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Abstract
Current noninvasive estimation of right atrial pressure (RAP) by inferior vena cava (IVC) measurement during echocar-
diography may have significant inter-rater variability due to different levels of observers’ experience. Therefore, there is a 
need to develop new approaches to decrease the variability of IVC analysis and RAP estimation. This study aims to develop 
a fully automated artificial intelligence (AI)-based system for automated IVC analysis and RAP estimation. We presented a 
multi-stage AI system to identify the IVC view, select good quality images, delineate the IVC region and quantify its thick-
ness, enabling temporal tracking of its diameter and collapsibility changes. The automated system was trained and tested 
on expert manual IVC and RAP reference measurements obtained from 255 patients during routine clinical workflow. The 
performance was evaluated using Pearson correlation and Bland-Altman analysis for IVC values, as well as macro accuracy 
and chi-square test for RAP values. Our results show an excellent agreement (r=0.96) between automatically computed versus 
manually measured IVC values, and Bland-Altman analysis showed a small bias of −0.33 mm. Further, there is an excellent 
agreement ( (p < 0.01 ) between automatically estimated versus manually derived RAP values with a macro accuracy of 0.85. 
The proposed AI-based system accurately quantified IVC diameter, collapsibility index, both are used for RAP estimation. 
This automated system could serve as a paradigm to perform IVC analysis in routine echocardiography and support various 
cardiac diagnostic applications.

Keywords Echocardiography · Machine learning · Artificial intelligence · Right Atrial Pressure · Inferior Vena Cava · 
Collapsibility Analysis

Abbreviations
AI  Artificial intelligence
ML  Machine learning
IVC  Inferior vena cava
RAP  Right atrial pressure
dIVC  Diameter of inferior vena cava
cIVC  Collapsibility index of inferior vena cava
GAP  Global average pooling
LBP  Local binary pattern kernel
FC  Fully connected layer
IoU  Intersection over union
DSC  Dice similarity coefficient
FPS  Frames per second
LSTM  Long short-term memory
PLAX  Long axis view
A4C  Four-chamber view

 * Li-Yueh Hsu 
 li-yueh.hsu@nih.gov

 * Sameer Antani 
 sameer.antani@nih.gov

 Ghada Zamzmi 
 alzamzmiga@nih.gov

 Sivaramakrishnan Rajaraman 
 sivaramakrishnan.rajaraman@nih.gov

 Wen Li 
 liwh@nhlbi.nih.gov

 Vandana Sachdev 
 sachdevv@nih.gov

1 National Library of Medicine, National Institutes of Health, 
8600 Rockville Pike, Bethesda, MD 20894, USA

2 Clinical Center, National Institutes of Health, 10 Center Dr, 
Bethesda, MD 20892, USA

3 National Heart, Lung, and Blood Institute, National Institutes 
of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10554-023-02941-8&domain=pdf


2438 The International Journal of Cardiovascular Imaging (2023) 39:2437–2450

1 3

Introduction

Echocardiography offers several advantages over other 
imaging modalities for diagnosing inferior vena cava (IVC) 
abnormalities. Examples of these advantages include high 
temporal resolution, non-invasiveness, low cost, and port-
ability [1]. However, manual echocardiography analysis by 
a trained sonographer is time-consuming, costly, and may 
exhibit poor reproducibility [1, 2]. The utilization of auto-
mated analysis can streamline clinical workflows, provide 
consistent results, and might subsequently enhance clinical 
decision making [1, 2].

IVC is responsible for circulating deoxygenated blood 
from the lower extremities and abdomen back to the right 
atrium. Studies [3, 4] have reported that the diameter of 
IVC (dIVC) and its change with inspiration (a.k.a., IVC 
collapsibility) can be non-invasively captured using ultra-
sound imaging and used to determine the fluid status in 
critically ill patients and acute heart failure (HF) condi-
tions, and this is now a routine part of clinical echo exams. 
The collapsibility index of the inferior vena cava (cIVC) is 
visually estimated based on the changes in IVC diameter 
with inspiration. The current practice of measuring dIVC, 
cIVC, and estimating RAP involves several steps. First, a 
sonographer needs to manually select a high visual quality 
subcostal long-axis view of the IVC from an echocardiog-
raphy study that may contain over a hundred views. Then, 
the dIVC is measured perpendicular to the long axis of the 
IVC within 1.0 to 2.0 cms (cm) of the cavo-atrial junction 
[4]. The cIVC is measured as the difference between the 
maximum and minimum IVC diameters during inspiration. 
Finally, the measured dIVC and collapsibility can be used 
to readily estimate right atrial pressure (RAP) using the 
American Society of Echocardiography (ASE) guidelines 
or other guidelines [4, 5].

Although this approach for estimating RAP based on 
echocardiographic IVC is considered the current stand-
ard, the manual calculation of RAP [6–8] may have low 
reproducibility and weak correlation to actual RAP values. 
For example, Magnino et al. [6] found that the r-squared 
values for IVC diameter and collapsibility were 0.19 or 
lower, and the actual values were within 2.5 mmHg only 
34% of the time. Such inaccuracy may lead to an over-
estimation of pulmonary pressure, which could result in 
inappropriate diuretic treatment choices, and ultimately 
lead to increased uncertainty in clinical outcomes. There-
fore, there is a need to develop new approaches for more 
accurate and objective IVC analysis and RAP estimation. 
In this work, we hypothesize that advances in machine 
learning (ML) and artificial intelligence (AI) techniques 
enable the development of a novel fully automated, repro-
ducible, and scalable pipeline for echocardiographic dIVC 

and cIVC analysis, and RAP estimation that could be used 
by experts and non-experts alike, in both high- and low-
resource primary care.

ML algorithms have been widely used for the automated 
analysis and interpretation of echocardiography [2] as well 
as automated quantification of cardiac measurements includ-
ing ejection fraction [9, 10], thickness of left ventricle (LV) 
and surrounding walls [11, 12], LV strain [13], and doppler 
velocities [14]. Despite the clinical significance of IVC col-
lapsibility analysis and RAP estimation, only a handful of 
studies [15–17] proposed automated solutions. For example, 
Mesin et al. [17] proposed a semi-automated method which 
uses a support vector machine (SVM) for RAP classifica-
tion. The proposed method achieved 71% accuracy, which 
is higher than manual estimation using published guidelines 
(61% accuracy). Instead of using traditional ML methods, 
recent studies [15, 16] employed advanced deep learning 
(DL) methods such as long short-term memory (LSTM) for 
predicting fluid responsiveness in critically ill patients based 
on the analysis of IVC collapsibility. Other methods for auto-
mated IVC analysis can be found in [8, 18, 19].

Although the automated analysis of IVC and RAP has 
been explored, current methods (1) are applied directly to 
a manually pre-selected video or single-frame image from 
the echo video containing the IVC view; (2) have large and 
complex models that limit the usage on hand-held devices; 
and, (3) are designed for a “closed-world” environment 
where the training data is fixed with no opportunity for the 
AI to learn new knowledge, which limits their usability and 
generalizability in real-world clinical settings. To mitigate 
these challenges, our work presents a multi-stage AI sys-
tem that can estimate dIVC, cIVC, and RAP. The proposed 
system employs a lightweight and open-world ML archi-
tecture to rapidly generate dIVC, cIVC, and RAP values. 
The lightweight feature would facilitate its integration into 
handheld devices, which can enhance accessibility. The 
open-world feature makes the system more robust in detect-
ing and learning new, unpredictable cases or scenarios in 
real-world clinical settings. We believe that our system is 
the first one that has these capabilities to estimate RAP reli-
ably and automatically. We evaluate the performance of the 
proposed system on clinical routine echocardiograms and 
validate its accuracy against measurements made by human 
experts. Finally, we describe some limitations as well as 
potential applications of the proposed system.

Materials and methods

All echocardiography exams were performed at the Clini-
cal Center of the National Institutes of Health (NIH). This 
project was reviewed by the NIH Office of Human Subjects 
Research Protections, which determined that the activities 
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proposed did not require IRB review or approval because the 
project does not qualify as human subjects research (45 CFR 
46.102) as defined in the federal regulations. De-identified 
echo videos/images of 255 adult participants were included 
in this study.

Echocardiography dataset

Each echocardiogram study consists of a collection of videos 
and still images showing various cardiac views including 
the parasternal long axis view (PLAX), Doppler, and apical 
four-chamber view (A4C) in addition to the IVC subcostal 
view. These were acquired using diverse echocardiography 
devices including iE33, GE E9, and GE Vivid E95. The 
manual measurements of IVC diameter were provided by 
board-certified echocardiographers following conventional 
methodology in current clinical practice.

For all downstream analyses, DICOM formatted videos 
were converted into multidimensional numeric arrays of 
pixel intensities. The acquired IVC videos have a spatial 
resolution of 800 × 600 pixels. The individual dimensions 
of the arrays represent time, x and y coordinates in space, 
and additional dimensions (channels) to enable the encod-
ing of color information. We divided the entire dataset (n 
= 255) into a training set ( ≈ 70%, n = 177 patients) and a 
hold-out testing set ( ≈ 30%, n = 78 patients). The training 
set was further divided into training and validation using 
10 folds cross validation. The training set was used for the 
main tasks of our pipeline: (1) IVC view classification and 
quality assessment; (2) IVC segmentation; and (3) dIVC and 
cIVC quantification.

Automated pipeline for echocardiography IVC 
collapsibility and RAP estimation

The proposed pipeline is divided into multiple stages that are 
depicted in Fig. 1. This pipeline starts by performing image 
quality assessment and subcostal IVC view retrieval, and 
then followed by region segmentation, quantification, col-
lapsibility analysis, and RAP estimation. The image analysis 

algorithms for each of the individual stages in the pipeline 
are described in the following subsections.

Image analysis: quality assessment & view retrieval

The image retrieval algorithm retrieves a specific view with 
acceptable quality. Our algorithm utilizes a lightweight 
model with a shared encoder and two “heads”. This term 
is derived from the analogy that the network shares com-
mon weights but like twins whose bodies are conjoined at 
birth and can appear to have two heads, each head can con-
currently compute a separate but related input (same input 
image, two different tasks). In our algorithm, the first head is 
used for the quality assessment task and the second head is 
used for the view classification task. The view classification 
head detects an IVC view from a given echo study while the 
quality assessment head labels a given IVC view as good 
quality or bad quality. Both heads are configured to work 
in parallel, which can enhance the efficiency of the image 
retrieval component. The entire network with the shared 
encoder and two heads has a small size and high inference 
speed (0.22 s), enabling its use in resource-limited and han-
dled devices. Further discussion about this two-head model 
along with a visualization is provided in Appendix A.

Conventional machine learning models require samples 
of a specific set of classes (e.g., IVC view vs. non-IVC view) 
to be available during training. This assumption, which is 
known as a closed-world assumption, may be too strict for 
real-world environments that are open and often have unseen 
examples. To overcome this challenge, our classification 
algorithm is designed to run efficiently in open-world clini-
cal settings. It utilizes an OpenMax function [20] instead 
of Softmax function. The OpenMax function can label new 
(previously unseen) classes of images as “unknown”; a criti-
cal limitation of the Softmax function is that it strictly labels 
a new class as one of the known classes. Further details on 
OpenMax can be found in [21] and are provided in Appen-
dix B.

The significance of open-world active learning can be 
demonstrated in several IVC applications. One possible 

Fig. 1  Automated pipeline 
for echocardiography assess-
ment of dIVC, cIVC, and RAP 
estimation
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application would be to group rare cases of IVC morphology 
that might not exist in the training data. Examples of these 
rare cases include a very dilated IVC with poor collapsibility 
due to heart failure or a very small IVC with complete col-
lapsibility due to dehydration. Another “unknown” cluster 
may be IVC images that appear to collapse but represent 
artifacts in which the image appears to go out of plane of the 
ultrasound beam due to respiration movement.

Image analysis: IVC region contouring

To obtain the contour of the IVC region, we applied a light-
weight segmentation algorithm [22]. As compared to other 
segmentation algorithms, this algorithm has a smaller size 
and high inference speed (> 60 frames per seconds), ena-
bling its use in resource-limited settings and on handheld 
devices. Further details along with a visualization of the 
segmentation algorithm can be found in Appendix C.

After segmenting IVC region, the segmented region 
was cleaned to remove any isolated and unneeded pixels 
and retains a closed region. To delineate the IVC contour, 
we used the Moore-Neighbor tracing algorithm modified 
by Jacob’s stopping criteria [23]. After performing auto-
mated IVC region segmentation and contour delineation, the 
delineated contour was then used to compute IVC thickness 
or diameter in all frames of a given clip including the end-
diastolic (largest dIVC) and end-systolic (smallest dIVC) 
frames as described next.

Image analysis: automated cIVC tracking

The delineated region, which was generated as described 
above, is divided into equal segments (or sectors). To com-
pute dIVC, we automatically generated the major axis of the 
sub-segment that is located approximately 2 cm proximal 
to the ostium of the right atrium. We then computed the 
Euclidean distance between the endpoints of the major axis. 
Finally, we converted the computed pixel distance into mil-
limeters (mm) as described in Appendix D. The computed 
dIVC was used to construct the dIVC curve by plotting the 
values over frames followed by applying a Savitzky-Golay 
filter [24] to obtain a smoothed dIVC curve. From this curve, 
the absolute maximum value (highest peak) of this measure-
ment and the absolute minimum value (lowest valley) can 
be easily detected and used to measure the collapsibility 
percentage or cIVC. IVC collapsibility (cIVC) was com-
puted based on the difference between the maximum peak 
and minimum valley in the dIVC curve. Specifically, cIVC 
is calculated as:

(1)cIVC =
dIVCmax − dIVCmin

dIVCmax

× 100%

Image analysis: automated RAP estimation

After the automated cIVC analysis, RAP is computed using 
the automatically generated dIVC and cIVC values based 
on two different criteria, namely ASE Criterion and NIH 
Criterion as detailed in Table 1.

ASE Criterion This criterion follows ASE guidelines [4, 
5] for classifying RAP into 3 classes: 3, 8, and 15 mmHg 
based on dIVC and cIVC. A RAP of 3 mmHg is considered 
a normal or low pressure, indicating that the heart is func-
tioning normally and there is no excessive pressure in the 
atrium; a RAP of 8 mmHg is considered slightly elevated, 
which can be caused by a variety of conditions such as heart 
failure, pulmonary hypertension, or fluid overload; a RAP of 
15 mmHg or higher is considered severely elevated, which 
can indicate more severe heart failure, pulmonary embolism, 
or other serious cardiac conditions.

NIH Criterion This criterion follows a site-specific (NIH) 
guideline for classifying RAP as: 5, 10, 15, and 20 mmHg 
based on dIVC and cIVC. A RAP of 5 mmHg is considered 
a normal or low pressure; a RAP of 10 mm Hg is considered 
slightly elevated; a RAP of 15 mmHg would be considered 
moderately elevated; and a RAP of 20 mm Hg or higher 
would be considered severely elevated. Note that this crite-
rion (NIH) has four RAP categories while the ASE criterion 
has three RAP categories due to historic precedents in this 
NIH echo lab.

Statistical analysis

Data are expressed as mean ± standard deviation (SD) unless 
specified. All dIVC measurements are considered continu-
ous variables while cIVC1 and RAP values are considered 
categorical data. The Shapiro–Wilk test was used to test for 
the normality of IVC distribution. Automated versus manual 
reference measurements of IVC were compared using two-
tailed, paired student’s t-test (or Mann-Whitney U-test if not 
normal), and a chi-square test was used for cIVC and RAP 
comparisons.

Table 1  Different criteria (ASE and NIH) for RAP estimation

dIVC cIVC RAP (ASE Criterion) RAP (NIH Criterion)

≤ 21 mm > 50% 3 mmHg 5 mmHg
≤ 21 mm < 50% 8 mmHg 10 mmHg
> 21 mm > 50% 15 mmHg 15 mmHg
> 21 mm < 50% 15 mmHg 20 mmHg

1 cIVC values > 50% are labeled as 1 (collapsibility present) and 
cIVC values < 50% are labeled as 0 (collapsibility absent).
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Additionally, Pearson correlation coefficient [25] and 
Bland-Altman [26] analyses were performed to assess the 
agreement between the automated dIVC measurements and 
those estimated by experts. To assess the agreement between 
the manual and automated RAP measurements, we used the 
confusion matrix, also known as a contingency table for cat-
egorical comparison. Various statistics were computed based 
on the values in the confusion matrix, such as macro accu-
racy, sensitivity, specificity, and f1-score to further evaluate 
how well the automated RAP values agree with the manual 
reference values.

Results

Our dataset includes a similar distribution of male (128, 
≈ 50%) and female (127, ≈ 50%) patients. The mean age 
was 44.99 ± 17.84 years. The mean weight and height were 
76.99 ± 24.70 kg and 1.69 ± 0.14 cm, respectively. The 
mean body mass index (BMI) was 27.51 ± 15.55 kg/m2. The 
patients in our study had different clinical conditions includ-
ing autoinflammatory disease, breast cancer, bronchiectasis, 
carcinoid, and SCD. The racial distribution is as follows: 
White ( ≈ 66%), Hispanic ( ≈ 11%), black or African Ameri-
can ( ≈ 16%), Asian ( ≈ 5%), and Mixed ( ≈ 2%). Table 2 sum-
marizes the demographic and clinical information for the 
study participants.

Automated IVC retrieval and quality assessment

The downstream goal of IVC quantification requires accu-
rate selection of individual subcostal IVC view from other 
views in each echocardiography study. Although others have 
previously published approaches in this area [14, 21, 27], 
our pipeline includes an automated stage to distinguish the 
IVC view from other echocardiographic views as well as 
subclasses of IVC views (e.g., view with artifact or very 

dilated IVC) with an accuracy of 0.97, a precision 0.96, a 
sensitivity of 0.97, and f-1 score of 0.96.

Another important step prior to automated IVC quantifi-
cation is the quality assessment of the view. Several studies 
(e.g., [28]) reported that the accurate analysis of echocardi-
ography is hugely dependent on the quality of the images, 
and that poor-quality images impair echocardiography quan-
tifications. Therefore, we utilized a lightweight algorithm 
for assessing the quality of the IVC image prior to boundary 
delineation and thickness quantification. Our quality assess-
ment algorithm achieved an accuracy of 0.94 ± 0.10, a pre-
cision of 0.94 ± 0.04, a sensitivity of 0.95 ± 0.09, and f-1 
score of 0.95 ± 0.06. Figure 2 shows examples of echocardi-
ography images classified as IVC with good and bad quality.

Differences between manual and automated 
segmentation

To assess the differences between the manual and auto-
mated IVC region segmentation, we used intersection over 
union (IoU) [29] and dice similarity coefficient (DSC) [29]. 
IoU and DSC are measures of overlap between two sets of 
data and can be used to quantify the similarity or differ-
ence between manual and automated regions. The IoU is 

Table 2  Demographic and clinical information for study participants

Mean SD Max Min

Age (year) 45 18 93 17
Height (m) 1.69 0.14 2.09 0.68
Weight (kg) 76.99 24.70 154.00 21.00
BMI (kg/m2) 27.51 15.55 245.24 9.92
Systolic Blood Pressure (SBP), 

(mmHg)
122 17 210 76

Diastolic Blood Pressure (DBP), 
(mmHg)

69 12 120 32

Heart Rate (bpm) 80 18 142 45

Fig. 2  Left: example of good quality IVC view retrieved automatically from a set of other views; right: example of IVC view retrieved automati-
cally from a set of other views and labeled as unusable (bad quality) as the IVC’s boundary is not clear
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calculated as the intersection of the two regions divided by 
the union of the two regions while the DSC is calculated as 
twice the intersection of the two regions divided by the sum 
of the two regions. A high IoU or DSC indicates a strong 
agreement between the manual and automated regions, while 
a low score indicates disagreement or differences between 
the two regions.

Our segmentation algorithm achieved excellent perfor-
mance segmenting the IVC region with an IoU score of 0.96 
± 0.03 and a DSC score of 0.98 ± 0.05. In addition, our 
lightweight segmentation algorithm achieved an inference 
speed of > 60 frames per second (FPS). Figure 3 shows an 
example of the automatically segmented region along with 
the automatically generated contour.

dIVC and cIVC tracking

The automatically delineated region in each frame is used 
to derive dIVC by measuring IVC diameter 2 cm from the 
junction of the right atrium. As this dIVC calculation is per-
formed in each frame, the calculation of IVCs diameter was 
performed over frames. Figure 4 shows an example of the 
absolute maximum and minimum dIVC as well as dIVC 
curve over frames.

For quantitative comparison of the automated versus 
manual dIVC measurements, the t-test shows there is no 
significant difference between the two groups (p = 0.70). 
To assess the agreement between the manual and automated 
dIVC, we used Pearson correlation and Bland-Altman plots. 
Figure 5 shows an excellent agreement between the auto-
mated dIVC measurements and those estimated by experts 
based on correlation (r = 0.96) and Bland-Altman plots. 
These results suggest that the automated method is accurate 
and allows assessing IVC diameter in each frame.

To further evaluate the automated method, we per-
formed a variability analysis of measuring dIVC at different 

locations. Our results showed a strong agreement at 3 cm 
location (r = 0.95) as well as at 1 cm location (r = 0.87) 
with the manual reference standard. It is important to note 
that our automated algorithm is capable of measuring dIVC 
at various other spatial locations, including locations at the 
IVC-right atrium junction and locations 4 cm and 5 cm cau-
dal to the junction. This feature enables the algorithm to 
perform variational analysis at different locations and time 
points, resulting in more reliable measurements. However, 
for this study, we only compared the manual and automated 
dIVC measurements at 2 cm from the right atrium junc-
tion since manual measurements were only available at that 
location.

For the subsequent comparison of cIVC, the manual and 
automated values were based off the dIVC measured at 2 cm 
from the right atrium junction since manual measurements 
were performed at that location. Recall that cIVC is esti-
mated by plugging dIVCmax and dIVCmin into Eq. 1. For the 
cIVC comparison, the chi-square test showed that there is a 
significant association between the automated and manual 
estimates ( p < 0.01 ). After the automated dIVC and cIVC 
measurements were derived, they were used to generate the 
automated RAP estimates.

Automated versus manual RAP estimation

To compare the automated and manual RAP values, the chi-
square test shows there was a significant association between 
the manual versus automated RAP estimates by both ASE 
Criterion ( p < 0.01 ) as well as by NIH Criterion ( p < 0.01).

Figure 6 shows the confusion matrices for RAP esti-
mates by both ASE and NIH criteria. From the matrices, 
we see a strong to moderate agreement for both criteria. 
The accuracy, precision, recall, and f-score for both ASE 
and NIH are presented in Table 3. Based on the findings 
from the table and corresponding figure, it appears that 
ASE Criterion slightly outperforms NIH Criterion. One 

Fig. 3  Left: the automatically generated mask overlayed on the original image; right: the contour of the overlayed mask



2443The International Journal of Cardiovascular Imaging (2023) 39:2437–2450 

1 3

Fig. 4  Top left: automated dIVC in frame 253 of a given video with 
a dIVC of 1.73 cm (maximum dIVC); top right: automated dIVC 
in frame 183 of a given video with a dIVC of 0.475 cm (minimum 

dIVC); bottom: dIVC in each frame of a given clip, where the peaks 
indicate maximum dIVC and valleys indicate minimum dIVC

Fig. 5  Correlation and B &A plots between automated and human dIVC (at 2 cm location)
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possible explanation for this observation is that ASE Crite-
rion has fewer classes (3, 8, and 15 mmHg) than NIH Cri-
terion (5, 10, 15, and 20 mmHg), which could impact the 
performance of individual classes and consequently affect 
the overall performance. For example, the performance of 
RAP value of 10 is lower than other RAP values, impact-
ing the overall performance of NIH Criterion. Despite the 

difference in the performance between ASE Criterion and 
NIH Criterion, both criteria achieved promising results and 
show that our AI-based method can be used to estimate RAP 
values reliably. It is important to note that our study primar-
ily assessed the automated system’s ability to estimate RAP 
values using dIVC and cIVS. We have not yet compared 
these automated estimations to the gold-standard invasive 

Table 3  Performance of 
automated RAP estimation 
using ASE and NIH criteria; 
the macro* accuracy of ASE 
Criterion is 0.90 and the macro 
accuracy of NIH Criterion is 
0.85

 *Macro accuracy treats all classes equally 

ASE RAP Guidelines NIH (site-specific) Guidelines

3mmHg 8mmHg 15mmHg 5mmHg 10mmHg 15mmHg 20mmHg

Precision 0.80 0.89 1.00 0.81 0.76 1.00 0.83
Recall 0.98 0.63 0.89 0.94 0.57 0.33 1.00
F-score 0.88 0.74 0.94 0.87 0.65 0.50 0.91

Fig. 6  First row: non-normalized confusion matrices for automated 
RAP estimation using ASE Criterion (left) and NIH Criterion (right). 
Second row: normalized confusion matrices for automated RAP esti-

mation using ASE Criterion (left) and NIH Criterion (right). The nor-
malized confusion matrix is generated by dividing each value in the 
confusion matrix by the sum of the corresponding row
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RAP measurements. Such a comparison is planned for our 
subsequent research.

Discussion

This work presents an AI-system for the automation of 
dIVC, cIVC, and the subsequent estimation of RAP values. 
Our results show a strong agreement between automated 
measurements and those determined by human experts. 
Unlike current practices and existing automated methods, 
which predominantly compute dIVC in specified frames, our 
multi-stage AI system offers comprehensive echocardiogra-
phy analysis in the open-world with minimal computational 
overhead. The system’s performance is robust, achieving a 
Pearson correlation coefficient of 0.96 and an F1-score of 
0.85, outshining other referenced studies in these metrics.

Comparing our approach to the literature, in [15], a 
semi-automated LSTM-based architecture was trained on 
220 videos, yielding moderate agreement (Fleiss’ kappa, k= 
0.45) with expert IVC values. The subsequent work of the 
same authors, [16], employed this method to predict fluid 
responsiveness, achieving an AUC-ROC of 0.70 with 175 
critically ill patients. In [17], Mesin et al. applied an edge-
tracking and machine learning method to a dataset of 170 
patients with specific heart-related conditions; the proposed 
method achieved moderate performance with an accuracy 
of 71% (SVM).

In contrast, our multi-stage AI-system covers the entire 
echocardiography analysis spectrum, from echo view selec-
tion to quantification. Further, our system takes into account 
challenges such as computational resource demands and 
data distribution shifts, incorporating efficient algorithms 
and adapting to open-world data changes. Additionally, a 
key strength of our system is its speed. Our algorithm not 
only facilitates echo view selection, quality assessment, 
and boundary tracing but also completes a comprehensive 
end-to-end echo analysis and quantifies parameters such 
as dIVC, CIVC, and RAP in less than a second (800ms on 
average). This streamlined efficiency is particularly benefi-
cial in busy clinical settings. For context, we consulted an 
experienced cardiac sonographer from our echo lab who 
estimated that a visual assessment of dIVC takes around 
3 s, nearly three times longer than our system’s full analysis. 
The manual measurement of dIVC takes even more time-
consuming, averaging between 6 to 7 s, which is roughly 6 
to 7 times lengthier than our automation. This automation 
could encourage the adoption of quantitative measurements 
in clinical settings. As highlighted in [30], the extended 
duration required for manual tracing of the cardiac borders 
has perpetuated the reliance on visual assessments in busy 
echocardiographic laboratories. Our innovation, therefore, 

represents a potential shift towards faster and more efficient 
analyses.

In addition to efficiency, our automated algorithm per-
forms temporal analysis of dIVC over all video frames and 
at different sites. The analysis of all frames could provide 
information about temporal changes during respiration over 
multiple cardiac cycles. The temporal analysis feature of our 
system could also motivate sonographers to record longer 
echocardiography spans, potentially shedding light on res-
piratory changes’ impact on cardiac functions. In addition 
to the temporal analysis of dIVC and cIVC, our work inves-
tigated the automated estimation of noninvasive RAP meas-
urements using two criteria, namely ASE criterion and NIH 
criterion. However, this work can be extended to estimate the 
gold-standard and noninvasive RAP measurement. Further, 
it could be extended to include other criteria and guidelines. 
There are several reasons for updating or customizing RAP 
estimation guidelines and recommendations to the specific 
resources and requirements of each organization or associa-
tion. These reasons include differences in healthcare sys-
tems, new research findings, and variations in the patient 
populations. In the future, we plan to 1) evaluate the pro-
posed system in estimating the gold-standard invasive RAP 
measurement, and 2) develop an automated algorithm that 
enables cardiologists to choose the best-suited RAP estima-
tion criterion based on patient characteristics, and compare 
the results obtained from different guidelines to enhance 
accuracy, flexibility, and standardization of care.

Nonetheless, the present study was constrained by some 
limitations. First, it was conducted at a single center and 
the study cohort was made up of patients who underwent 
echocardiography examination for any reason, which might 
impact the results when the system is applied to patient 
groups with specific diseases such as pulmonary hyperten-
sion, cardiac tamponade, fluid overload, or patients with 
critically ill conditions.

Second, while our AI algorithm provides consistent 
results – that is, it can reproduce the exact same measure-
ments for dIVC, cIVC, and RAP in each run – our current 
study did not comprehensively assess inter-observer and 
intra-observer variability. Such an assessment would be 
crucial in determining the reproducibility, which can be 
influenced by human’s variability. Existing literature has 
underscored the potential benefits of AI-driven reproduc-
ibility in echocardiography. For instance, Nolan et al. [31] 
reported that automated systems tend to exhibit consistent 
measurements across different cases, largely eliminating 
the variability often encountered in manual measurements. 
Such findings suggest that AI-driven methods, like ours, 
could offer a notable advantage in enhancing consistency 
in echocardiographic assessments. However, we recognize 
the importance of comparing the consistent output of our 
algorithm against the potential variability seen in manual 
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measurements, and we realize the importance of conducting 
reproducibility analysis.

Finally, a pivotal limitation in our study is its failure to 
compare automated RAP values against the gold-standard 
invasive RAP measurements. While our system demon-
strated reliability in IVC measurements relative to the 
manual method, its capability for direct RAP estimation 
using the gold standard approach remains unvalidated. In 
acknowledging this limitation, our next immediate step will 
involve validating the performance of our system against the 
invasive gold-standard RAP measurements. In our contin-
ued research, we also aim to evaluate our proposed system 
across different centers, conduct thorough intra- and inter-
observer variability evaluations, compare the time required 
for automated and manual IVC analysis, and provide a more 
nuanced comparison between automated and manual IVC 
measurements across different spatial locations.

Conclusion

We present an AI-based system dedicated to automating 
dIVC and cIVC measurements, which has the potential to 
refine the current clinical practice of IVC analysis. Specifi-
cally, our solution provides a fully automated, cost-effective, 
and quantitative tool for dIVC and cIVC analysis that could 
be used in clinical settings and point-of-care testing. Moreo-
ver, it offers the capability to conduct variational analysis of 
dIVC across diverse spatial locations and temporal points, 
thereby ensuring more consistent measurements. While 
there may be potential implications for RAP estimations, 
the primary intent of our system is to augment the current 
practice of IVC analysis. Such improvements could poten-
tially lead to better clinical decision-making and improved 
patient outcomes.

Appendix A two‑head classification 
algorithm

The image retrieval algorithm retrieves a specific view (i.e., 
IVC view or sub-views) with acceptable quality. As shown 
in Fig. 7, our algorithm utilizes a lightweight model with a 
shared encoder and two heads. The shared encoder includes 
five inverted MobileNetV2-s [32] residual blocks. The two 
heads perform view classification and quality assessment 
and are configured to operate with the shared encoder. Each 
head has the following layers: a Global Average Pooling 
(GAP) layer, a Dropout layer, Fully Connected (FC) layer, 
and an OpenMax layer.

We fine-tuned each head along with its shared encoder as 
follows. First, we initialized MobileNetV2-s encoder with 
the echo-specific weights (transfer learning) followed by 
fine-tuning the echo-specific encoder and the view classi-
fication layers using the datasets presented in Section 2.1. 
The view classification head is fine tuned to minimize the 
categorical cross entropy (CCE) loss using stochastic gra-
dient descent (SGD) optimizer. We used a batch size of 32, 
for 32 epochs, and an initial learning rate of 1 × 10−3 . This 
head classifies a given echo as IVC, other (e.g., PLAX, A4C, 
Doppler), or unknown. Similar to the view classification 
head, the quality assessment head is fine-tuned to minimize 
binary cross entropy (BCE) loss using SGD optimizer with 
a batch size of 16, for 32 epochs, and an initial learning rate 
of 1 × 10−3 . This head classifies a given echo image/video as 
good quality or bad quality. In clinical practice, echocardiog-
raphers visually identify echo views and manually exclude 
low-quality echoes as they lead to inaccurate measurements. 
Since our image retrieval component is lightweight, it ena-
bles echo view classification and quality assessment in clini-
cal practice.

Fig. 7  Overview of IVC 
retrieval (quality assessment 
and view classification) stage. 
Each block represents Mobile-
NetV2-s residual blocks. GAP 
and FC represent the global 
average pooling layer and fully 
connected layer, respectively. 
OpenMax is a replacement for 
the SoftMax function that ena-
bles open-world learning
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Appendix B open‑world active learning

Although machine learning-based algorithms achieved high 
performance on several visual recognition tasks including 
image classification and segmentation [33], most of these 
algorithms are designed to only learn images belonging 
to a predefined set of classes given before training. In a 
closed world setting, we assume [33] that both Dtrain and 
Dtest are drawn from the same distribution, and the classifier 
is trained using Dtrain to minimize an empirical loss func-
tion (e.g., cross-entropy). This loss function is optimized to 
discriminate between different known classes. Finally, the 
trained closed world classifier is tested using Dtest to label a 
new image as one of the known classes in Y. Although the 
closed world assumption holds in several applications, many 
real-world applications are dynamic and open containing 
examples from classes that might not appear in training [34]. 
Typically, a closed world classifier would classify an unseen 
or unknown example as one of the known classes. Since the 
cost of randomly misclassifying an unseen image to a known 
class can be high, especially in clinical practice, there is a 
need to design robust classifiers for open world settings.

In such settings, the classifier is still trained using Dtrain . 
However, Dtest has a set (Y) containing predetermined classes 
as well as unknown classes; i.e., yi ∈ Y = 1, 2,..C, C + 1 ), 
where C represents the number of known classes and C + 1 
represents the new class. Like the close world classifier, the 
open world classifier is trained to minimize a loss function 
with an overall aim to recognize known classes and classify 
unknown classes as C + 1.

Open world learning has been integrated into convolu-
tional neural networks (CNNs) to create robust deep open 
classification (DOC) models [35, 36]. In [36], Shu et al. 
integrated open world learning into CNNs by employing a 
1-vs.-rest layer. This layer uses Sigmoid activation functions 
and Gaussian fitting to classify known classes while reject-
ing unknown ones. It has N Sigmoid functions for N known 
classes; it then rejects unseen classes based on thresholding 
(t). Although DOC has been widely used for open world 
deep learning classification, other methods have been used. 
For example, a simpler method is thresholding on the Soft-
max output; i.e., a given input image is labeled as unknown 
if none of the classes reaches a predetermined threshold. 
The performance of this approach is sensitive to the used 
threshold, which must be estimated empirically from the 
training dataset.

Another method that has been widely used to integrate 
open world learning into deep learning models is Open-
Max [20]. In this method, the traditional Softmax layer is 
extended to predict unknown classes using the likelihood of 
failure and the concept of meta-recognition [20]. To estimate 
if the input is unknown or ”far" from known classes, the 

scores from the penultimate layer of convolutional neural 
networks (i.e., fully connected layer) are used. Then, inputs 
that are far (in terms of distribution) from known classes are 
classified as unknown or rejected.

In this work, we replaced the Softmax function with 
the OpenMax [20] function. Our open-world IVC retrieval 
algorithm works as follows. During each iteration, the 
classifier either detects a specific echocardiography view 
as IVC or labels it as unknown. Then, unknown views are 
grouped into clusters or groups (based on their similarity) 
to be labeled by a human expert before passing the newly 
labeled clusters/classes for a model update. This process of 
labeling unknown images that are previously unseen during 
the model’s training, clustering them, and obtaining human 
feedback is called open-world active learning. We refer the 
reader to [21] for further details about our open-world active 
learning algorithm.

Appendix C IVC segmentation algorithm

Figure 8 depicts our TaNet for cardiac region segmentation. 
Our TaNet algorithm, which was proposed in [22], local-
izes the region of interest (i.e., IVC) using a localization 
algorithm and then uses three pathways for learning rich 
textural, low-level, and context features. Current convolu-
tional neural networks (CNNs) operate on the whole image 
and are limited by the spatial invariance of input data. The 
traditional approach for handling these issues involves using 
separate models for spatial transformation and localization; 
i.e., special object detection models are used to locate the 
region of interest before segmenting that region. Jaderberg 
et al. [37] proposed a more efficient transformation network, 
called Spatial Transformer Network (STN), for applying 
spatial transformations (e.g., scaling, translation, attention/
detection) to the input image or feature map without addi-
tional training supervision. STN is a plug-and-play module 
that can be easily inserted into existing CNNs. It is also dif-
ferentiable in the sense that it computes the derivative of the 
transformations within the module, which allows learning 
the loss gradients with respect to the module parameters.

In medical images, it is common that the target region 
occupies a relatively small portion of the image. Hence, 
considering the entire image for segmentation would add 
noise caused by irrelevant regions. In this work, we use STN 
for focusing the attention of the segmentation/contouring 
algorithm on the IVC region while suppressing irrelevant 
regions in the background.

After focusing the attention on the IVC region using 
STN algorithm, we used the lightweight segmentation algo-
rithm (see Fig. 8) to segment IVC from the background. 
The segmentation algorithm has three pathways: spatial or 
detail pathway (SP), handcrafted pathway (HP), and context 
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pathway (CP). Each of these pathways extract a unique set 
of features as described next.

Spatial Pathway (SP) To extract rich low-level details 
(e.g., edges, color blobs) at a low computational cost, a shal-
low pathway that has three layers with high channel capacity 
is adopted. Specifically, we used three blocks, each contain-
ing a 3 × 3 convolutional layer with stride of 2 followed by 
batch normalization and ReLU activation. The number of 
filters in the first, second, and third blocks are 64, and 128, 
respectively.

Handcrafted pathway (HP) Depending on the medical 
imaging modality and the application, the standard convolu-
tional kernels can be replaced by handcrafted-based kernels 
to extract a unique set of statistical, geometrical, or textural 
features. As compared to the handcrafted-based methods, the 
main strength of deep learning is its ability to learn features 
at different levels of abstraction, which allows learning com-
plex functions that map the input to the output. However, 
these complex functions may be generic. On the other hand, 
hand-crafted descriptors or kernels are designed to extract 
specific features (e.g., textural, geometric) that may be dif-
ferent from the ones extracted by deep learning models (e.g., 
edges, color blobs). For example, the textural features (e.g., 
Local binary pattern [LBP]) have strong ability to differenti-
ate small differences in texture and topography especially at 
the boundaries between complex regions with challenging 
separations.

In this work, we integrated handcrafted kernels into 
CNN learning. Similar to the spatial pathway (SP), we add 
a handcrafted pathway (HP) with three convolutional blocks, 
but replace the standard convolutional filters with LBP fil-
ters. These LBP-encoded convolutional kernels are used to 
extract rich texture features from the echo images. Each LBP 
block has a layer with fixed anchor weights (m) followed by 
a second layer with learnable convolutional filters of size 
1 × 1 . We generated the anchor weights stochastically with 
different ranges of sparsity.

Context Path (CP) The last branch is used for fast down-
sampling of the feature map of the input image to obtain a 
sufficiently scoped receptive field for encoding high-level 
context information. Subsequently, a GAP layer is attached 
to the tail of the lightweight model to provide the maximum 
receptive field with global context information. In segmen-
tation, the network analyzes the feature map of the input 
image at different receptive fields. The receptive field indi-
cates the extent of the scope of input data a neuron or unit 
within a layer can be exposed to and is defined by the filter 
size of a layer within a convolution neural network. Finally, 
the output of the global average pooling is up-sampled and 
combined with the output of other pathways.

Path Fusion In the last stage, the outputs of the three 
pathways are combined using a fusion module to obtain 
a weighted feature vector. In particular, the fusion mod-
ule fuses the features from the three paths by first con-
catenating the pathways’ outputs and then using batch 

Fig. 8  TaNet for IVC region segmentation. TaNet has two main com-
ponents: STN for IVC region localization and segmentation with 3 
pathways, spatial (detail) path (SP), handcrafted path (HP), global 
or context path (GP). STN focuses the segmentation attention on the 

cardiac region. The numbers in the segmentation cubes are the size 
ratios to the resolution of the input. L(z), � , and �(G) are STN param-
eters
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normalization to balance the different scales of the fea-
tures. Then, the concatenated features are combined into a 
single feature vector. This feature vector is sent to a global 
pooling and followed by a convolutional layer (1x1), and 
a Sigmoid function is used to generate the weight vector. 
We refer the reader to [22] for further details about this 
segmentation network.

Appendix D automated quantification

Instead of computing cardiac measurements in specific 
frames, the temporal analysis of measurements over frames 
has great applicability in clinical cardiology practice and 
research. It provides information about the mechanics of 
cardiac chambers and captures how they change over time. 
We present next the steps for computing dIVC from the seg-
mented regions.

Prior to the delineation of IVC boundaries, we perform 
morphological cleaning to remove any isolated pixels and 
only keep the closed region of interest. Next, we compute 
the contour of the clean regions using Moore-Neighbor trac-
ing algorithm modified by Jacob’s stopping criteria ([23]). 
Next, the delineated region is divided into equal segments 
(or sectors). These segments are then used to compute dIVC 
at different spatial locations.

To compute dIVC at 2 cm location, we find the major axis 
of the sub region that is located approximately 2 cm proxi-
mal to the ostium of RA. We then compute the Euclidean 
distance between the endpoints of the major axis. Finally, we 
convert the computed pixel distance into millimeters (mm) 
as follows:

where dpi is the dots per inch in a given clip. After comput-
ing dIVC, we construct the dIVC curve by plotting dIVC 
values over frames. Next, we use the Savitzky-Golay filter 
to obtain a smoothed dIVC curve. The smoothed curve is 
then used to compute RAP as follows. First, we compute 
cIVC based on the difference between the maximum peak 
and minimum valley in the dIVC curve:

Finally, the RAP value is computed by plugging the IVC 
diameter and collapsibility values into the equation provided 
by ASE criterion or NIH criterion.

(D1)Pixel = (25.4 ÷ dpi) mm

(D2)dIVC = dIVCdistance × Pixel

(D3)Collapsibility =
dIVCpeak − dIVCvalley

dIVCpeak

× 100%
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