Skip to main content

Advertisement

Log in

Cardiac magnetic resonance ventricular parameters correlate with cardiopulmonary fitness in patients with functional single ventricle

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Owing to advances in medical and surgical fields, patients with single ventricle (SV) have a greatly improved life expectancy. However, progressive functional deterioration is observed over time, with a decrease in cardiopulmonary fitness. This study aimed to identify, in patients with SV, the association between cardiac magnetic resonance imaging (CMR) parameters and change in cardiopulmonary fitness assessed by cardiopulmonary exercise test (CPET), and if certain thresholds could anticipate a decline in aerobic fitness. Patients with an SV physiology were retrospectively screened from 2011 and 2021 in a single-centre observational study. We evaluated (1) the correlation between baseline CMR and CPET parameters, (2) the association between baseline CMR results and change in peak oxygen uptake (peak VO2), and (3) the cut-off values of end-diastolic and end-systolic volume index in patients with an impaired cardiopulmonary fitness (low peak VO2 and/or high VE/VCO2 slope). 32 patients were included in the study. End-systolic volume index (r = 0.37, p = 0.03), end-diastolic volume index (r = 0.45, p = 0.01), and cardiac index (r = 0.46, p = 0.01) correlated with the VE/VCO2 slope. End-systolic ventricular volume (r = − 0.39, p = 0.01), end-diastolic ventricular volume (r = − 0.38, p = 0.01), and cardiac output (r = − 0.45, p < 0.01) inversely correlated with the peak VO2. In multivariate analysis, the cardiac index obtained from baseline CMR was inversely associated with the change in peak VO2 (p < 0.01). An end-diastolic volume index > 101 ml/m2 and an end-systolic volume index > 47 ml/m2 discriminated patients with impaired cardiopulmonary fitness. CMR parameters correlate with cardiopulmonary fitness in patients with SV and can therefore be useful for follow-up and therapeutic management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Houyel L, Khoshnood B, Anderson RH, Lelong N, Thieulin A-C, Goffinet F, Bonnet D (2011) Population-based evaluation of a suggested anatomic and clinical classification of congenital heart defects based on the International Paediatric and Congenital Cardiac Code. Orphanet J Rare Dis. https://doi.org/10.1186/1750-1172-6-64

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moons P, Bovijn L, Budts W, Belmans A, Gewillig M (2010) Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 122:2264–2272

    Article  PubMed  Google Scholar 

  3. Kverneland LS, Kramer P, Ovroutski S (2018) Five decades of the Fontan operation: a systematic review of international reports on outcomes after univentricular palliation. Congenit Heart Dis 13:181–193

    Article  PubMed  Google Scholar 

  4. Khairy P, Fernandes SM, Mayer JE, Triedman JK, Walsh EP, Lock JE, Landzberg MJ (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92

    Article  PubMed  Google Scholar 

  5. Elder RW, McCabe NM, Veledar E, Kogon BE, Jokhadar M, Rodriguez FH, McConnell ME, Book WM (2015) Risk factors for major adverse events late after Fontan palliation: major aes late after Fontan palliation. Congenit Heart Dis 10:159–168

    Article  PubMed  Google Scholar 

  6. Femenia V, Pommier V, Huguet H, Iriart X, Picot M-C, Bredy C, Lorca L, De La Villeon G, Guillaumont S, Pasquie J-L, Matecki S, Roubertie F, Leobon B, Thambo J-B, Jalal Z, Thomas J, Mouton J-B, Avesani M, Amedro P (2023) Correlation between three-dimensional echocardiography and cardiopulmonary fitness in patients with univentricular heart: a cross-sectional multicentre prospective study. Arch Cardiovasc Dis 116:202–209 (S1875213623000554)

    Article  PubMed  Google Scholar 

  7. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF (2018) AHA/ACC guideline for the management of adults with congenital heart disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. Circulation. https://doi.org/10.1161/CIR.0000000000000603. ([Internet]. 2019 [cited 2022 Feb 16];139)

    Article  Google Scholar 

  8. JD Backer SV Babu-Narayan W Budts M Chessa G-P Diller B Iung J Kluin IM Lang F Meijboom BJM Mulder E Oechslin JW Roos-Hesselink M Schwerzmann L Sondergaard K Zeppenfeld The task force for the management of adult congenital heart disease of the european society of cardiology (ESC). :83.

  9. Ghelani SJ, Harrild DM, Gauvreau K, Geva T, Rathod RH (2015) Comparison between echocardiography and cardiac magnetic resonance imaging in predicting transplant-free survival after the Fontan operation. Am J Cardiol 116:1132–1138

    Article  PubMed  Google Scholar 

  10. Rathod RH, Prakash A, Powell AJ, Geva T (2010) Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol 55:1721–1728

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rathod RH, Prakash A, Kim YY, Germanakis IE, Powell AJ, Gauvreau K, Geva T (2014) Cardiac magnetic resonance parameters predict transplantation-free survival in patients with Fontan circulation. Circ Cardiovasc Imaging 7:502–509

    Article  PubMed  PubMed Central  Google Scholar 

  12. Meyer SL, St Clair N, Powell AJ, Geva T, Rathod RH (2021) Integrated clinical and magnetic resonance imaging assessments late after Fontan operation. J Am Coll Cardiol 77:2480–2489

    Article  PubMed  Google Scholar 

  13. Rybicka J, Dobrowolski P, Marczak M, Niewiadomska J, Kowalczyk M, Hoffman P, Kowalski M (2020) Single ventricle systolic function and cardiopulmonary exercise performance in adult patients with Fontan circulation. Int J Cardiol 321:75–80

    Article  PubMed  Google Scholar 

  14. Amedro P, Picot MC, Moniotte S, Dorka R, Bertet H, Guillaumont S, Barrea C, Vincenti M, De La Villeon G, Bredy C, Soulatges C, Voisin M, Matecki S, Auquier P (2016) Correlation between cardio-pulmonary exercise test variables and health-related quality of life among children with congenital heart diseases. Int J Cardiol 203:1052–1060

    Article  CAS  PubMed  Google Scholar 

  15. Gavotto A, Huguet H, Picot M-C, Guillaumont S, Matecki S, Amedro P (1985) The V̇e/V̇co2 slope: a useful tool to evaluate the physiological status of children with congenital heart disease. J Appl Physiol Bethesda Md 2020(129):1102–1110

    Google Scholar 

  16. Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller G-P, Lung B, Kluin J, Lang IM, Meijboom F, Moons P, Mulder BJM, Oechslin E, Roos-Hesselink JW, Schwerzmann M, Sondergaard L, Zeppenfeld K, ESC Scientific Document Group, Ernst S, Ladouceur M, Aboyans V, Alexander D, Christodorescu R, Corrado D, D’Alto M, de Groot N, Delgado V, Di Salvo G, Dos Subira L, Eicken A, Fitzsimons D, Frogoudaki AA, Gatzoulis M, Heymans S, Hörer J, Houyel L, Jondeau G, Katus HA, Landmesser U, Lewis BS, Lyon A, Mueller CE, Mylotte D, Petersen SE, Sonia Petronio A, Roffi M, Rosenhek R, Shlyakhto E, Simpson IA, Sousa-Uva M, Torp-Pedersen CT, Touyz RM, Van De Bruaene A, Babu-Narayan SV, Budts W, Chessa M, Diller G-P, Iung B, Kluin J, Lang IM, Meijboom F, Moons P, Mulder BJM, Oechslin E, Roos-Hesselink JW, Schwerzmann M, Sondergaard L, Zeppenfeld K, Hammoudi N, Grigoryan SV, Mair J, Imanov G, Chesnov J, Bondue A, Nabil N, Kaneva A, Brida M, Hadjisavva O, Rubackova-Popelova J, Nielsen DG, El Sayed MH, Ermel R, Sinisalo J, Thambo J-B, Bakhutashvili Z, Walther C, Giannakoulas G, Bálint OH, Lockhart CJ, Murrone AN, Ahmeti A, Lunegova O, Rudzitis A, Saliba Z, Gumbiene L, Wagner K, Caruana M, Bulatovic N et al (2021) 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J 42:563–645

    Article  CAS  PubMed  Google Scholar 

  17. Houyel L, Khoshnood B, Anderson RH, Lelong N, Thieulin A-C, Goffinet F, Bonnet D, the EPICARD Study group (2011) Population-based evaluation of a suggested anatomic and clinical classification of congenital heart defects based on the International Paediatric and Congenital Cardiac Code. Orphanet J Rare Dis 6:64

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fernandes SM, Alexander ME, Graham DA, Khairy P, Clair M, Rodriguez E, Pearson DD, Landzberg MJ, Rhodes J (2011) Exercise testing identifies patients at increased risk for morbidity and mortality following Fontan surgery: exercise tests and mortality post fontan procedure. Congenit Heart Dis 6:294–303

    Article  PubMed  Google Scholar 

  19. Ohuchi H, Negishi J, Noritake K, Hayama Y, Sakaguchi H, Miyazaki A, Kagisaki K, Yamada O (2015) Prognostic value of exercise variables in 335 patients after the Fontan operation: a 23-year single-center experience of cardiopulmonary exercise testing: prognostic variables in Fontan. Congenit Heart Dis 10:105–116

    Article  PubMed  Google Scholar 

  20. Amedro P, Gavotto A, Guillaumont S, Bertet H, Vincenti M, De La Villeon G, Bredy C, Acar P, Ovaert C, Picot M-C, Matecki S (2018) Cardiopulmonary fitness in children with congenital heart diseases versus healthy children. Heart 104:1026–1036

    Article  PubMed  Google Scholar 

  21. Amedro P, Gavotto A, Legendre A, Lavastre K, Bredy C, De La Villeon G, Matecki S, Vandenberghe D, Ladeveze M, Bajolle F, Bosser G, Bouvaist H, Brosset P, Cohen L, Cohen S, Corone S, Dauphin C, Dulac Y, Hascoet S, Iriart X, Ladouceur M, Mace L, Neagu O-A, Ovaert C, Picot M-C, Poirette L, Sidney F, Soullier C, Thambo J-B, Combes N, Bonnet D, Guillaumont S (2019) Impact of a centre and home-based cardiac rehabilitation program on the quality of life of teenagers and young adults with congenital heart disease: the QUALI-REHAB study rationale, design and methods. Int J Cardiol 283:112–118

    Article  PubMed  Google Scholar 

  22. Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, Arena R, Fletcher GF, Forman DE, Kitzman DW, Lavie CJ, Myers J (2012) Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126:2261–2274

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jones NL, Makrides L, Hitchcock C, Chypchar T, McCartney N (1985) Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 131:700–708

    CAS  PubMed  Google Scholar 

  24. Weatherald J, Sattler C, Garcia G, Laveneziana P (2018) Ventilatory response to exercise in cardiopulmonary disease: the role of chemosensitivity and dead space. Eur Respir J 51:1700860

    Article  PubMed  Google Scholar 

  25. Myers J, Arena R, Dewey F, Bensimhon D, Abella J, Hsu L, Chase P, Guazzi M, Peberdy MA (2008) A cardiopulmonary exercise testing score for predicting outcomes in patients with heart failure. Am Heart J 156:1177–1183

    Article  PubMed  Google Scholar 

  26. Hernandez GA, Lemor A, Clark D, Blumer V, Burstein D, Byrne R, Fowler R, Frischhertz B, Sandhaus E, Schlendorf K, Zalawadiya S, Lindenfeld J, Menachem JN (2020) Heart transplantation and in-hospital outcomes in adult congenital heart disease patients with Fontan: a decade nationwide analysis from 2004 to 2014. J Card Surg 35:603–608

    Article  PubMed  Google Scholar 

  27. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    Article  CAS  PubMed  Google Scholar 

  28. Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M (2007) Development of a ventilatory classification system in patients with heart failure. Circulation 115:2410–2417

    Article  PubMed  Google Scholar 

  29. Nathan AS, Loukas B, Moko L, Wu F, Rhodes J, Rathod RH, Systrom DM, Ubeda Tikkanen A, Shafer K, Lewis GD, Landzberg MJ, Opotowsky AR (2015) Exercise oscillatory ventilation in patients with Fontan physiology. Circ Heart Fail 8:304–311

    Article  PubMed  Google Scholar 

  30. Cunningham JW, Nathan AS, Rhodes J, Shafer K, Landzberg MJ, Opotowsky AR (2017) Decline in peak oxygen consumption over time predicts death or transplantation in adults with a Fontan circulation. Am Heart J 189:184–192

    Article  PubMed  Google Scholar 

  31. Egbe AC, Driscoll DJ, Khan AR, Said SS, Akintoye E, Berganza FM, Connolly HM (2017) Cardiopulmonary exercise test in adults with prior Fontan operation: the prognostic value of serial testing. Int J Cardiol 235:6–10

    Article  PubMed  Google Scholar 

  32. Burstein DS, Shamszad P, Dai D, Almond CS, Price JF, Lin KY, O’Connor MJ, Shaddy RE, Mascio CE, Rossano JW (2019) Significant mortality, morbidity and resource utilization associated with advanced heart failure in congenital heart disease in children and young adults. Am Heart J 209:9–19

    Article  PubMed  Google Scholar 

  33. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure. J Am Coll Cardiol 54:1747–1762

    Article  CAS  PubMed  Google Scholar 

  34. Kumar SP, Rubinstein CS, Simsic JM, Taylor AB, Saul JP, Bradley SM (2003) Lateral tunnel versus extracardiac conduit Fontan procedure: a concurrent comparison. Ann Thorac Surg 76:1389–1397

    Article  PubMed  Google Scholar 

  35. Lee JR, Kwak J, Kim KC, Min SK, Kim W-H, Kim YJ, Rho JR (2007) Comparison of lateral tunnel and extracardiac conduit Fontan procedure. Interact Cardiovasc Thorac Surg 6:328–330

    Article  PubMed  Google Scholar 

  36. Khairy P, Poirier N (2012) Is the extracardiac conduit the preferred fontan approach for patients with univentricular hearts?: the extracardiac conduit is not the preferred Fontan approach for patients with univentricular hearts. Circulation 126:2516–2525

    Article  PubMed  Google Scholar 

  37. Pundi KN, Johnson JN, Dearani JA, Pundi KN, Li Z, Hinck CA, Dahl SH, Cannon BC, O’Leary PW, Driscoll DJ, Cetta F (2015) 40-Year follow-up after the Fontan operation. J Am Coll Cardiol 66:1700–1710

    Article  PubMed  Google Scholar 

  38. Giardini A, Hager A, Napoleone CP, Picchio FM (2008) Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann Thorac Surg 85:818–821

    Article  PubMed  Google Scholar 

  39. Bredy C, Ministeri M, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Diller G-P, Gatzoulis MA, Dimopoulos K (2018) New York Heart Association (NYHA) classification in adults with congenital heart disease: relation to objective measures of exercise and outcome. Eur Heart J Qual Care Clin Outcomes 4:51–58

    Article  PubMed  Google Scholar 

  40. Ta HT, Critser PJ, Alsaied T, Germann J, Powell AW, Redington AN, Tretter JT (2020) Modified ventricular global function index correlates with exercise capacity in repaired tetralogy of fallot. J Am Heart Assoc 9:e016308

    Article  PubMed  PubMed Central  Google Scholar 

  41. Avesani M, Borrelli N, Krupickova S, Sabatino J, Donne GD, Ibrahim A, Piccinelli E, Josen M, Michielon G, Fraisse A, Iliceto S, Di Salvo G (2020) Echocardiography and cardiac magnetic resonance in children with repaired tetralogy of Fallot: new insights in cardiac mechanics and exercise capacity. Int J Cardiol 321:144–149

    Article  PubMed  Google Scholar 

  42. Rashid I, Mahmood A, Ismail TF, O’Meagher S, Kutty S, Celermajer D, Puranik R (2020) Right ventricular systolic dysfunction but not dilatation correlates with prognostically significant reductions in exercise capacity in repaired Tetralogy of Fallot. Eur Heart J Cardiovasc Imaging 21:906–913

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JA and CB designed the study. JA and OW performed the measurements. HH and MCP designed and performed the statistical analysis. JA, CB and OW wrote the main manuscript. PA performed the main revisions. All authors read and approved the manuscript. JA and PA contributed equally to this work

Corresponding author

Correspondence to Jerome Adda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredy, C., Werner, O., Helena, H. et al. Cardiac magnetic resonance ventricular parameters correlate with cardiopulmonary fitness in patients with functional single ventricle. Int J Cardiovasc Imaging (2024). https://doi.org/10.1007/s10554-024-03072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-024-03072-4

Keywords

Navigation