responsible for HNSCC, more specifically in the
oropharynx [21, 22]. While the overall incidence for HNSCC
continues to decrease, it is observed that the incidence of
HPV-associated HNSCC has a highly significant increase,
predominantly among young patients [23–25]. Among the
viral proteins encoded by high-risk HPVs (HPV16 primarily
in HNSCC), E6 and E7 function as major driver oncogenic
proteins. By disrupting p53 and RB tumor suppressor pro-
teins, respectively [26–28], E6 and E7 induce malignant trans-
formation. Recent findings suggest that HPV+ HNSCC has a
significant enrichment of PIK3CA mutations (25% more than
HPV−) and exhibit elevated mTOR activity [1, 29–31]. Of
note, E6 and E7 oncoproteins could not be therapeutically
targeted so far, making it essential to explore druggable targets
for HPV+ HNSCC, in which mTOR inhibition provides suit-
able therapeutic options [31].

Taken together, the above findings suggest that, although
genomic alterations found in HNSCC varies and are remark-
ably complex, most fall within certain oncogenic pathways,
most of which result in persistent aberrant activation of the
mTOR signaling pathway.

4 The roles of mTOR signaling pathway in cancer

The mTOR (mechanistic target of rapamycin) pathway regu-
lates major cellular processes involved in organismal growth

492 Cancer Metastasis Rev (2017) 36:491–502



and homeostasis [32–34]. Dysregulation of this pathway occurs
in multiple human diseases, such as cancer, obesity, type II
diabetes, and neurodegeneration, to name but a few [33].

In the past decades, mTOR-dependent processes have been
continuously uncovered. Briefly, mTOR is an atypical serine/
threonine protein kinase. By interacting with several proteins,
mTOR encompasses two distinct protein complexes: mTOR
complex 1 (mTORC1) (which includes raptor, pras40, deptor,
and mLST8) and mTOR complex 2 (mTORC2) (which in-
cludes rictor, mSin1, protor1/2, deptor, and mLST8) [33].
Through phosphorylation of two key eukaryotic translation
regulators, p70S6K (p70-S6 kinase) and EIF4EBP1 (4EBP1,
short for eukaryotic translation initiation factor 4E binding
protein 1), mTORC1 regulates ribosomal biogenesis and pro-
tein synthesis. In addition, mTORC1 also controls lipid

synthesis, autophagy, and metabolism by targeting key effec-
tors SREBP1/2, HIF1α, and ULK1/ATG13/FIP200, respec-
tively [32, 33]. mTORC2 directly phosphorylates AKT at
S473, and mTORC2 is required for activation of SGK1,
known as serum and glucocorticoid-regulated kinase 1, and
plays an essential role in multiple processes including cell
survival, neuronal excitability, and renal sodium excretion
[35–38]. Collectively, the mTOR pathway regulates cell
growth and components of the pathway are key molecules
involved in numerous pathological conditions.

Specifically for cancer pathogenesis, many studies have
documented the important role of mTOR pathway. Evidence
shows that deregulation of protein synthesis controlled by 4E-
BP/eIF4E, downstream of mTORC1, plays a central role
[39–43]. It is thought that mTOR phosphorylates and represses
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Fig. 1 Frequent genetic alterations of PI3K/mTOR signaling pathway in
HNSCC.Data was extracted from the HNSCC Cancer Genome Anatomy
(TCGA) effort, including 428 HPV(−) and 76 HPV(+) HNSCC samples.
Alterations identified in each key gene are shown, percentages outside

and inside parentheses represent HPV(−) and HPV(+) samples,
respectively. Red represents oncogene mutations and amplifications,
and green represents tumor suppressor gene mutations and copy losses
(copy loss refers to homozygous and heterozygous deletion of genes)
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the inhibitory activity of 4E-BP1 on eIF4E, affecting the trans-
lation of mRNA coding for a subset of pro-oncogenic proteins,
including cMYC and cyclin D1 [41, 43–49]. Lipid synthesis is
characterized as a hallmark for proliferation of cancer cells
[50]. SREBP1, a central pro-lipogenic factor, can be activated
by mTORC1 [51]. Autophagy has both tumor suppressive and
cancer cell survival protective effects. In a nutrient and oxygen
deprivation environment, autophagy makes cancer cells insen-
sitive to these stressors and provides survival advantage.
Meanwhile, autophagy may cause apoptosis due to lack of
energy storage. Activation of mTORC1 signaling inhibits au-
tophagy in cancer cells and may protect against autophagy-
induced apoptosis [33, 52]. In addition to mTORC1, recent
studies suggest mTORC2 plays a distinct role in multiple can-
cer types. The mTORC2-AKT-FOXO circuit regulates prolif-
eration, angiogenesis, and apoptosis [53–55].

These evidences point to the importance of mTOR path-
way in cancer initiation and progression. Due to the recent
characterization of molecular alterations found in HNSCC,
we now know that the PI3K/mTOR signaling circuitry is the
most frequent dysregulated signaling pathway in HNSCC, as
described above. Thus, the use of precise molecular therapeu-
tic approaches to reduce the activity of the mTOR pathway
could have anti-cancer effects in HNSCC, and the dissection
of the underlying mechanisms may help select the patient
population that will benefit the most from this therapy.

5 Targeting mTOR signaling pathway in head
and neck cancer

Rapamycin, also known as sirolimus, represents the first gen-
eration of mTOR inhibitors. It was firstly used as an immuno-
suppressant since the 1970s. Despite its anti-cancer activity
being discovered in the early 1980s, the application of

rapamycin for cancer therapy was not exploited until the late
1990s [32]. A class of drugs that target mTOR, termed
rapamycin analogues (also known as rapalogs), were subse-
quently developed [56–58]. Rapamycin and rapalogs block
primarily mTOR in its complex 1 (mTORC1) indirectly by
binding to FKBP12, while a second generation of mTOR
inhibitors block mTOR kinase directly, hence inhibiting both
mTORC1 and mTORC2 [34, 57–59].

To investigate the effectiveness of mTOR inhibitors in
HNSCC, a series of experimental models has been
established. Our group pioneered the use of rapamycin as a
single agent to treat HNSCC xenografts; rapamycin rapidly
decreased mTOR activity, as indicated by its marker, pS6, and
caused rapid tumor regression [60]. Since then, several groups
demonstrated anti-cancer effect of rapalogs in HNSCC xeno-
grafts either as a single agent or when combined with
chemotherapy/radiotherapy [61–66]. Genetically relevant cell
lines are necessary for xenograft models, and in recent studies,
we reported the detailed characterization of a large panel of
HNSCC-derived cell lines by performing exome and tran-
scriptome sequencing [30]. Not surprisingly, genetic alteration
in PIK3CA, HRAS, PTEN, and other agents which results in
PI3K-mTOR pathway activation were identified in those
panels, consistent with the HNSCC genomic landscape de-
scribed above. These efforts facilitated the identification of
biomarkers for diagnosis and treatment, providing selective
precision models for xenograft studies [30, 67]. Patient-
derived tumorgraft (PDX) models maintain the tumor hetero-
geneity of the primary tumor; thus, they may be better for
clinical outcome prediction. Many recent studies reported
the effectiveness of mTOR inhibitors in HNSCC PDXmodels
[68–70]. Meanwhile, chemically induced mouse SCC exper-
imental models were also established. The DMBA-TPA two-
stage chemical-induced carcinogenesis is widely used as a
mouse SCC experimental model, and in genetically defined
animals, such as mice conditionally expressing HPV E6/E7,
or lacking Pten or Tgfbr1, DMBA-TPA induces more SCC
lesions and more rapidly [71–73]. Another carcinogen, 4-
nitroquinoline-1-oxide (4NQO) that mimics tobacco use,
was optimized in our laboratory as an oral-specific chemical
carcinogenesis model [74]. Using drinking water with soluble
4NQO, oral tumors could be developed in the tongue within
several weeks. In both chemical carcinogenesis-induced
models, persistent mTOR activation was observed, which
could be blocked by administration of rapamycin, hence caus-
ing regression of SCCs [71–74]. Overall, these experimental
efforts led to a rationale for using mTOR inhibitors as a novel
precision therapeutic approach for HNSCC.

Several mTOR inhibitors are being used either alone or in
combination with chemotherapy or radiotherapy in HNSCC
clinical trials, including rapamycin (sirolimus), everolimus
(RAD001), temsirolimus (CCI-779), and others, as summa-
rized in Table 2. Most clinical trials using mTOR inhibitors in

Table 1 Frequent co-occurrence of genomic alterations in OSCC. Co-
occurrence and mutually exclusivity in genomic alterations in the
PI3K/mTOR signaling network (Fig. 1) was computed using the
cBioPortal bioinformatics platform. Significant interactions (p < 0.05)
were included

Gene-gene P value Log odds ratio Association

PIK3CA-PIK3CB < 0.001 > 3 Co-occurrence

PTEN-TSC2 < 0.001 0.917 Co-occurrence

STK11-TSC2 < 0.001 0.889 Co-occurrence

STK11-TSC1 < 0.001 1.021 Co-occurrence

PIK3CB-PIK3CG 0.004 1.524 Co-occurrence

HRAS-STK11 0.017 < −3 Mutual exclusivity

STK11-EIF4EBP1 0.022 0.403 Co-occurrence

PIK3CB-PTEN 0.032 0.592 Co-occurrence

HRAS-PTEN 0.041 < −3 Mutual exclusivity
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HNSCC are under evaluation or have been recently complet-
ed. Our study treating newly diagnosed HNSCC patients with
rapamycin (NCT01195922) showed encouraging outcomes,
as the majority of the patients (15 of 16) gained clinical im-
provement, including one patient with complete response
[75]. Meanwhile, metformin, a drug with well-established
safety profile routinely used in type II diabetes patients, has
been discovered as a potential anti-cancer agent by reducing
mTOR activity in experimental animal models [76, 77]. A
multi-institutional phase IIa trial (NCT02581137) in patients
with oral premalignant lesion (OPL) has been initiated to eval-
uate the effect metformin for oral cancer prevention. It is ex-
pected that the patients with HNSCC or OPL could benefit
from these experimental efforts and relevant clinical trials.

6 mTOR co-targeting strategies in HNSCC to bypass
drug resistance

Molecular mechanism-based precision medicine provides
promising rationale for cancer therapy. However, the clinical
efficacy of several agents is frequently compromised due to the
emergence of drug resistance. Specifically for therapeutic drugs
targeting the mTOR pathway, despite the fact that promising
outcomes were achieved using mTOR inhibitors in experimen-
tal models and rapamycin showed encouraging result in the
adjuvant setting in a HNSCC clinical trial (NCT01195922,
Table 2), advanced HNSCC patients may still display unpre-
dictable drug resistance. One possible reason is that HNSCC
patients, similar to other cancer types, usually receive multiple
rounds of radiation and chemotherapy. This may cause DNA
damage; thus, the consequent genetic alterations and epigenetic
regulation can induce the emergence of drug resistance.

Understanding the molecular basis of potential drug resis-
tance has emerged to be a formidable challenge. To date, diverse
mechanisms of drug resistance have been discovered, including
adaptive changes impacting drug pharmacokinetics (such as
absorption, distribution, metabolism, and excretion), structural
changes in the drug-binding domain of targeted molecules, and
(re)activation of pro-survival signaling pathway. Mechanisms
of resistance vary depending on the individual drug. For exam-
ple, metformin, a novel drug candidate for cancer prevention, is
proved to inhibit mTOR signaling [78], and low expression of
organic cation transporter 3 (OCT3/SLC22A3), a metformin
uptake transporter [77, 79] causes resistance to metformin.
The immunodetection of OCT3 expression levels in HNSCC
cases provide a surrogate marker which may predict a favorable
response to metformin, and on the other hand, it may also sug-
gest that patients with low OCT3 expression may be excluded
from metformin trials [77, 79].

Changes in the structure of drug target proteins are fre-
quently observed in experimental models when cell lines were
continuously exposed to certain precision medicines.

Selective pressure leads tumor cells to develop resistant sub-
populations. It is reasonable to predict that a patient with long-
term use of a drug may experience similar situations.
Structure-based functional design of drugs could be used to
optimize existing compounds to target altered drug-insensitive
proteins. For example, deep sequencing of MCF7 breast can-
cer cells acquiring mTOR resistance revealed the juxtaposi-
tion of the binding sites of rapamycin and AZD8055, an
mTOR kinase inhibitor. Based on this knowledge, it was pos-
sible to develop a bivalent mTOR inhibitor. This third-
generation mTOR inhibitor, named RapaLink-1, maintained
activity in both rapamycin-resistant and AZD8055-resistant
xenografts in breast cancer [80]. This drug discovery effort
provides opportunities for precision medicine approaches to
target mTOR for cancer therapy.

Perhaps more often, targeted agents promote the activation
of adaptive survival signaling in tumor cells, either by the same
or parallel pathways to mTOR. For example, rapamycin-
induced feedback phosphorylation and activation of Akt sig-
naling is frequently reported [81–84]. Also, mTOR inhibition
by rapamycin and other TOR kinase inhibitors induces tyro-
sine receptor kinase and ERK/MAPK feedback activation
[84–87]. Low expression of 4E binding protein 1 (4EBP1), a
primary downstream substrate of mTOR suppressing eukary-
otic translation initiation factor 4E (eIF4E), may confer resis-
tance to mTOR inhibitors [39–41]. Other dysregulations in-
clude p27, PP2A, PIM, and many others, but their roles in
resistance to mTOR inhibition are less characterized [33].

To date, precision therapeutic strategies, mTOR inhibition
included, are designed based on the concept of oncogene ad-
diction, in which the growth and survival of cancer cells can be
often impaired once one single oncogene is inhibited [88].
However, the discoveries of drug resistance bring to attention
the importance of co-targeting strategies. In fact, numerous
clinical trials using mTOR inhibitors are being carried out in
combination with other targeted therapy (Table 2). The knowl-
edge of the mechanism of resistance to mTOR inhibition may
provide optimized second target(s) to be combined with as a
therapeutic option. For instance, compensatory increased Akt
and/or ERK signaling after mTOR inhibition are responsible
for tumor relapse and their targeted agents have been widely
investigated [81–87]. Consistent with the above findings, we
recently performed a synthetic lethality screen using shRNA
libraries in HNSCC cell lines and found that co-targeting nu-
merous molecules involved in ERK/MAPK pathway sensi-
tizes the growth suppressive activities of mTOR inhibition.
Indeed, trametinib, a MEK1/2 inhibitor, exhibited a synergistic
effect by sensitizing HNSCC to rapamycin [89]. In another
study, co-targeting mTOR with cetuximab, a monoclonal anti-
body targeting EGFR that acts upstream of both Akt and ERK
pathway, prevented the growth of HNSCC tumor xenografts
by decreasing cell proliferation and lymphangiogenesis [90].
Of importance, safety of cetuximab has been proven and its
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combination with mTOR inhibitors may minimize their side
effects. These pre-clinical efforts have provided a rationale for
using mTOR co-targeting strategies in HNSCC patients.

7 mTOR and cancer immunology

Cancers, including HNSCC, are immunosuppressive diseases.
Cancer cells normally avoid immune surveillance and anti-
tumor immune response by recruiting myeloid-derived suppres-
sor cells (MDSC) and suppressive regulatory Tcells (Tregs) [91],
while macrophages undergo polarization toward an immune sup-
pressive (M2) tumor-associated macrophage (TAM) phenotype
[92–94]. In HNSCC, patients often have low absolute lympho-
cyte counts (ALC), impaired natural killer (NK) cell activity, and
poor antigen presentation function compared to healthy volun-
teers [6]. To recognize cancer cells as foreign instead of self and
effectively attack them by the immune system, three general cat-
egories, known as immuno-oncology (IO) therapies, could be
applied, including checkpoint inhibitors, immune stimulatory cy-
tokines, and cancer vaccines [6, 95]. Recently, revolutionary ther-
apeutic strategies have been used to restore T cell-mediated anti-
tumor immunity in HNSCC by targeting immune checkpoint

molecules, such a PD-L1 and PD-1. These studies demonstrated
immune modulation and durable remissions and led to the recent
approval by the FDA of anti-PD-1 antibodies, nivolumab and
pembrolizumab, for use in HNSCC treatment [6–11].
Numerous trials in HNSCC are being evaluated. However, the
overall response rate to these IO therapies in HNSCC is only
~20% [6–11]. There is a clear need to identify therapeutic options
to enhance the response to these IO agents in HNSCC.

Both precision therapies and IO therapies are novel thera-
peutic modalities being under clinical evaluation for cancer
treatment. This provides numerous potential opportunities for
synergistic treatment strategies. Specifically for mTOR inhibi-
tion, the mTOR pathway was early considered to be a target of
immunosuppressive therapy, and rapamycin has been used in
renal transplant patients who were also taking cyclosporine and
corticosteroids [96]. Nonetheless, rapamycin-treated patients
have similar numbers of myeloid dendritic cells (DCs) and
plasmacytoid dendritic cells (pDCs), suggesting that at the dose
used, rapamycin does not compromise the DC compartments in
patients [97]. Moreover, in cancer patients, multiple trials using
single-agent rapamycin (or rapalogs) have shown no evidence
of increased incidence of immunosuppression [98–100].
Paradoxically, recent basic and clinical studies have associated

Fig. 2 mTOR inhibition may enhance the anti-tumor immune response.
A DCs capture tumor antigens and present them to T cells through MHC
(class I and class II) pathways. mTOR inhibition induces apoptotic cells,
which may contribute as vaccination in situ. B mTOR inhibition drives T
cells toward long-lived tumor specific memory T cells. C The inhibitory
molecule PDL1 from tumor cells can bind PD1 in T cells and weaken
effector T cell’s function. Co-targeting mTOR may reduce PD-L1

expression, restraining PD-L1/PD1 mediated inhibition. Effector T cells
refer to as cytotoxic T cells (CD8+) and helper T cells (CD4+). D
Immunosuppressive cytokines secreted by Tregs and MDSCs inhibit
anti-tumor response. mTOR inhibition may prevent cytokine secretion
by regulation of their translational control. DCs dendritic cells, MHC
major histocompatibility complex, Tregs regulatory T cell, MDSCs
myeloid-derived suppressor cells
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rapamycin with increased immune responses and potentiation
of the activity of IO agents in cancer models [101–109]. Thus,
it is possible that co-targeting mTOR may potentially enhance
rather than reduce the anti-tumor activity of IO agents.

The generation of anti-tumor immune response usually re-
quires multiple steps, including (1) tumor antigen (peptide epi-
tope) capture, (2) effector T cell differentiation, and (3) evasion
of negative regulation [91]. Firstly, mTOR inhibitors, similar to
many other cancer precision therapeutic options, may cause pro-
grammed cancer cell death [110]. The apoptotic tumor cells
killed in situ can expose multiple antigens. Similar to a variety
of cancer vaccines, those antigens can be processed into major
histocompatibility complex (MHC) class I and class II path-
ways, to activate CD8+ T cells and CD4+ T cells, respectively
[91]. Secondly, mTOR has double-edged sword effects during
the progress of T cell differentiation. While mTOR activation
programs their differentiation into functionally distinct lineages
[111], mTOR inhibition drives T cell toward long-lived tumor
specific memory T cells [91]. Thirdly, the checkpoint proteins
CTLA4 and programmed cell death protein 1 (PD1) are among
the major inhibitory molecules suppressing activated T cells
[112–115]. We reported in a HNSCC mouse model that an
increase in programmed death-ligand 1 (PD-L1) expression
can be elicited by Pten gene deletion [116], suggesting PI3K/
mTOR pathway activation contributes to PD-L1/PD1 stimula-
tion in HNSCC. A recent study showed that co-targetingmTOR
and PD-L1 enhances tumor control by increasing the IFNγ
production capacity in peripheral and tumor-infiltrating CD8 T
cells in a syngeneic oral cavity cancer model [109]. Meanwhile,
tolerogenic cytokines secreted by regulatory T (Treg) cells and
MDSCs also inhibit anti-tumor immune responses [117, 118].
The expression of inhibitory molecules, such as interleukin-10
(IL-10) and transforming growth factor-β (TGFβ) could be de-
creased by mTOR inhibition [119–122] (Fig. 2).

Therefore, although counterintuitive, emerging evidence
supports that PI3K/mTOR inhibition can be optimized to en-
hance, rather than suppress, the anti-tumor immune response
by overcoming immune evasion in a context-dependent fash-
ion. Thus co-targeting the mTOR signaling circuitry based on
the genetic stratification of PI3K/mTOR network subtypes
with IO agents, may represent a novel precision immune ther-
apeutic approach for HNSCC.

8 Conclusion

In summary, the importance of mTOR signaling circuitry in
HNSCC has been well documented, and targeting mTOR as a
precision therapy approach in HNSCC has been widely inves-
tigated in experimental models, and recently tested in clinical
trials. Newly developed genetic approaches could be applied
to evaluate the status of mTOR activation which may predict
individuals’ clinical response to this precision therapy. This

mechanism-based therapeutic approach may help select pa-
tient populations that may benefit the most from the concom-
itant administration of mTOR inhibitors, and also provide im-
proved therapeutic options, namely co-targeting strategies to
circumvent innate and acquired resistance to mTOR inhibi-
tors. Furthermore, there is now a strong rationale for co-
targeting mTOR with IO agents to enhance their anti-tumor
activity. Overall, we can expect that the development of novel
mTOR co-targeting strategies may achieve durable responses
and cancer remission, hence increasing the life expectancy
and quality of life of HNSCC patients.
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