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Abstract Tumor cells exhibit striking changes in cell sur-
face glycosylation as a consequence of dysregulated glyco-
syltransferases and glycosidases. In particular, an increase in
the expression of certain sialylated glycans is a prominent
feature of many transformed cells. Altered sialylation has
long been associated with metastatic cell behaviors includ-
ing invasion and enhanced cell survival; however, there is
limited information regarding the molecular details of how
distinct sialylated structures or sialylated carrier proteins
regulate cell signaling to control responses such as adhe-
sion/migration or resistance to specific apoptotic pathways.
The goal of this review is to highlight selected examples of
sialylated glycans for which there is some knowledge of
molecular mechanisms linking aberrant sialylation to critical
processes involved in metastasis.
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1 Introduction

It has been known for decades that glycoconjugates play an
important role in cancer development and progression. An
alteration in the profile of cell surface glycans was one of
the earliest-identified hallmarks of a tumor cell, and many of
the anti-tumor antibodies produced by patients are specific
for carbohydrate antigens [1–4]. Cancer-associated glyco-
conjugates in serum and tissue have been used as important

biomarkers for disease progression [5–7]. Notably, the
changes in glycan structure following tumorigenic transfor-
mation are not random. There is a specific subset of oligo-
saccharides that becomes enriched on the tumor cell surface,
implicating a functional contribution to the tumor pheno-
type, and many of the glycosyltransferases that synthesize
these oligosaccharides are upregulated in response to onco-
genes such as Ras [3, 8].

Despite these long-standing observations, our under-
standing of the molecular mechanisms linking altered gly-
cosylation to tumor cell behavior has lagged behind most
other areas of cancer research. This is unfortunate in that this
dearth of knowledge has left largely unexplored an impor-
tant category of potential biomarkers or targets for drug
discovery and vaccine development. So why has the field
of cancer glycobiology progressed so slowly? While many
factors are likely involved, one of the challenges encoun-
tered is that, unlike the template-driven synthesis of oligo-
nucleotides and proteins, the synthesis of glycans
elaborating cell surface molecules is complex and not read-
ily predictable. Technologies for defining glycoconjugate
structure are still evolving, and there are limited methods
that can be used to determine the position of an oligosac-
charide within the three-dimensional structure of a glycan
carrier. For example, X-ray crystallography is difficult to
perform with glycosylated proteins, therefore the glycans
are typically enzymatically removed prior to crystallization.
As a consequence, current literature describing conforma-
tional analyses of proteins, or identification of protein–pro-
tein interaction domains, often excludes information
regarding how glycans might alter protein conformational
features or peptide-binding interfaces. It is generally as-
sumed that glycans extend into the extracellular space with
high mobility (and many do), however there is evidence that
at least some glycans are relatively fixed within the larger
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glycoprotein tertiary structure [9, 10], and glycans can also
form direct bonds with primary amino acid sequence [11,
12]. Another important factor not always appreciated is that
some monosaccharides, such as sialic acid, are negatively
charged at physiologic pH, thus the addition of such a sugar
(comparable to a phosphate group) has potential to alter
protein conformation and/or oligomerization. As well, sia-
lylation is emerging as a major regulator of cell surface
retention of various receptors.

In addition to modulating the conformation, clustering
and/or surface retention of an individual glycoprotein, gly-
coconjugates are ligands for numerous glycan-binding pro-
teins such as lectins [13, 14]. While studies of protein–
protein interactions have predominated in cancer research,
there is increasing recognition that associations between
tumor glycans and lectins are of great importance in regu-
lating many aspects of tumor cell behavior. Lectins exist as
intracellular, cell surface, or secreted molecules, depending
upon the species, and many secreted lectins are incorporated
into the extracellular matrix. Hence, glycan-lectin binding
partners represent another fundamental class of molecular
regulators of cell–cell and cell–matrix interactions. Eluci-
dating the biochemical details of these interactions has
proven challenging, however mounting evidence points to
a high degree of specificity, comparable to the role of
distinct amino acid motifs that drive protein–protein inter-
actions. Indeed, glycans have been referred to as the “third
alphabet of molecular biology” (the other two being proteins
and nucleic acids) [15]. This capacity to control cell–cell
and cell–matrix interactions, in combination with the known
effects of glycans on the structure/function of individual
glycoproteins, underlies the presumed role of glycans in
most metastatic cell behaviors including migration/invasion
through matrix, dissemination through the vasculature or
lymphatics, evasion from immune surveillance, and resis-
tance to apoptosis.

Given the multiplicity of carbohydrate modifications as-
sociated with human cancer, this review will have a restrict-
ed focus on one type of glycan modification, protein
sialylation. Experimental results gleaned from patient tissue
samples, animal cancer models, and cell culture studies,
suggest that altered sialylation is a major contributor to the
metastatic cell phenotype [16, 17]. The term “sialic acid”
refers to a group of approximately 50 different chemical
derivatives of neuraminic acid, with the most common var-
iant represented by N-acetylneuraminic acid (Neu5Ac,
Fig. 1a) [18]. Sialic acids are added onto the termini of
either N- or O-linked glycans of glycoproteins and can also
be added onto glycolipids (Fig. 1b). The overall level of cell
surface sialylation is regulated by numerous enzymes in-
cluding: (1) enzymes that control synthesis and availability
of the activated sialic acid substrate, CMP-sialic acid, (2) the
sialyltransferase family, which adds sialic acid during

glycoprotein biosynthesis, and (3) the sialidase (also called
neuraminidase) family, which cleaves sialic acid during
glycoprotein degradation. These enzymes typically reside
within subcellular compartments, with most sialyltrans-
ferases localized to the Golgi, and many of the sialidases
localized to lysosomes or endosomes. Aberrant activity of
both sialyltransferases and sialidases has been observed in
cancer; however, the literature overwhelmingly suggests
that sialylation levels are higher on tumor cells [3, 19].
Elevated sialylation is thought to be a relatively static tumor
cell characteristic, given that sialic acid is added during
glycoprotein biosynthesis, but recent studies indicate that
some enzymes involved in sialylation can be expressed on
the cell surface, or secreted as active soluble enzymes into
the extracellular milieu [20–23]. While not a focus of this
review, this opens up the fascinating possibility that the
sialylation of certain glycoproteins may be dynamically
regulated at the cell surface, providing a unique mechanism
for transient control of individual glycoprotein structure or
glycan/lectin interactions. One of the major barriers in our
understanding of tumor cell sialylation is that much of the
prior research was directed at correlating total surface sialy-
lation levels with cell responses, with limited regard for the
specific type of sialic acid chemical structure or linkage, or
the specific glycoprotein carrier of the sialic acid. This lack
of mechanistic knowledge has hindered investigative pursuit

Fig. 1 Types of glycosylation. a Structure of the most common sialic
acid, Neu5Ac. The negative charge is from the carboxylic acid group
on carbon 1. b N-linked glycans (left) are attached to asparagine (N)
residues on selected proteins containing the N-X-S/T consensus se-
quence, while O-linked glycans (center) are linked to serine (S) or
threonine (T) residues. Glycolipids (right) are lipids which carry gly-
can structures
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of glycans as clinical targets. The goal of this report is to
highlight some of the more prevalent tumor-associated
changes in specific types of sialylation, and discuss potential
molecular mechanisms by which these modifications influ-
ence metastatic progression.

2 Regulation of tumor cell surface sialylation

An upregulation in the expression of selected sialyltrans-
ferases is a common event in tumorigenic transformation
[16]. Sialyltransferases comprise a family of at least 20
different enzymes that differ in tissue distribution as well
as the type of sialic acid linkage elaborated [16, 24]. Some
sialyltransferases add sialic acid in an α2-3 linkage to ga-
lactose (Gal); whereas others add sialic acid in an α2-6
linkage to either Gal (e.g., the ST6Gal-I and ST6Gal-II
sialyltransferases) or N-acetylgalactosamine (GalNAc,
added by multiple ST6GalNAc sialyltransferases) (Fig. 2).
The third type of sialic acid linkage is directed by the
polysialyltransferase family, which adds an α2-8 linked si-
alic acid onto another sialic acid. Cancer-associated

dysregulation has been observed for selected members of
all three of these sialyltransferase categories. In conjunction
with aberrant sialyltransferase expression, certain sialidases
are also disrupted in human cancer, although far less is
known about the tumorigenic role of this enzyme family.
One example is the Neu1 sialidase, which is downregulated
in cancer cells, leading to higher levels of cell surface
sialylation (due to diminished sialic acid cleavage) [25].

An increase in α2-6-linked sialylation is frequently ob-
served in tumor cells, and is usually attributed to an upre-
gulation in either the ST6Gal-I sialyltransferase [16, 17,
26–28], which primarily sialylates N-linked glycans, or
members of the ST6GalNAc family, which sialylate either
O-linked glycans or glycolipids [24, 29]. The selective
enrichment of α2-6 sialic acids on tumor cells is significant
in that α2-6 sialylation can elicit very distinct biologic out-
comes as compared with α2-3 sialylation. One striking
example is the effect of α2-6 sialylation on galectin-
dependent cell behaviors. Galectins are lectins that bind
galactose-containing oligosaccharides [30–32]. Depending
upon the galectin species, galectins can be expressed either
intracellularly or extracellularly; in the latter case, some
galectins are found associated with the extracellular matrix
[33–35]. Extensive evidence suggests that α2-6 sialylation
of galactose serves as a generic inhibitor of galectin binding
[36, 37], unlike α2-3 sialic acids, which have variable
effects on binding depending upon the individual galectin
(Fig. 3). Accordingly, α2-6 sialylation serves as a key
negative regulator of many critical galectin functions. One
important activity of cell surface α2-6 sialylation is to block
the binding of pro-apoptotic galectins, thereby promoting
tumor cell survival [38].

Galectins are not the only glycan-binding proteins influ-
enced by the type of sialylation present on cognate glyco-
conjugate ligands. Sialic acid linkage, as well as chemical
structure (e.g, acetylation), are major determinants in ligand
recognition by sialic acid-binding immunoglobulin super-
family lectins (siglecs) [39–41]. Siglecs are mainly
expressed by immune cells, and the potential function of
siglecs in tumor biology has received minimal attention.
One envisions that changes in tumor cell sialylation could
affect the activity of siglec-expressing immune cells, and
consequently modulate the anti-tumor immune response.

Beyond their pivotal role in regulating interactions with
glycan-binding proteins, sialic acids can have direct effects
on specific glycoproteins that carry the sialic acid, which is
not surprising given the large size and negative charge of
this sugar moiety. The effect of sialylation on the structure/
function of a given glycoprotein will depend upon the
localization of the sialic acid within the larger glycoprotein
tertiary structure, which is difficult to determine due to
technical challenges. However, it is becoming clear that
sialylation can affect glycoprotein activity through many

Fig. 2 Sialic acid linkages. Sialic acids are added to the termini of
glycans in an α2-3, α2-6, or α2-8 linkage. In the top two panels, sialic
acid linkage to galactose is depicted, however other sugars, such as
GalNAc, can be modified with sialic acid, depending upon the type of
linkage. Note that the structures shown in the figure have been simpli-
fied (e.g., hydroxyl and acetyl groups are not represented)
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different mechanisms. As examples, sialylation alters: (1)
conformation of the β1 integrin [42, 43]; (2) clustering of
CD45 [44], EGFR [45], and PECAM [46]; and (3) cell
surface retention of PECAM [46] and the Fas death receptor
[47]. There is also evidence that sialylation modulates het-
erotypic associations between two distinct cell surface gly-
coproteins, as reported for the noncognate interaction
between CD8 and MHC class I proteins [48–50]. In addi-
tion, many membrane receptors are anchored on the cell
surface through a galectin-dependent mechanism that is
sensitive to α2-6 sialylation. Extracellular galectins form a
multimeric lattice-type structure that binds galactose-
containing receptor glycans, and stabilizes glycoprotein sur-
face localization [51–54]. Receptor α2-6 sialylation causes
release from the galectin lattice, leading to receptor inter-
nalization [20]. Conversely, α2-6 sialylation can facilitate
the surface retention of other types of receptors, albeit
through pathways that are not generally well-defined. Taken
together, the literature indicates that sialylation holds poten-
tial to influence tumor cell behavior at many different levels
including: regulation of individual glycoprotein conforma-
tion, clustering or surface retention, modulation of cis or
trans interactions between two distinct surface receptors,
and formation of ligands for glycan-binding proteins that
correspondingly control cell–cell and cell–matrix interac-
tions. In the remaining sections of this review, several

specific examples of tumor-associated sialoglycans are dis-
cussed. These were selected because of the greater knowl-
edge of molecular mechanisms linking these modifications
to tumor cell behavior as compared with many of the other
prevalent changes in tumor glycosylation.

3 Role of integrin sialylation in tumor cell migration
through extracellular matrix

Numerous studies suggest that increased cell surface sialy-
lation contributes to metastasis by stimulating tumor cell
movement through the extracellular matrix (ECM). In vitro
assays performed with many different cancer cell lines indi-
cate a strong positive correlation between migration/inva-
sion and high levels of surface sialylation [55–58].
Likewise, subclones of cell lines selected for enhanced
invasiveness often display elevated surface sialylation, in-
cluding clonal variants from lung [45], colon [59], melano-
ma [60], and T lymphoma [61] cells. The functional
importance of hypersialylation is supported by animal mod-
els of metastasis [62, 63]. Intrasplenic injections of two
differing populations of 51B colon cells; a heavily α2-6
sialylated population and a poorly sialylated population,
resulted in hepatic tumors formed almost exclusively by
the highly sialylated cells, indicating selective metastasis
[63]. Many other studies have shown that metastasis in
murine models can be blocked by pharmacologic inhibitors
of sialyltransferase activity [64–66] or sialic acid incorpora-
tion [62] or alternately, by pre-treatment of tumor cells with
sialidases [63]. Interestingly, certain types of sialic acid
linkages may regulate metastatic targeting of selected
organs; a breast cancer cell line selected for targeting to
bone had higher levels of α2-6-linked sialic acid [67],
whereas upregulation of ST6GalNAcV, which adds α2-6
sialic acid to gangliosides, directs breast cancer metastasis
to brain [68].

Though the circumstantial evidence linking sialylation to
metastasis is extensive, data regarding the specific molecu-
lar events driving invasive tumor cell behavior are lacking.
The prior experimental use of sialylation inhibitors and
sialidases, most of which have low specificity, generally
produced widespread ablation of cell surface sialylation,
affecting a multitude of glycoproteins and glycolipids. Com-
pounding this issue, such generic approaches are not typi-
cally representative of the physiologic changes that occur
during metastatic progression, which involve alterations in
the expression of specific enzymes. More recent studies
applying RNAi technology, or forced overexpression mod-
els that better recapitulate the tumor phenotype, are begin-
ning to reveal a more defined view of the role of sialylation
in metastasis. Several sialylation-related enzymes have been
targeted using this strategy, and such studies are yielding

Fig. 3 α2-6 sialylation blocks galectin binding. Galectins require a
free hydroxyl group on the 6 carbon of galactose for binding [37],
therefore α2-6 sialylation at this site inhibits galectin binding. In
contrast, α2-3-linked sialic acids have variable effects on binding,
depending upon the specific galectin species
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new insight into how distinct types of sialylation regulate
specific receptors to promote tumorigenic cell responses.

Some of the more compelling results implicating a spe-
cific sialoprotein in tumor cell migration and invasion have
been provided by studies of the integrin family of cell
adhesion receptors [69]. Integrin activity is involved in
many aspects of tumor metastasis including tumor cell de-
tachment from basement membrane, migration through the
stromal matrix, anchorage-independent cell survival in the
vasculature, adhesion to endothelium during extravasation,
and establishment of metastatic foci in novel ECMs. Glyco-
sylation of integrins has long been known to be required for
integrin function [69, 70], and integrins are regulated by
several different types of glycan structures [71–73]. Among
these, α2-6 sialylation of N-glycans is an important modu-
lator of a specific subset of integrins. The β1 integrin
subunit (but not β3 or β5 [74]) has been identified as a
substrate for the ST6Gal-I sialyltransferase in multiple
established cancer cell lines [56, 57, 75, 76]. Furthermore,
β1 integrins in human colon cancer tissues display elevated
α2-6 sialylation [56], which corresponds to the well-
documented overexpression of ST6Gal-I in many different
cancers, including colon carcinoma [16, 36]. ST6Gal-I is
upregulated in cancer as a consequence of signaling by
oncogenic Ras [74, 77–79].

The addition of α2-6-linked sialic acid to the β1 integrin
subunit alters the binding activity of several β1-containing
heterodimers including receptors for fibronectin (α5β1 [43,
80, 81]), VCAM-1 (α4β1 [42]), laminin (α3β1 [82]), and
collagen (α1β1 [74] and α2β1 [75]). Regulation of integrin
function by α2-6 sialylation has been confirmed by studies
using engineered cell lines, as well as ligand binding assays
performed with purified integrin receptors that have been
manipulated to express varying levels of sialylation. It has
also been shown that, of the ten N-linked glycans on the β1
integrin subunit [80], the three N-glycans within the β1 I-
like domain, a region involved in ligand binding, are essen-
tial for heterodimerization of the α and β subunits, and also
for ligand-induced cell spreading [83]. These recent results
confirm studies performed approximately 20 years ago
showing that N-glycosylation was indispensible for β1
integrin function [84, 85].

Mechanistic studies of sialylation-related β1 integrin ac-
tivity are few in number, however experiments using
activation-state reporter antibodies suggest that sialylation
alters β1 integrin conformation [42, 43], a finding supported
by molecular modeling approaches [86]. α2-6 sialylation of
collagen-selective integrins increases adhesion to collagen I,
enhances coupling of talin to the integrin cytosolic tail, and
stimulates cell migration (Fig. 4) [56, 57, 75]. In vivo
support for sialylation-dependent effects on integrin signal-
ing has been provided by Varki’s group, who used the
polyomavirus middle T antigen model of spontaneous breast

cancer to study ST6Gal-I [87]. Results from this study
showed that mammary tumors from ST6Gal-I null mice
exhibited a selective alteration in genes associated with
focal adhesion signaling, as well as diminished activation
of Focal Adhesion Kinase (FAK), a known downstream target
of integrin signaling. Tumors from mice lacking ST6Gal-I
were also more differentiated, suggesting that the overexpres-
sion of ST6Gal-I I that occurs in human carcinoma may
contribute to a poorly differentiated tumor phenotype.

ST6Gal-I-directed α2-6 sialylation of the β1 integrin stim-
ulates tumor cell migration and invasion through reconstituted
ECM (e.g.,Matrigel) [56, 57, 75]. Cells that are null for theβ1
integrin do not exhibit differential invasion upon forced
ST6Gal-I expression [75], supporting the hypothesis that the
effect of upregulated ST6Gal-I is mediated specifically by the
β1 integrin. The interaction between integrins and collagen I
is thought to be important in metastasis. Microarray studies
performed on diverse tumor types identified collagen I as part
of a 17-gene signature associated with increased metastasis
[88]. The deposition of collagen I in the metastatic microen-
vironment induces dormant tumor cells to form proliferative
metastatic lesions, and this transition is dependent upon β1-
integrin signaling [89]. In addition, collagen reorganization at
the tumor-stromal interface facilitates local invasion [90] and
collagen I fibers provide tracks along which tumor cells
migrate during transit to blood vessels [91]. The α2β1
collagen-selective integrin has been suggested as a principal
player in metastatic progression; comparative analyses of
primary colorectal cancers with corresponding liver and lung
metastases suggest that the α2 integrin subunit contributes to
liver targeting [92].

Recently a second integrin family member, α6β4 (a
laminin-binding receptor), has been reported to be affected
by sialylation [25]. In this instance, elevated sialylation of
the β4 integrin subunit resulted from decreased expression

Fig. 4 Regulation of integrins by sialylation. α2-6 sialylation of N-
linked glycans on the β1 integrin enhances cell adhesion to collagen I
and stimulates migration and invasion
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of a sialidase rather than increased expression of a sialyl-
transferase. Downregulation of the Neu1 sialidase, which
localizes in part to the plasma membrane [25, 93, 94], was
associated with enhanced cell invasiveness and metastatic
potential in rat and murine cancer cells [95, 96]. To elucidate
the effects of Neu 1 on integrin activity, Neu1 expression
was forced in human colon cancer cell lines [25], which led
to an accompanying gain in sialylation on the O-linked
glycans of the β4 subunit. While the effect of sialylation
on α6β4 structure has yet to be determined, sialylation
clearly influenced α6β4 signaling because the β4 subunit
displayed reduced phosphorylation, and α6β4-induced
FAK activation was diminished. Importantly, forced Neu1
expression inhibited experimental metastasis to liver [25].
These studies of α6β4, along with β1, point to specific
integrin sialoforms (and other glycoforms not discussed
herein) as critical mediators of tumor cell migratory and
invasive behavior.

4 Sialyl Tn antigen and tumor invasion

The sialyl Thomsen-nouvelle antigen (sialyl Tn) and its
unsialylated form, Tn, are well-known tumor-associated
carbohydrate antigens, and are highly correlated with cancer
invasion and metastasis [97–99]. Sialyl Tn is formed by the
sialylation of the Tn antigen: GalNAc linked to serine or
threonine (Fig. 5). GalNAc is the first sugar added during O-
linked glycan synthesis, and this basic unit can be extended
to form multiple glycan structures. The sialylation of Gal-
NAc prevents further sugar additions, and effectively trun-
cates the O-linked glycan extension [100, 101]. Sialyl Tn is
detected in a wide range of cancers including gastric, colo-
rectal, pancreatic, endometrial, breast, and ovarian
[102–108], yet sialyl Tn expression is low or absent in
normal epithelial cells [109–112]. Sialyl Tn expression is
associated with metastatic disease, recurrence, and reduced
survival rates in breast cancer [98, 113], and a negative

association between sialyl Tn and survival has been con-
firmed by many other studies [98, 114–120]; although this is
not a universal finding [121, 122]. Approximately 30 % of
breast cancers are sialyl Tn positive [123, 124] and over
80 % of all carcinomas express either Tn or sialyl Tn
structures [125]. Given that antibodies against sialyl Tn
antigen are cancer specific [97, 109], serum sialyl Tn levels
are used as a prognostic indicator for cancer aggressiveness
and metastatic potential [126]. The relationship between
sialyl Tn and cancer progression has been demonstrated
experimentally by the forced expression of sialyl Tn struc-
tures in cancer cells. Forced sialyl Tn in gastric cancer lines
resulted in increased metastasis and decreased survival in
nude mice after intraperitoneal injection of tumor cells
[127]. This enhanced metastatic capability of sialyl Tn-
expressing cells was abrogated by pretreatment with anti-
sialyl Tn antibodies. In related studies, various cancer cell
lines with forced sialyl Tn expression gained metastatic
characteristics such as altered adherence to matrix molecules
and increased motility and invasiveness [128–130].

The generation of sialyl Tn is primarily associated with a
single sialyltransferase, ST6GalNAc-I, which adds sialic
acid in an α2-6 linkage to the Tn antigen [131–133]. Forced
expression of ST6GalNAc-I results in sialyl Tn expression
in breast and gastric cancer cell lines [127, 129]. Other
ST6GalNAc family members may be able to synthesize
sialyl Tn; however, while ST6GalNAc-II can create the
sialyl Tn structure in vitro on peptide-GalNAc substrates
[133, 134], to date no other ST6GalNAc has been shown to
generate sialyl Tn expression in vivo. ST6GalNAc family
members have been linked to carcinogenesis: ST6GalNAc-I
is upregulated in intestinal metaplasia [132]; ST6GalNAc-II
is elevated in colon cancer and is prognostic for patient
survival [135], and ST6GalNAc-V is one of four genes
upregulated in breast cancer cells with increased metastatic
potential to the brain [68]. As an alternate mechanism to
ST6GalNAc overexpression, accumulation of sialyl Tn can
result from dysregulation of other glycosyltransferases that
regulate formation or availability of the Tn substrate. Cosmc
is a molecular chaperone protein necessary for the activity
of T-synthase, an enzyme that adds galactose to GalNAc and
therefore competes with ST6GalNAc-I for GalNAc-
modified O-linked glycan precursors [136, 137]. Cum-
mings’ group reported that Cosmc disruptions in colon and
melanoma cell lines contribute to sialyl Tn expression (due
to downregulated T-synthase activity), and further docu-
mented two cervical cancer cases with mutations at the
Cosmc locus, and elevated sialyl Tn expression [125].

Even though there is a strong association between sialyl
Tn expression and cancer progression, the specific effects of
sialyl Tn on tumor cell behavior remain obscure. Not many
studies have been aimed at identifying the carriers of sialyl
Tn, or determining the corresponding influence of sialyl Tn

Fig. 5 Sialyl Thomsen-nouvelle antigen. The sialyl Tn antigen is
formed by α2-6 sialylation of GalNAc bound to serine or threonine
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on carrier function. There is also a lack of knowledge
regarding physiologically relevant glycan binding proteins
that might interact with sialyl Tn in the tumor milieu.
However, a few glycoproteins have been determined as
carriers of sialyl Tn. CD44 and the mucin, Muc 1, are
elaborated with sialyl Tn in breast and gastric cancer cells
that have been forced to express ST6GalNAc-I [127, 129].
Mucins are large, densely O-glycosylated proteins that act in
cell adhesion and signaling [138]. They are upregulated in a
variety of cancers and characteristically display truncated O-
linked glycans as compared with mucins in normal tissue
[101, 138, 139]. A general increase in sialylation influences
Muc1’s role in cell–cell adhesion [140, 141] and elevated
levels of Muc 1 with sialyl Tn have been observed in
multiple carcinomas [128, 142]. The other sialyl Tn carrier,
CD44, is another well-known adhesion protein; this mole-
cule displays a binding specificity for hyaluronan. Certain
CD44 splice variants, such as CD44v6, have been associat-
ed with breast, lung, colon, and pancreatic carcinomas,
among others [143–145]. Two other glycoproteins, β1
integrin [146] and osteopontin [112], are reportedly modi-
fied with sialyl Tn in murine cancer cells, although this has
not been confirmed in human cells. The β1 integrin was
shown to be the primary carrier of sialyl Tn antigen in the
non-mucin expressing TS/A murine breast cancer cell line
after ST6GalNAc-I forced expression [146]. In this investi-
gation, ST6GalNAc-I expressing cells had reduced mobility
and proliferation, suggesting a possible inhibitory effect on
the metastatic process. However, in another study which
identified Muc1 and CD44 as sialyl Tn carriers in human
breast cancer cells, β1 integrin was not found to carry the
sialyl Tn antigen [129]. These conflicting reports may be
due to differences in mucin expression and competing sub-
strates for ST6GalNAc in the Golgi. Recently, osteopontin
was found to carry the sialyl Tn epitope in murine breast
cancer cell lines [112]. Osteopontin levels in serum are
elevated in a number of human cancers, and increased
expression is associated with a negative prognosis [145].
Interestingly, osteopontin serves as a ligand for both CD44
and β1 integrins [145], and it is worth noting that all four
proteins identified as sialyl Tn carriers (Muc1, osteopontin,
CD44, and β1) are involved in cell adhesion and migration.
It is tempting to speculate that the expression of sialyl Tn
may subvert the normal function of these proteins to pro-
mote an invasive tumor phenotype (Fig. 6).

Sialyl Tn expression may also play an immunologic role
in tumor progression. Natural killer cells pre-treated with
Muc1 bearing the sialyl Tn antigen, but not Muc1 without
sialyl Tn, exhibited diminished capacity for cell-mediated
cytotoxicity against K562 leukemia cells [147]. Although
mechanistic information is lacking, sialyl Tn structures are
capable of binding to siglecs, which are important mediators
in immune recognition [148]. The sialyl Tn antigen is the

preferred substrate for siglec 6 [149] while some additional
siglecs may bind sialyl Tn along with other sialoglycans
[148]. It is possible that altered sialyl Tn expression on
tumor cells may shift the immune response in ways that
promote tumor development through interactions with dif-
ferent siglecs. As well, sialyl Tn-antibody complexes
formed from soluble sialyl Tn and antisera stimulated VEGF
release from macrophages and granulocytes, leading to in-
creased tumor angiogenesis and invasion [150, 151]. En-
hanced blood vessel formation was similarly observed in
SCID mice with subcutaneously injected, sialyl Tn express-
ing breast cancer cells following the introduction of anti-
sialyl Tn antibodies into the systemic circulation. It is still
unclear whether this effect was separate from the general
immune response to tumor antigens or specific for sialyl Tn.

Theratope® is a cancer vaccine against sialyl Tn conju-
gated to keyhole limpet hemocyanin, and was initially
designed for use in metastatic breast cancer. In a phase II
clinical study, patients receiving the vaccine showed a sialyl
Tn-specific humoral response and improved overall survival
[123]; however, a phase III study concluded that the vaccine
did not increase survival in patients with metastatic disease
[152]. Independent studies of Theratope in murine models
reported detection of sialyl Tn-specific antibodies, and sig-
nificantly delayed tumor growth [112]. A potential pitfall of

Fig. 6 Sialyl Tn antigen expression correlates to increased invasion.
Upregulation of the sialyltransferase, ST6GalNAc-I, or inactivation of
the chaperone, Cosmc, contributes to an increase in sialyl Tn expres-
sion on O-linked glycans. Elevated levels of sialyl Tn antigen
expressed on tumor cells is correlated to increased invasion; however,
the mechanism remains unclear
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the phase III clinical trial is that the patient population was
not evaluated for sialyl Tn expression prior to enrollment,
possibly masking any benefit from the vaccine due to het-
erogeneous sialyl Tn expression between patients. While
additional investigation is needed to clarify the discrepant
results concerning sialyl Tn, the pursuit of tumor-associated
carbohydrate antigens as candidates for vaccine develop-
ment remains an active area of investigation.

5 Sialyl Lewis structures in tumor dissemination

After entering the systemic circulation, tumor cells must
be able to survive within, and then exit, the vasculature in
order to metastasize to distant organs. The upregulation of
sialyl Lewis (sLe) structures on the tumor cell surface
serves as a key mechanism for directing tumor cell adhe-
sion to the endothelium by providing ligands for endothe-
lial selectins [153] (Fig. 7). sLe/selectin interactions also
promote the formation of aggregates comprised of tumor
cells, platelets and leukocytes, which shields tumor cells
from immune attack [154]. sLe glycans are normally
present on leukocytes and are critical in leukocyte adhe-
sion and extravasation during an inflammatory response.
Conversely, sLe expression is typically low in non-
cancerous epithelial cells [19, 155]. sLe structures are
tetrasaccharides composed of a GlcNAc-Gal backbone
with an α2-3-linked sialic acid attached to Gal, and fucose
linked to GlcNAc (Fig. 8). sLe is primarily found on
glycolipids or O-glycans of glycoproteins [19], and the

expression of sLe is elevated in many different types of
cancer [156–158]. sLe occurs in two isomers, sLea and
sLex (Fig. 8), and cancer cells arising from different
organs tend to adhere to endothelium more strongly
through one isomer over the other. Colon and pancreatic
cancer cells adhere to E-selectin via sLea while lung and
liver cancer cells adhere through sLex [159]. Expression
of sLe is increased in patients with metastatic disease and
is negatively correlated with patient survival [160–169]
although this has been refuted [170]. This association with
metastasis is the basis for clinical monitoring of sLea

structures in cancers of the digestive tract. Screening of
serum sLea (CA19-9) is part of the standard treatment
regimen for colorectal cancer [171–173] and higher pre-
operative serum CA19-9 levels predict colon cancer re-
currence [174]. The CA19-9 antibody is specific for sLea

and does not recognize the unsialylated Lea structure
[175]. In a cohort of 94 advanced colorectal cancer
patients, greater sLea expression was positively correlated
to hepatic metastasis [176], although this study failed to
find a significant association in a similarly sized gastric
cancer cohort. A retroactive examination of more than 300
colorectal cancers and their associated metastases found
significantly higher sLea expression in metastases com-
pared with the primary tumor [171], and a similar finding
was reported for breast cancer [162]. In addition to sLea,

Fig. 7 Sialyl Lewis structures promote tumor dissemination. Sialyl
Lewis structures on tumor cell glycoproteins interact with selectins
expressed by activated endothelial cells, thereby facilitating tumor cell
extravasation

Fig. 8 Sialyl Lewis antigens. Sialyl Lewis (sLe) antigens are tetrasac-
charide structures composed of a GlcNAc-Gal backbone with fucose
linked to GlcNAc and sialic acid α2-3 linked to Gal. sLex and sLea are
different isomers, both of which bind to endothelial selectins
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sLex may serve as a prognostic indicator; sLex expression
predicts outcome in prostate cancer cases after orchiec-
tomy [177] and is also being investigated for use in breast
cancer monitoring [178, 179].

A clear clinical correlation continues to prompt investi-
gation of sLe antigens, however the regulation of these
structures is far from understood. O-linked glycan synthesis
requires the coordinated activity of multiple glycosyltrans-
ferases, and many of these are altered in carcinogenesis [19,
100]. Glycans are often truncated in cancer cells, due, in
part, to incomplete synthesis, contributing to the expression
of sLe [100, 173]. Evidence now suggests that the disruption
or activation of a single glycosyltransferase may be suffi-
cient to upregulate sLe structures. For instance, epigenetic
silencing of ST6GalNAc-VI, as well as experimental reduc-
tion of this gene’s expression, leads to the accumulation of
sLe [173, 180]. ST6GalNAc-VI adds an α2-6-linked sialic
acid to GlcNAc, creating the di-sLe (a) structure, which pre-
dominates in normal epithelial cells. On the other hand,
forced expression of a β1-4 GalNAc transferase reduces
sLe expression, and restores a more normal carbohydrate
profile [181]. Cells with forced β1-4 GalNAc transferase
expression have reduced adhesion to human umbilical cord
endothelial cells, and decreased metastasis in vivo. Addi-
tional factors within the tumor microenvironment likely play
a part in sLe expression. Hypoxic conditions stimulate sLe
upregulation through HIF-1α signaling [182], while the
hormone receptor status of certain cancers appears to influ-
ence sLe-E-selectin interactions [183].

Fucosyltransferase activity may also contribute to tumor-
associated sLe expression [184–187], although the relative
importance of this pathway is debated [173]. Dimitroff’s
group reported that expression of the Fut-3, Fut-6, or Fut-7
fucosyltransferases in prostate cancer cells was sufficient to
stimulate sLex production and promote prostate cancer me-
tastasis to bone and liver [185]. Several carriers of sLe
structures were identified in this study including CD44,
carcinoembryonic antigen, podocalyxin-like protein, and
melanoma cell adhesion molecule [185]. Mucins, including
Muc1, are also modified with sLe [188, 189]. Antisense
strategies directed at Fut-3 reduce sLe expression as well
as the number of hepatic metastases observed in mice [190,
191]. sLe structures mediate adhesion to the endothelium
through their interactions with selectins on activated endo-
thelial cells [192–195]. The physiologic relevance of tumor
cell sLe structures in cancer progression has been confirmed
by studies in which sLe/selectin interactions were perturbed.
Experimental interventions that blocked sialylation of Lewis
structures were effective in inhibiting tumor cell adhesion to
both E-selectin-coated plates and endothelial monolayers
[196, 197]. Pretreatment of mice with E-selectin peptide
agonists decreased the number of metastases in a
lung metastasis model [198], and forced liver-specific

expression of E-selectin redirected melanoma cell metas-
tasis from the lung to the liver [199]. Finally, E-selectin-
deficient SCID mice developed fewer lung metastases in
a xenograft colon cancer model [200]. This study also
observed a higher number of circulating tumor cells in
E-selectin-deficient mice, suggesting metastasis was
inhibited at the endothelial binding step of the metastatic
cascade.

Despite the established value of sLe as a cancer-
associated biomarker, therapeutics targeting these structures
have been relatively slow to develop. Cancer vaccines
against sLea have yielded mixed results [201], even though
experimental results support a role for sLe overexpression in
stimulating natural killer cell responses [202]. Work by
Esko’s group demonstrated the utility of disaccharide decoy
molecules in reducing overall sialylation and the expression
of sLe antigens. Treatment of cells with decoy disaccharides
inhibited: sLex expression; adhesion to selectin-coated
plates; and metastasis to the lung in murine models
[203–205], suggesting a possible therapeutic benefit. Addi-
tionally, several antibodies against sLe have been shown to
be cancer specific and cytotoxic in vivo. For example, two
monoclonal antibodies developed against sLea have demon-
strated substantial antitumor effects in an in vivo colon
cancer model [206]. Although further research is needed,
these collective studies highlight the potential for targeting
sLe structures in clinical treatment.

6 Tumor cell α2-6 sialylation confers resistance to cell
death

Much of the literature regarding tumor cell sialylation has
centered on its role in cell adhesion, migration and invasion,
but some studies also implicate sialylation in regulating cell
death pathways. In particular, α2-6-linked sialic acids may
confer an apoptosis-resistant phenotype by modulating the
activity of selected receptors and signaling mechanisms.
One of the better-characterized functions for α2-6-
sialylation is an inhibitory effect on galectin-dependent ap-
optosis [36]. Many galectins, including gal-1, gal-3, and gal-
9, bind to cell surface galactosides and induce cell death
[207]. Each galectin exhibits specificity for certain galacto-
syl structures, and there is evidence that galectins may
selectively bind to distinct glycoproteins. The mechanisms
underlying galectin selectivity are still under investigation,
although some of the documented binding partners for
galectins include integrins [38, 208, 209], EGFR [210],
CD45 [211], and TRPV5 [20]. Galectins are secreted by
immune (and other) cells, therefore α2-6 sialylation on the
tumor cell surface may protect tumor cells from the actions
of infiltrating immune cells. However, the relationship be-
tween galectins and tumor cell α2-6 sialylation is complex.
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Many tumor cells overexpress galectins [32], which raises
the paradox of why a cancer cell would upregulate an
apoptosis-inducing molecule. In fact, galectins have many
different tumor-promoting activities; for example, intracel-
lular forms of galectins have anti-apoptotic functions that
are independent of cell glycosylation status, and some galec-
tins amplify signaling by the ras oncogene [32, 212]. Thus,
tumor cells that coordinately upregulate galectins and α2-6
sialyltransferases would benefit from the pro-tumorigenic
activities of intracellular galectins (that are carbohydrate-
independent), while simultaneously acquiring resistance to
the pro-apoptotic features of secreted galectins (that are
carbohydrate-dependent and blocked by α2-6 sialylation).

In tandem with inhibiting galectin-mediated apoptosis,
α2-6 sialylation enhances tumor cell survival by regulat-
ing the function of individual cell surface receptors. Lee
et al. reported that treatment of colon tumor cells with
ionizing radiation induced increased α2-6 sialylation of
the β1 integrin as a secondary consequence of ST6Gal-I
upregulation [76, 213]. In this system, α2-6 sialylation
of the β1 integrin promoted cell adhesion to fibronectin
and contributed to cell survival through the activation of
paxillin and AKT [76]. Recently, two members of the
TNFR death receptor family, Fas and TNFR1, were also
identified as ST6Gal-I substrates, and it was shown that
α2-6 sialylation blocked apoptotic signaling by these
receptors [47, 214]. Reduced Fas-mediated apoptosis is
a well-established factor in tumor cell survival, and Fas
expression is downregulated in many different tumor
types [215–217]. However, in addition to decreased ex-
pression, Fas signaling cascades are disrupted in tumor
cells, with Fas activation triggering pro-survival, rather
than apoptotic, pathways [218]. These non-apoptotic
functions of Fas contribute to tumor-promoting pheno-
types [219–222]. Complete knockout of Fas in tumor cell
xenografts prevented tumor growth, supporting the hy-
pothesis that Fas is essential for some aspect of tumor
cell survival or proliferation [223]. This newer concept is
in agreement with many reports that some cancer cells
express high levels of Fas, but are yet resistant to Fas-
induced apoptosis [224–227].

Several studies have suggested that Fas apoptotic activity
is inhibited by sialylation [228–230], although most of these
did not define which type of sialic acid linkage is function-
ally important. In more recent work, forced overexpression
or knockdown of ST6Gal-I caused altered α2-6 sialylation
of Fas (without affecting α2-3 sialylation) [47]. Elevated
α2-6 sialylation of Fas by ST6Gal-I prevented apoptosis
stimulated by both Fas-activating antibodies and FasL (the
native ligand for Fas). Fas α2-6 sialylation did not interfere
with binding of the agonist, but rather inhibited formation of
the death-inducing signaling complex, and also restrained
Fas receptor internalization (Fig. 9). Intriguingly, there is

evidence that plasma membrane-localized Fas receptors
may send a pro-survival signal, whereas receptor internali-
zation is important for induction of apoptosis [231]. Hence,
the α2-6 sialylation-dependent retention of Fas at the cell
surface could serve as a switching mechanism responsible
for diverting signaling away from apoptosis and toward
survival. It isn’t currently known why α2-6 sialylation pre-
vents Fas internalization, but it can be speculated, based on
information from other sialylated receptors, that Fas sialy-
lation could regulate: (1) Fas receptor homotrimerization or
higher order clustering, (2) tertiary conformation of the
receptor, and/or (3) localization of the receptor to lipid raft
microdomains.

Similar to Fas, ST6Gal-I-mediated α2-6 sialylation of the
TNFR1 death receptor inhibits apoptosis directed by the
TNFR1 ligand, TNFα, although at present TNFR1 sialyla-
tion has only been evaluated in macrophages [214]. TNFR1
is expressed in epithelial cells, however neither the glycan
composition, nor function, of TNFR1 glycans have been
characterized in epithelial tumor cells. Nonetheless, the
finding that ST6Gal-I-mediated sialylation blocks apoptotic
signaling through three major pathways (galectins, TNFR1
and Fas), suggests that upregulated ST6Gal-I may facilitate
tumor cell escape from immune surveillance. The ligands
for TNFR1 and Fas (TNFα and FasL, respectively) are
primarily expressed by immune cells, and immune cells
are also a rich source of galectins. Furthermore, as noted

Fig. 9 Inhibition of Fas-mediated apoptosis by α2-6 sialylation. α2-6
sialylation of the Fas receptor blocks apoptosis by preventing receptor
internalization and formation of the death-inducing signaling complex
(DISC)
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previously, changes in sialylation likely affect tumor cell
interactions with siglec-expressing immune cells. These
findings underscore the need for elucidating the molecular
mechanisms by which distinct tumor-associated sialogly-
cans or sialoproteins influence the host immune response.
The paucity of studies on this topic is noteworthy, particu-
larly given that it has long been believed that surface sialy-
lation shields cancer cells from immune attack. Sialic acids
mask antigenic sites on cells, thus weakening immunoreac-
tivity, and sialic acids also protect cells against complement-
mediated cell lysis [232]. In addition, loss of sialylation
from the cell surface serves as an “eat-me” signal for phag-
ocytes [233] suggesting that high sialylation levels on can-
cer cells may inhibit phagocytotic targeting by immune
cells. These combined observations offer provocative clues
that alterations in the profile of tumor cell sialoglycans may
be a driving factor in immune escape.

7 Summary

A role for tumor cell sialylation in cancer progression has
been presumed for many years, however mechanistic stud-
ies of this cell surface modification have been limited when
compared with other areas of cancer cell biology. Particu-
larly lacking are studies of: (1) signaling mechanisms that
alter transcription or translation of sialylation-related
enzymes, (2) sialyltransferase specificity for selected gly-
coprotein targets, (3) sialylation-dependent changes in gly-
coprotein structure (e.g., conformation and clustering), and
(4) the effects of variant sialylation on the actions of glycan
binding proteins. A better understanding of these molecu-
lar events is necessary for defining causal relationships
between elevated sialylation and metastatic cell behaviors
such as invasiveness, hematogenous dissemination, and
apoptosis-resistance. The goal of this review was not to
comprehensively overview the many reported changes in
tumor sialoglycans but rather focus on a select number of
examples for which there is substantive information re-
garding molecular mechanism. The elucidation of
sialylation-dependent pathways that control distinct tumor
cell responses holds promise for identifying important new
diagnostic or prognostic markers, as well as targets for
vaccine and drug development.
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