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Abstract Tumor cell-induced platelet aggregation facilitates
hematogenous metastasis by promoting tumor embolization,
preventing immunological assaults and shear stress, and the
platelet-releasing growth factors support tumor growth and
invasion. Podoplanin, also known as Aggrus, is a type I trans-
membrane mucin-like glycoprotein and is expressed on wide
range of tumor cells. Podoplanin has a role in platelet aggre-
gation and metastasis formation through the binding to its
platelet receptor, C-type lectin-like receptor 2 (CLEC-2).
The podoplanin research was originally started from the clon-
ing of highly metastatic NL-17 subclone frommouse colon 26
cancer cell line and from the establishment of 8F11 monoclo-
nal antibody (mAb) that could neutralize NL-17-induced
platelet aggregation and hematogenous metastasis. Later on,
podoplanin was identified as the antigen of 8F11 mAb, and its
ectopic expression brought to cells the platelet-aggregating
abilities and hematogenous metastasis phenotypes. From the
8F11 mAb recognition epitopes, podoplanin is found to con-
tain tandemly repeated, highly conserved motifs, designated
platelet aggregation-stimulating (PLAG) domains. Series of
analyses using the cells expressing the mutants and the
established neutralizing anti-podoplanin mAbs uncovered that
both PLAG3 and PLAG4 domains are associated with the
CLEC-2 binding. The neutralizing mAbs targeting PLAG3
or PLAG4 could suppress podoplanin-induced platelet aggre-
gation and hematogenous metastasis through inhibiting the
podoplanin–CLEC-2 binding. Therefore, these domains are
certainly functional in podoplanin-mediated metastasis

through its platelet-aggregating activity. This review summa-
rizes the platelet functions in metastasis formation, the role of
platelet aggregation-inducing factor podoplanin in pathologi-
cal and physiological situations, and the possibility to develop
podoplanin-targeting drugs in the future.
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1 Platelet aggregation in hematogenous metastasis

Many reports have suggested that platelets are associated with
cancer [1, 2]. In cancer patients with advanced disease, venous
thromboembolism is frequently occurred. The cancer-
associated venous thromboembolism is a serious leading
cause of death [3]. Adding to recurrent thromboses increase
the risk for cancer, cancer patients are more likely to develop
metastasis after thromboembolism experiences. These recent
observations more strongly suggest that there is an association
between platelet activation and cancer and that activated plate-
lets have a role in cancer progression.

Many agents inhibiting platelet activation, such as the cyclo-
oxygenase inhibitor aspirin, phosphodiesterase inhibitors, and
prostacyclin, have been shown to suppress metastasis in experi-
mental animal models [4]. Furthermore, a calcium channel
blocker, verapamil, reportedly suppresses platelet aggregation
in vitro and hematogenousmetastasis and spontaneous metasta-
sis in mouse melanoma B16 and mouse colon adenocarcinoma
26 (colon 26) cells without significantly inhibiting the growth of
the primary tumors [5]. These evidences suggest that platelet
aggregation has a role in hematogenous metastasis. In addition
to these findings in experimental models, recent robust clinical
analyses have indicated that the anti-platelet agent, aspirin, re-
duces thefrequencyofmetastasisandincreasessurvival incancer
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patients [6,7].However, thesuppressiveeffects inclinicalstudies
of other agents—such as the anti-coagulant agent low-
molecular-weight heparin—on tumor progression remain con-
troversial. Besides, the experimental metastasis model was de-
veloped to evaluate the relationship between tumor-induced
platelet aggregation and embolization and metastasis. Tsuruo
et al. performed in vivo selection in which lungs excised from
mice subcatenously (s.c.) transplanted with colon 26 cells were
s.c. injected toothermicerepeatedly toestablishacolon26-select
line(P-select26) thatpotentiated theformationof lungmetastasis
nodules of colon 26 and established subclones from P-select 26
[8]. The characteristics of the subclones derived fromP-select 26
were analyzed, and a comparison of subclones with highly met-
astatic and poorly metastatic potentials showed that platelet ag-
gregation capability was positively correlated with metastasis
potential. Mahalingam et al. also isolated subclones of fibrosar-
coma,someofwhichshowedhighmetastaticpotential andplate-
let aggregation ability; however, other subclones showedno cor-
relation betweenmetastasis ability and platelet aggregation abil-
ity [9]. Thus, the capacity of a tumor to induce platelet aggrega-
tion is among the key factors for hematogenous metastasis for-
mation, although metastasis is not controlled by this capability
alone. Lungmetastasis in the clones that exhibited highmetasta-
sis potentials and platelet aggregation capacity was suppressed
by the induction of thrombocytopenia induced by anti-platelet
antibodies or neuraminidase or by prostacyclin treatment [9].
These findings suggest that suppressing platelet activation has
potential as a treatment formetastasis.However, amore efficient
approach is to target the tumor-specific pathway that activates
platelets, thereby avoiding the risk for bleeding inpatients before
and after surgery.

So far, many pathways on how platelets promote tumor me-
tastasis are suggested. In hematogenous metastasis, more than
99.9%of intravasated tumor cells die in circulation because they
are exposed to shear stress and eliminated by natural killer (NK)
cells before reaching the parenchyma of distant tissues [10, 11].
However, some highly metastatic tumor cells can escape these
fates by evoking platelet aggregation and building tumor cell–
platelet aggregates. The tumor cell–platelet aggregates are easily
trapped in microvasculature possibly because of their large size
and adhesiveness to vessel wall of activated platelets, which is a
prerequisite step for extravasation (Fig. 1). As covered by plate-
lets, tumor cells are prevented from shear stress and immunolog-
ical elimination (Fig. 1). As reported, the immune surveillance
from NK cells is suppressed by some membrane proteins
expressedonplatelets, such as glucocorticoid-induced tumorne-
crosis factor receptor-related ligand [12]andMHCclass I [13],or
by releasing platelet-derived growth factor (PDGF) and
transforminggrowthfactor-β (TGF-β) fromaggregatedplatelets
[14, 15]. Adding to the effects on immune surveillance, many
releasates fromactivated platelets affect properties of tumor cells
andmetastaticsites (Fig.1).Theaggregatedplatelet-derivedATP
[16], CXCL5 andCXCL7 [17], and TGF-β [18, 19] support the

intravascular extravasation of tumor cells, and aggregated
platelet-derived lysophosphatidic acid facilitates the preparation
of pre-metastatic niches to promote bone metastasis formation
[20]. Not only in the circulation, tumor cells could interact and
activate platelets in the primary tumor because of leaky vessels,
which suggest that platelet effects come to primary tumor cells.
Weneedtoclarify thepathwayto tumorprogressionpromotedby
platelets and the effect by targeting tumor–platelet pathway on
many roles of platelets in pathological but in physiological
condition.

2 Podoplanin: a novel platelet aggregation-inducing
factor

To target tumor-specific platelet activation, identification of
factors contributing to tumor–platelet interaction and inducing
platelet activation is important. Tumor–platelet interaction de-
pends on several factors: integrin, sialyl Lewisx/sialyl Lewisa,
and so on [1]. Tissue factor expressed by tumor cells can also
activate platelets.

To elucidate the factor expressed in tumor cells that induces
platelet aggregations, Watanabe et al. immunized rats with the
membrane fraction of a highly metastatic subclone (NL-17)
derived from the P-select 26 line [8] to establish monoclonal
antibody (mAb)-producing hybridomas [21]. A purified mAb
designated 8F11 showed higher reactivity toward highly met-
astatic NL-17 than toward weakly metastatic NL-14, and it
inhibited NL-17-induced platelet aggregation. In a mouse
melanoma, the mAb showed stronger reactivity to a highly
metastatic B16F10 variant than to its original cell line, B16,
and it inhibited B16F10-induced platelet aggregation [22].
Furthermore, 8F11 mAb inhibited NL-17-induced experimen-
tal lung metastasis [23].

An 8F11 mAb affinity-purified 44 kDa glycoprotein (gp44)
induces platelet aggregation in vitro, and its platelet aggregation
activityisreducedwhenit isdeglycosylatedbysequentialtreatment
withneuraminidaseandO-glycanase [24].Glycosylationhindered
protein identificationusingmass spectroscopy.Amongaccumulat-
ed annotations of proteins, mouse T1α antigen was expected as a
candidate for 8F11 mAb-reactive gp44. The stable expression of
mouse T1α antigen on the surface of Chinese hamster ovary
(CHO) cells was detected with 8F11 mAb, and the dominant
platelet-inducing factor expressed in theNL-17subclonewas iden-
tified and designated Aggrus (thereafter, podoplanin) [25]. The
expression of mouse podoplanin, a human podoplanin ortholog,
also induced platelet aggregation capability in CHOcells.

After the identification of the epitope recognized by the
8F11 mAb and observations of conservation among species,
the functional domain critical for platelet aggregation activity
was speculated and designated the platelet aggregation-
stimulating (PLAG) domain (see Sect. 4). The PLAG is
tandemly repeated three times in a conserved manner
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(PLAG1–3) [26]. Possible O-glycosylation sites at Thr34 in
PLAG1 and Thr52 in PLAG3 have been suggested to be im-
portant for podoplanin-dependent platelet aggregation [25].
Podoplanin is a type I transmembrane sialomucin-like glyco-
protein expressed on the cell surface of various tumors and
some normal tissues (see Sect. 3). Before its identification as a
factor promoting tumor metastasis through platelet aggrega-
tion, it had been discovered independently in various mam-
malian species and given different names: T1alpha as a water
channel in humans, mice, and rats [27]; gp40 in dogs [28];
gp36 as a vascular endothelial glycoprotein in humans [29];
OTS-8 as a tumor marker [30]; 8.1.1 mAb antigen [31]; M2A
as a D2-40 antigen [32]; and PA2.26 in mice [33] among
others. These designations are synonymous with podoplanin.

3 Pathological and physiological functions
of podoplanin

3.1 Physiological expression and function

For normal condition, podoplanin is expressed on lymphatic en-
dothelial cells, alveolar epithelial type I cells in lung, kidney

podocytes, lymph node-derived fibroblastic reticular cells
(FRCs), and central nervous system [31, 34–38].
Physiologically podoplanin functions during development, as
podoplanin null mice show increased embryonic lethality with
disorder in heart development [39] or die after birth owing to
respiratory failure and not inflated lung [40, 41]. The defect in
the separation of the blood lymphatic vessels is indicated as one
of the leading cause [42]. And the C-type lectin-like receptor 2
(CLEC-2) null mice also show the defect in blood lymphatic
vessel separation, and the relation of lymphatic podoplanin-
mediated platelet aggregation is suggested [43]. In addition, the
physiological functions of podoplanin are suggested in postnatal
stage. For immune surveillance, lymphocytes enter lymphnodes
through specialized blood vessels named high endothelial ve-
nules (HEVs). Podoplanin has a role inmaintainingHEVbarrier
function, as the podoplanin deficiency exhibits loss of HEV in-
tegrity and spontaneous bleeding in lymph nodes. In this func-
tion, the sphingosine-1-phosphate release during podoplanin-
mediatedplatelet aggregation is indicatedas akey inmaintaining
the integrity of HEV [44]. Not only through the platelet interac-
tion, but CLEC-2-expressed dendritic cells cause stretching of
stroma by affecting podoplanin-expressed FRC, which leads to
lymph node expansion in immune response [45]. And also the

Fig. 1 Platelets promote tumor
progression through the tumor-
induced activation and
aggregation. In the circulation,
tumor cells interact with platelets
and produce tumor–platelet
aggregates. The aggregates
covered by activated platelets
resist against shear stress and
suppress immunological assaults
by NK cells through the display
MHC class I and platelet
releasates. Tumor–platelet
aggregates prone to adhere and
form emboli in microvasculature,
which could promote metastasis
formation. Platelet releasates also
contribute to the formation of pre-
metastatic niche and promote
tumor growth and metastasis
property, EMT/invasion which
could contribute to extravasation.
Primary tumor possibly interacts
with platelets leaked from vessels,
and then, activated/aggregated
platelets contribute to tumor
progression through releasing
factors same as in the circulation
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interaction between CLEC-2 on megakaryocytes and
podoplanin on FRC-like stroma cells is suggested to promote
megakaryocyte expansion and proplatelet formation in bone
marrow [46]. Recent accumulated reports suggest physiological
functionsofpodoplanin in thedevelopmentof lymphaticvessels,
lymph nodes, and immune responses. We need to know more
details about the mechanism for targeting podoplanin in cancer
(see Sect. 5).

3.2 Pathological expression and function

Pathologically, enhanced expression of podoplanin in ad-
vanced atherosclerotic lesions is suggested to contribute to
thrombus formation leading to cardiovascular events [47].
And, podoplanin expression on Th17 cells has a role in the
formation of ectopic lymphoid follicles in chronic autoim-
mune inflammatory diseases [48]. Podoplanin is expressed
on various tumor cells, including squamous cell carcinomas
(SCCs), glioblastoma, osteosarcoma, bladder carcinoma, me-
sothelioma, and seminoma [32, 49–53], and its expression
correlates with poor prognosis in brain and lung tumors
[54–56]. Furthermore, podoplanin expression level correlates
with the metastasis in oral SCC and bladder tumors [51, 57].
Not only in tumor cells themselves but also in cancer-
associated fibroblasts (CAFs), podoplanin expression is ob-
served and correlated with tumor malignancy and poor prog-
nosis in lung, breast, pancreatic, and liver cancer [58–61].
Podoplanin-expressed CAFs contribute the resistance to epi-
dermal growth factor receptor (EGFR) tyrosine kinase inhib-
itor gefitinib [62]. Podoplanin-expressed lymph node stromal
cells enhance tumor growth in vivo by eliminating CD4+

tumor-infiltrating lymphocytes that limit the efficiency of tu-
mor immunotherapy [63]. Many reports suggest that
podoplanin promotes tumor and metastasis; however, there
are several controversial reports that podoplanin expression
in lung SCC correlates with lower incidence of lymph node
metastasis and good prognosis [64–66].

We described suggested function of activated and aggre-
gated platelets in tumor progression and metastasis in Sect. 1.
As described in Sect. 2, podoplanin is a platelet aggregation-
stimulating factor; thus, podoplanin expressed in tumor cells
could contribute to all pathways induced by platelet aggrega-
tion (Fig. 1). In fact, the dependency on podoplanin of tumor
embolization [51, 67], and the release of several platelet fac-
tors [19, 68, 69], was indicated. The PDGF release by
podoplanin-mediated platelet aggregation enhances in vitro
growth and the resistance for apoptosis through activation of
PDGFR-PI3K/Akt pathway in osteosarcoma cells [68]. The
TGF-β release by podoplanin-dependent platelet aggregation
promotes epithelial–mesenchymal transition (EMT) and inva-
sion of urinary bladder and lung SCC cells [19]. The EGFR
ligands containing EGF released by podoplanin-induced
platelet aggregation promote lung SCC tumor in vivo through

the EGFR signal activation [69]. These are reasonable as
podoplanin acts in the initial step of those pathways induced
by platelet aggregation. Moreover, some platelet-released
growth factors, such as TGF-β, basic fibroblast growth factor,
and EGF, promote the expression of podoplanin [70]. Thus,
the release of these growth factors may further accelerate
podoplanin-mediated platelet aggregation and promote tumor
growth and metastasis.

4 Functional domains and the post-translational
modification of podoplanin

4.1 PLAG domains and glycosylation

The PLAG1–3 domains of podoplanin are found as tandemly
repeated in a conserved manner, but their contribution in in-
ducing platelet aggregation differs over mammalian species
[26]. Possible O-glycosylation sites, Thr34 in PLAG1 of
mouse podoplanin and Thr34 in PLAG1/Thr52 in PLAG3
of human podoplanin, are implicated in platelet aggregation
[25, 26]. Sialyl O-glycosylation in podoplanin is central to
platelet aggregation-inducing activity, as indicated by studies
using enzymatic deglycosylation [24] and podoplanin-
expressing CHO mutant series which are deficient in glyco-
sylation pathways [71, 72].

Analyses of the glycosylation site and structure of
podoplanin with lectin blot, mass spectrometry, and Edman
degradation [71, 72] have revealed that podoplanin has a
disialyl-core 1 structure. This sialyl O-glycan structure could
be introduced into human podoplanin via a genetic engineered
yeast strain followed by in vitro sialylation, and thereafter, the
glycosylated podoplanin induced platelet aggregation [73]. A
structural analysis of the complex of the sialylO-glycosylated
podoplanin PLAG2/3 peptide using the engineered glycosyl-
ation system and the extracellular domain of podoplanin coun-
terpart on platelets, CLEC-2, has been reported [74]. From
that, Glu47, Asp48, and sialyl-glycosylated Thr52 in the
PLAG3 domain were shown to interact with CLEC-2.
However, the PLAG3-mutated podoplanin still exhibited
platelet aggregation-inducing ability [75]. To answer the dis-
crepancy, another conserved region located at distant with
repeated PLAG1–3 domains was identified in human
podoplanin as a critical domain for podoplanin-induced plate-
let aggregation, and designated PLAG4. The analyses using
PLAG-mutated podoplanin indicated that PLAG4 domain
dominantly contributes human podoplanin-induced platelet
aggregation than PLAG3, and the binding of human
podoplanin to CLEC-2 depends on PLAG3 and PLAG4 do-
mains [75]. Similarly to PLAG3, the contribution of Glu81,
Asp82, and Thr85 of PLAG4 in the CLEC-2 binding was
indicated. Thus, BGlu-Asp-(X)-X-X-Thr (ED[X]XXT)^ could
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be the motif required for CLEC-2 binding though sialyl gly-
cosylation in Thr85 of PLAG4 has not been shown.

4.2 Molecular identification of CLEC-2 as a natural
podoplanin receptor

CLEC-2 was identified functionallyasaplatelet receptor forplate-
let aggregation-inducing snake venom, rhodocytin [76, 77].
Similarities between podoplanin-induced and rhodocytin-induced
platelet activation signal pathway in Src kinase and phospholipase
Cγ2 (PLCγ2) dependency suggested that they share the same re-
ceptor.Andanalyses showed thatpodoplanin is an invivo ligandof
CLEC-2 [78, 79]. Now, the downstream cascade of podoplanin/
CLEC-2 leading to platelet activation is indicated. When
podoplanin or rhodocytin binds to CLEC-2, Src family kinase or
Syk,or both, phosphorylates tyrosine in thehemi-immunoreceptor
tyrosine-based activation motif in the cytoplasmic domain of
CLEC-2. Tyrosine phosphorylation is recognized by Syk through
its two Src homology 2 (SH2) domains, which results in Syk acti-
vation. Activated Syk phosphorylates the LATor SLP-76 adaptor
proteins,whichinduces theactivationofeffectorenzymes,PLCγ2,
andBtk, which leads to platelet aggregation [78, 80].

CLEC-2 expression occurs in platelets, megakaryocytes,
neutrophils, monocytes, granulocytes, myeloid, and dendritic
cells [81–85]. CLEC-2 null mice reportedly die during the
embryonic and neonatal stages with blood-filled lymphatic
vessels and edema resulting from defects in blood lymphatic
vessel separation [43]. This phenotype is similar to that of
podoplanin null mice [43, 86]. However, platelet-specific
and megakaryocyte-specific CLEC-2-deficient mice show
no embryonic lethality despite having defects in blood lym-
phatic vessel separation and mild thrombocytopenia [46, 87].
Thus, CLEC-2 expressed in cells other than platelets may play
a crucial role in maintaining life at the embryonic and neonatal
stages [87]. Podoplanin–CLEC-2 interaction occurs mainly
during development and in pathological situations such as
tumors. And importantly for targeting podoplanin–CLEC-2
interaction as a therapy, CLEC-2-deficient platelets remain
in the activation pathway stimulated by physiological agonists
such as thrombin, ADP, and collagen [86]. However, we need
to care about indication that podoplanin–CLEC-2 interaction
has a crucial role in the moderation of immune response.

5 Targeting podoplanin–CLEC-2 interactions
for cancer therapy

As described above, the formation of tumor cell–platelet aggre-
gates is central to the process of hematogenous metastasis. The
administration of anti-platelet agents to suppress platelet aggre-
gation can increase bleeding risk significantly in cancer patients
with thrombocytopenia due to chemotherapeutic drug toxicity.
On the other hand, the interaction between podoplanin on

tumor cells and CLEC-2 on platelets is hopeful target for sup-
pressing metastasis of podoplanin-positive tumors, because
CLEC-2 null platelets show aggregation induced by physiolog-
ical agonists such as thrombin, ADP, and collagen [86].

Our laboratory and others have developed a variety of anti-
podoplanin antibodies to neutralize podoplanin–CLEC-2 interac-
tionsand therebysuppresspodoplanin-mediatedplatelet aggrega-
tion and hematogenous pulmonary metastasis [75, 88–91]. As
human podoplanin uses both PLAG3 and PLAG4 domains for
CLEC-2 binding, podoplanin mAbs exhibiting neutralizing abil-
ity recognize region inpart ofPLAG3orPLAG4[75].Themono-
clonal antibody NZ-1, which recognizes human podoplanin
PLAG3, has shown neutralizing activity for podoplanin–CLEC-
2interaction,podoplanin-dependentplateletaggregation,andme-
tastasis [88, 92].Other established anti-humanpodoplaninmAbs,
P2-0 andMS-1 recognizing the PLAG3andPG4D2/PG4D2 rec-
ognizingPLAG4, suppressplatelet aggregationandmetastasisby
limitingCLEC-2 interaction [75, 90, 91]. Established podoplanin
mAbs indicate suppressive effect against platelet aggregation in-
ducedbypodoplanin-expressedCHO[75]and somepodoplanin-
positive tumor cells [67, 91]. Moreover, some podoplanin mAbs
reportedly show the suppression of in vivo hematogenousmetas-
tasis not only using podoplanin-expressed CHO cells but also
using podoplanin-positive human tumor cell lines [19, 51].
These accumulated evidences indicate that podoplanin mAbs
could be developed for clinical use. However, the verification
using endogenously podoplanin-expressing tumor cells is still re-
stricted. Available cell lines expressing podoplanin from public
cell bank are notmany, though podoplanin is expressed on a vari-
ety of tumors,which is shownby analyses using clinical samples.
And, thosecell linesare rarelyproper for in vivometastasismodel.
Actually, when we searched podoplanin-positive lung SCC cell
lineswhicharepublicavailable, it turnedout thatonlyonecell line
PC-10out of 10 cell lines exhibits podoplanin expression (Fig. 2),
even though clinical samples of lung SCCs showmore than 60%
podoplanin-positive lung SCC cell lines [93]. This suggests that
the characteristics of some tumor cells are changed in the process
for establishment of cell lines. Recently, we are trying to establish
patient-derived cell lines for podoplanin-positive lung SCC and
have succeeded to get several lines. The platelet aggregation in-
duced by established podoplanin-positive lung SCC cells is sup-
pressed by anti-podoplanin mAb PG4D2 strongly than byMS-1
(Fig. 3). Analyses using patient-derivedmodel are also required.

As mentioned in Sect. 3, podoplanin-induced platelet aggre-
gation resulted in the release of platelet factors which could
promote tumor progression. In fact, the release of PDGF and
TGF-β during podoplanin-positive tumor cell-induced platelet
aggregation is suppressed by anti-podoplanin mAbs. And the
hematogenous metastasis of urinary bladder SCC cell line, UM-
UC-5, is suppressed by the administration of anti-podoplanin
mAb PG4D and also by that of anti-TGF-β mAb 1D11 (Fig.
4). This might indicate that podoplanin-promoted metastasis
pathway depends on TGF-β mainly at least in UM-UC-5.
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Therefore, searching the downstream pathway of podoplanin
leading to metastasis is important for the development of effec-
tive strategy for therapy with targeting podoplanin.

Some established anti-podoplanin mAbs, for example, MS-1
and PG4D2, are identified as mouse IgG2a subtype, which
exhibits antibody-dependent cellular cytotoxicity/complement-
dependent cytotoxicity (ADCC/CDC) activities. At least, MS-1

mAbexhibitsanti-tumoractivityagainstpodoplanin-positivePC-
10xenograft tumor in immune-deficientNOD-SCIDmouse[91],
and the recombinant single-chain antibody variable region frag-
ment of MS-1 also suppresses podoplanin-mediated metasiasis
[89]. Therefore, the neutralizing ability of anti-podoplanin mAb
against podoplanin–CLEC-2 interactionmay be enough for sup-
pressing metasiasis or growth of podoplanin-positive tumors.
Some anti-podoplanin mAb requires ADCC/CDC activities for
suppression of tumor growth andmetastasis [94, 95].We cannot
ignore the dependency of ADCC/CDC activities of anti-
podoplanin mAbs as podoplanin is expressed in several normal
tissues and has some physiological roles (see Sect. 3) and need to
care the side effect in developing anti-podoplaninmAb as a ther-
apeuticdrug. In thatsense,LpMabseries,cancer-specificantibod-
ies recognizing cancerous aberrant glycosylated podoplaninan,
are potent for therapeutics [96]. Some anti-podoplanin mAbs
may be useful as diagnostic tools to identify patients with
podoplanin-positive tumor, as higher sensitivity than generally
used D2-40, anti-podoplaninmAb [97].

Against many anti-podoplanin mAbs have been established,
tools targetingCLEC-2areonlyfewreported.TargetingCLEC-2
on platelets rather than podoplanin on tumor requires a care for
platelet function in hemostasis. A small-molecule compound,
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assays. Although there are some differences in suppressive effect between
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2CP, which is a derivative of 4-O-benzoyl-3-methoxy-beta-
nitrostyrene, has been reported as a chemical inhibitor of
podoplanin-induced platelet aggregation [98]. 2CP exhibits di-
rect binding activity toCLEC-2 and therapeutic efficacy in com-
bination treatment with cisplatin in a mouse metastasis model
without causing defects in physiological platelet function in he-
mostasis. In another recent report, immunological depletion of
CLEC-2 by the treatment of mice with anti-CLEC-2 mAb
2A2B10 exhibited suppression of hematogenous metastasis
and thrombus formation of podoplanin-positive mouse melano-
ma cell B16F10without significant bleeding tendency [99].

More analyses using podoplanin-positive tumor cells and
tumor/metastasis model containing the patient-derived model
are required to provide insights into the development of new
therapies targeting the podoplanin–CLEC-2 interaction.
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