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e.g. arrhythmic threshold [2–4], blood pressure [5], and the 
risk of stroke [6–8] but changes in p-K may also potentially 
impact the mechanical function of the myocardium.

Myocardial function at low p-K levels has been studied 
experimentally in dogs (n = 27) and in healthy human volun-
teers (n = 10) [9, 10]. In these studies, both invasively- and 
echocardiographically determined indices of systolic- and 
diastolic function were reduced during potassium depletion. 
Reduced systolic- and diastolic cardiac function have also 
been reported in patients with chronically low p-K levels 
due to primary hyperaldosteronism (n = 62–85) [11–14]. 
The potential effects of high-normal p-K on myocardial 
function remain to be explored. Of interest, an observational 
study of patients with heart failure (n = 6,073) demonstrated 
that high-normal p-K was associated with a 22% mortal-
ity reduction when compared to the normal reference range 
after less than two years of observation [1]. This is mainly 
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Abstract
Plasma potassium (p-K) in the high-normal range has been suggested to reduce risk of cardiovascular arrythmias and 
mortality through electrophysiological and mechanical effects on the myocardium. In this study, it was to investigated if 
increasing p-K to high-normal levels improves systolic- and diastolic myocardial function in patients with low-normal 
to moderately reduced left ventricular ejection fraction (LVEF). The study included 50 patients (mean age 58 years (SD 
14), 81% men), with a mean p-K 3.95 mmol/l (SD 0.19), mean LVEF 48% (SD 7), and mean Global Longitudinal Strain 
(GLS) -14.6% (SD 3.1) patients with LVEF 35–55% from “Targeted potassium levels to decrease arrhythmia burden in 
high-risk patients with cardiovascular diseases trial” (POTCAST). Patients were given standard therapy and randomized 
(1:1) to an intervention that included guidance on potassium-rich diets, potassium supplements, and mineralocorticoid 
receptor antagonists targeting high-normal p-K levels (4.5-5.0 mmol/l). Echocardiography was done at baseline and after 
a mean follow-up of 44 days (SD 18) and the echocardiograms were analyzed for changes in GLS, mechanical disper-
sion, E/A, e’, and E/e’. At follow-up, mean difference in changes in p-K was 0.52 mmol/l (95%CI 0.35;0.69), P<0.001 in 
the intervention group compared to controls. GLS was improved with a mean difference in changes of -1.0% (-2;-0.02), 
P<0.05 and e’ and E/e’ were improved with a mean difference in changes of 0.9 cm/s (0.02;1.7), P = 0.04 and − 1.5 
(-2.9;-0.14), P = 0.03, respectively. Thus, induced increase in p-K to the high-normal range improved indices of systolic 
and diastolic function in patients with low-normal to moderately reduced LVEF.
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considered to be caused by lower arrhythmia threshold 
and susceptibility to sudden cardiac death due to a reduc-
tion in repolarization reserve [15]. It is, however, unknown 
whether the association between p-K and outcome is driven 
by purely electrical changes or in part by mechanical effects 
on the myocardium.

2D-speckle tracking echocardiography has been dem-
onstrated to be a sensitive and robust method for detec-
tion of subtle systolic dysfunction as in preclinical heart 
failure [16–18]. Furthermore, measurements of the veloc-
ity of myocardial motion by tissue Doppler imaging have 
improved detection of diastolic dysfunction [19]. In this 
randomized intervention study, we hypothesized that an 
induced increase in p-K to the high-normal range in patients 
with low normal to moderately reduced left ventricular ejec-
tion fraction (LVEF) is associated with improved systolic 
myocardial function as assessed by 2D-speckle tracking 
analysis and with improved diastolic function as measured 
by conventional clinical methods.

Materials and methods

Population

The current substudy was prespecified in the protocol for 
the Targeted potassium level to decrease arrhythmia burden 
in high-risk patients with cardiovascular diseases (POT-
CAST) trial (www.clinicaltrials.gov [NCT03833089]). The 
design of the POTCAST trial has been described previously 
[20]. In brief, the POTCAST trial is an ongoing randomized 
clinical trial aiming at enrolling 1,000 patients at a high risk 
of malignant arrythmia, defined as patients with an implant-
able cardioverter defibrillator (ICD) implanted as part of 
routine clinical management for primary or secondary pre-
vention due to inherited or acquired heart diseases. Patients 
are randomized (1:1) through a concealed computer-gen-
erated sequence (project-RedCap.org) [21, 22] to either 
usual standard of care or usual standard of care with the 
addition of dietary guidance on increased potassium intake, 
oral potassium supplements, and mineralocorticoid receptor 
antagonists (MRA) to increase and maintain p-K between 
4.5 mmol/l and 5.0 mmol/l. Inclusion criteria for POTCAST 
are screening p-K ≤ 4.3 mmol/l and treatment with an ICD. 
Exclusion criteria are an eGFR < 30 ml/min/1.73 m2, preg-
nancy, seeking pregnancy, or lack of ability to provide 
informed consent.

For the present study, 50 consecutive patients from the 
POTCAST trial with LVEF between 35 and 55% were 
included between June 1, 2020 and May 31, 2021. Patients 
were excluded from the final analysis if any of the following 
criteria were present: echocardiographic image quality too 

poor for 2D-speckle tracking criteria, acute coronary events 
during follow-up, any changes in heart failure medication 
during follow-up unrelated to the study, and difference in 
rhythm at baseline and follow-up echocardiographies.

Ethics

The study was performed according to the declaration of 
Helsinki. All patients provided informed consent. The study 
was approved by regional Danish committee of health 
research ethics (Regional Videnskabsetisk komité) — Pro-
tocol approval no. H-18,044,908 and by the Danish Data 
Protection Agency — approval no. VD-2018-453.

Intervention

Patients in the control group continued standard medical 
treatment. In addition to the standard treatment patients in 
the intervention group were educated in intake of a potas-
sium rich diet and commenced oral potassium supplement 
and/or MRA (spironolactone or eplerenone) according to 
the POTCAST protocol [20]. Because myocardial deforma-
tion imaging is sensitive to loading conditions, potassium 
supplements were chosen as first line intervention to reduce 
variance in preload and afterload caused by a blood pressure 
reduction of MRAs. If target p-K levels could not be reached 
with potassium supplements alone, MRA was used as sec-
ond line treatment. With close monitoring of renal function 
and blood pressure, patients were given incremental doses 
of study medication until target p-K (4.5-5.0 mmol/l) or 
maximum dosages of potassium supplement (4500 mg ~ 60 
mmol) and MRA (50 mg eplerenone or 100 mg spironolac-
tone) were reached.

Screening and follow-up

Transthoracic echocardiography was performed at enroll-
ment after measurements of p-K+, p-Na+, p-Mg2+, p-Ca2+, 
and p-creatinine and of the blood pressure. Repeated echo-
cardiography was scheduled as soon as possible after either 
target p-K was met, or maximum dose of study medication 
was reached. Patients allocated to the control group were 
scheduled to repeated echocardiography six weeks after 
baseline due to preliminary results from the POTCAST trial 
showing that it takes six weeks on average to reach target 
p-K of 4.5-5.0 mmol/l. P-K and blood pressure were mea-
sured immediately after the follow-up echocardiography in 
both groups. The follow-up echocardiography was sched-
uled approximately at the same time of day as the baseline 
echocardiography in order to reduce variance caused by cir-
cadian changes in volume status, blood pressure and p-K 
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as well as variation caused by the pharmacokinetics of the 
patients’ other daily medication.

Echocardiography

All echocardiographies were performed by a single inves-
tigator using the same ultrasound system (Vivid E9, GE 
healthcare), the same probe (M5S-D, GE) and the same ana-
lyzing software (EchoPac, version 203.66). Cine loops from 
3 standard apical views (2-chamber, 4-chamber, and apical 
long-axis) were recorded using gray-scale harmonic imag-
ing and saved in raw data format. Images were obtained at an 
acquisition rate of 50 to 90 frames per second. Left ventricu-
lar end-diastolic and end-systolic volumes and left ventricu-
lar ejection fraction (LVEF) were obtained using Simpson’s 
biplane method. For 2D-speckle tracking analysis, the inner 
endocardial borders were traced in the end-systolic frame 
in images from the three standard apical views. Speckles 
were tracked frame by-frame throughout the left ventricular 
wall during the cardiac cycle and basal-, mid-, and apical 
regions of interest were drawn (Fig. 1). Segments that failed 
to track were manually adjusted by the operator. Any seg-
ments that subsequently failed to track were excluded. GLS 
was calculated as the mean peak negative longitudinal strain 
before aortic valve closure of all successfully tracked seg-
ments according to an 18-segment model, and mechanical 
dispersion (MD) was calculated as the standard deviation of 
time-to-peak negative longitudinal strain in the 12 basal and 
midventricular segments [23]. Measurements of diastolic 
function included early diastolic mitral inflow velocity 
(E), late diastolic mitral inflow velocity (A), E/A ratio, and 
the average of the septal and lateral early diastolic mitral 
annular velocity (e’) [24]. Right ventricular function was 
evaluated by Tricuspid Annular Plane Systolic Excursion 

(TAPSE) and right ventricular free wall strain (RV FWS). 
For RV FWS, end-systole was defined at the time of pul-
monic valve closure.

Off-line image analyses were independently performed 
by two investigators blinded to randomization allocation, 
clinical data and blood test results to reduce the risk of bias.

Outcomes

The predefined outcomes were differences in changes from 
baseline to follow-up between the two groups in 2D-speckle 
tracking derived indices of systolic function: GLS, MD and 
for assessment of diastolic function: E/A, e´ and E/e´.

Sensitivity analysis

A subgroup analysis was performed on patients in the 
intervention group that only received dietary guidance and 
potassium as a supplement to reach target p-K levels to test 
if the effects of increasing potassium levels on myocardial 
function was independent of the effects of MRA on loading 
conditions.

Statistics

Values are summarized as mean (standard deviation) or 
median (interquartile range). Continues data of normal 
distribution were compared using students t-test. Within-
individual comparisons between baseline and follow-up 
echocardiographies were performed using the paired t-test. 
Fisher’s Exact test was used to compare categorical vari-
ables. Mean difference in changes was calculated as the 
between group difference in paired estimates to control 
for random differences in baseline measurements. Thus, 

Fig. 1 Measurement of Global Longitudinal Strain (A) and Mechanical Dispersion (B) from 2D-Speckle-Tracking software
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a two-tailed α = 0.05 and 1-β = 0.8 in a 1:1 randomization 
design, 21 patients in each group were needed. A total of 
50 patients were included to account for potential dropouts.

Results

Fifty patients with low normal to moderately reduced LVEF 
were randomized: 26 patients to the intervention group and 
24 to the control group. The participants had a mean age of 
58 years (SD 14) and 81% were male. The mean p-K was 
3.95 mmol/l (SD 0.19), mean LVEF was 48% (SD 7), and 
mean GLS was − 14.6% (SD 3.1%). Baseline clinical his-
tory, medication, blood test results, and echocardiographic 
parameters were similar in the two groups (Table 1). Seven-
teen (36%) patients had ischemic cardiomyopathy, 15 (32%) 
had dilated cardiomyopathy, and the remaining patients had 
other heart diseases including arrhythmogenic right ventric-
ular cardiomyopathy (2), hypertrophic cardiomyopathy (2), 
idiopathic VF (6), and heart failure due to other causes (5).

Follow-up

All patients completed the study and all patients in the inter-
vention group reported full compliance to medication dur-
ing the study period. Patients in the intervention group were 
given a mean daily dose of oral potassium supplement of 
2,700 mg (~ 36 mmol) and mean dose of MRA of 23 mg. 
The mean difference in changes in p-K was 0.52 mmol/l 
(0.35; 0.69), P < 0.001 higher in the intervention as com-
pared to the control group.

The follow-up echocardiography was performed after a 
mean of 44 days (SD 18) after baseline, 47 days (SD 17) in 
the intervention group and 40 days (SD 18) in the control 
group (P = 0.22). Three patients were excluded from the final 
analysis: two due to poor image quality and one due to dif-
ferences in rhythm at baseline and follow-up (sinus rhythm 
and atrial fibrillation) — Fig. 2. Table 2 shows clinical char-
acteristics and echocardiographic parameters at follow-up 
between the two groups. Notably, there were no statistically 
significant differences in changes in systolic blood pressure, 
diastolic blood pressure, or heart rate between the groups.

Systolic function

At follow-up, the intervention group had improved myo-
cardial longitudinal contraction measured by GLS with a 
mean difference in changes of -1.0% (-2.0; -0.02), P < 0.05 
compared to controls (Fig. 3). No significant difference 
in changes in contractile heterogeneity as determined by 
mechanical dispersion was found in the intervention group 
compared to controls (-3.7 ms (-3.5;0.1), P = 0.36). No 

the presented results represent absolute changes between 
study groups. Estimated differences are presented with 
95% confidence intervals (95%CI). General linear models 
were used to assess the correlation between p-K and echo-
cardiographic measurements and presented with R2 values 
obtained from the final models. Interobserver variations was 
estimated as Single Score Intraclass Correlation. Analyses 
were done using a standard statistical software program (R 
version 4.1.0).

Sample size calculation

To detect a clinically meaningful difference in changes 
in GLS of 1% with a standard deviation of 1.5 and with 

Table 1 Baseline characteristics for patients in the intervention and 
control group

Intervention 
group (n = 25)

Control group 
(n = 22)

Age, years 58 (± 15) 58 (± 13)
Male sex, n (%) 12 (80) 20 (91)
BMI, kg/m2 25.9 (± 4.39) 27.5 (± 5)
Potassium supp., n(%) 3 (12) 6 (27)
MRA treatment, n(%) 8 (32) 5 (23)
Beta Blocker treatment, n(%) 18 (72) 16 (73)
ACEi/ARB treatment, n(%) 17 (68) 13 (59)
Diuretic treatment, n(%) 9 (36) 9 (41)
IHD, n(%) 7 (28) 10 (45)
DCM, n(%) 9 (36) 7 (32)
Afib, n(%) 2 (8) 2(9)
Diabetes, n(%) 1 (4) 2 (9)
p-K, mmol/l 3.92 (± 0.19) 3.98 (± 0.2)
p-Na, mmol/l 140 (± 2) 141 (± 3)
p-Mg, mmol/l 0.85 (± 0.051) 0.85 (± 0.071)
p-creatinine, µmol/l) 88 (± 22.2) 82.2 (± 14.7)
Syst. blood pressure, mmHg 127 (± 19) 133 (± 15)
Diast. blood pressure, mmHg 80.4 (± 13) 81.7 (± 9.8)
GLS, % -14.7 (± 3.12) -14.5 (± 3.2)
MD, ms 52.2 (± 17) 60.6 (± 18.4)
LVEF, % 48.7 (± 6.11) 47.5 (± 7.1)
E, cm/s 61.1 (± 28.3) 62 (± 24.3)
A, cm/s 52.8 (± 19.7) 51.2 (± 12.1)
E/A 1.27 (± 0.79) 1.21 (± 0.52)
e’, cm/s 7.1 (± 2.23) 7.52 (± 2.42)
E/e’ 9.49 (± 4.81) 9.01 (± 3.65)
TAPSE, cm 2.18 (± 0.38) 2.12 (± 0.55)
RV FWS, % -23.6 (± 5.31) -21.7 (± 4.96)
Displayed as mean (± SD) or number (%). A: Late diastolic mitral 
inflow velocity, ACEi: Angiotensin converting enzyme inhibi-
tor, Afib: Atrial fibrillation, ARB: Angiotensin-II receptor blocker, 
DCM: Dilated cardiomyopathy, E: early diastolic mitral inflow veloc-
ity, e’: Early diastolic mitral annular velocity, GLS: Global Longi-
tudinal Strain, IHD: ischemic heart disease, LVEF: Left ventricular 
ejection fraction, MD: Mechanical dispersion, MRA: Mineralocorti-
coid receptor antagonist, RV FWS: Right ventricular free wall strain, 
TAPSE: Tricuspid annular plane systolic excursion

1 3

2100



The International Journal of Cardiovascular Imaging (2023) 39:2097–2106

Table 2 Changes in clinical characteristics and echocardiographic parameters between the intervention group (n = 25) and the control group 
(n = 22) from baseline to follow-up. Difference in changes is calculated as change in the intervention group relative to the control group

Intervention
(Follow-up)

Change from 
baseline

Control
(Follow-up)

Change from 
baseline

Diff. in changes 
from baseline

P-Value

P-K, mmol/l 4.51 (± 0.36) 0.59 (± 0.34) 4.05 (± 0.17) 0.068 (± 0.25) 0.52 (0.35; 0.69) < 0.001*
Systolic bp, mmHg 123 (± 11.2) -3.92 (± 14.4) 129 (± 14.9) -3.68 (± 10.6) -0.3 (-7.6; 7.2) 0.95
Diastolic bp, mmHg 78.2 (± 9.3) -2.2 (± 12.3) 79.9 (± 10.3) -1.82 (± 12) -0.4 (-7.5; 6.8) 0.91
HR, (bpm) 63.3 (± 8.9) 0.85 (± 7.22) 61.3 (± 10.9) 0.061 (± 5.94) 0.8 (-3.1; 4.7) 0.68
Systolic function
GLS, % -15.8 (± 3.5) -1.1 (± 1.39) -14.6 (± 3.3) -0.068 (± 1.94) -1.0 (-2.0; -0.02) < 0.05*
LVEF, % 49 (± 7.17) 0.28 (± 3.55) 46.3 (± 8.21) -1.23 (± 5.52) 1.5 (-1.3; 4.3) 0.28
MD, ms 48.7 (± 19.7) -3.55 (± 11.9) 60.8 (± 18.4) 0.146 (± 15) -3.7 (-11.8; 4.36) 0.36
TAPSE, cm 2.11 (± 0.36) -0.072 (± 0.35) 1.98 (± 0.53) -0.15 (± 0.35) 0.07 (-0.13; 0.28) 0.29
RV FWS, % -24.5 (± 5.77) -0.88 (± 4.36) -22.4 (± 5.22) -0.76 (± 3.31) -0.12 (-2.58; 2.34) 0.92
Diastolic function
E, cm/s 56.6 (± 24.5) -4.48 (± 10.4) 60.5 (± 23.6) -1.41 (± 9.42) -3.07 (-8.89; 2.75) 0.29
A, cm/s 50.1 (± 15.3) -3.43 (± 13.6) 49.4 (± 11.9) -1.7 (± 4.35) -1.73 (-7.89; 4.43) 0.57
E/A 1.2 (± 0.734) -0.0013 (± 0.21) 1.25 (± 0.59) 0.040 (± 0.24) -0.041 (-0.18; 0.10) 0.56
e’, cm/s 7.68 (± 2.69) 0.58 (± 1.44) 7.25 (± 2.36) -0.27 (± 1.39) 0.85 (0.02; 1.68) 0.04*
E/e’ 7.97 (± 2.85) -1.52 (± 2.81) 9.03 (± 3.87) 0.023 (± 1.89) -1.54 (-2.94; -0.14) 0.03*
P-value for difference in mean change in the intervention group and the control group
Displayed as mean (± SD) or number (%). A: Late diastolic mitral inflow velocity, E: early diastolic mitral inflow velocity, e’: Early diastolic
mitral annular velocity, HR: Heart rate, LVEF: Left ventricular ejection fraction, GLS: Global Longitudinal Strain, MD: Mechanical dispersion, 
RV FWS: Right ventricular free wall strain, TAPSE: Tricuspid annular plane systolic excursion

Fig. 2 Flowchart showing patient randomization in the POTCAST trial from June 1st 2020 until May 31st 2021 and derivation of study population 
in the current substudy
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P = 0.17, R2 = 0.05), or change in heart rate (ß=-0.02, 
P = 0.53, R2 = 0.01) in linear models.

Sensitivity analysis

Patients in the intervention group only receiving potassium 
as a supplement (n = 15) had similar baseline characteristics 
as the control group (Supplementary Table S1). No interac-
tion was found between MRA treatment and the effect of the 
intervention on any of the parameters investigated (Supple-
mentary Table S2). In the intervention subgroup mean dif-
ferences in changes in p-K was 0.49 (0.31; 0.68), P < 0.001 
compared to controls. The improvement in systolic- and dia-
stolic function was robust in subgroups. In the intervention 
group mean difference in change in GLS was − 1.2 (-2.3; 
-0.06), P = 0.04) compared to controls while mean differ-
ence in changes in e’ was 0.9 cm/s (-0.05; 1.9), P = 0.06 and 
in mean difference in changes in E/e’ was − 1.3 (-2.8; 0.2), 
P = 0.1 compared to controls.

Interobserver variability analysis showed close correla-
tion between the two independent observers. Intraclass cor-
relation coefficient: ICC = 0.72, P = 0.006.

significant difference in changes in LVEF or RV systolic 
measures (TAPSE and RV FWS) were observed between 
groups (Table 2).

Diastolic function

The intervention group had improved diastolic function as 
measured by e’ with mean difference in changes of 0.9 cm/s 
(0.02; 1.7), P = 0.04 and improvement in E/e’ with mean dif-
ference in changes of -1.5 (-2.9; -0.1), P = 0.03 compared 
to controls. No significant difference in changes was found 
between groups for E, A, or E/A.

Relation between p-K and mechanical function

In multiple linear regression models, no correlation was 
found between p-K and any of the echocardiographic 
parameters that were improved with the intervention. GLS 
(ß=-0.9, P = 0.22, R2 = 0.04), e’ (-0.068, P = 0.91, R2 = 0.01) 
or E/e’ (with ß=-0.91, P = 0.37, R2 = 0.07). Models were 
adjusted for baseline values of p-K to account for regres-
sion to the mean. No association was found between GLS 
and change in systolic blood pressure (ß=0.02, P = 0.51, 
R2 = 0.01), change in diastolic blood pressure (ß=0.04, 

Fig. 3 Mean GLS, e’, E/e’ along with 95% Confidence Interval in the intervention- and control group at baseline and follow-up

 

1 3

2102



The International Journal of Cardiovascular Imaging (2023) 39:2097–2106

indicates that the effect of the intervention was primarily 
related to the increased p-K levels and not to other effects 
of MRA.

The effects of potassium on cardiovascular risk

The protective effects of high potassium intake on cardio-
vascular outcomes have been reported in several studies. 
The potassium-induced lowering effect on blood pressure in 
hypertensive patients and reduction in the risk of strokes is 
particularly well documented [5, 6]. Randomized trials have 
shown that increased potassium intake and reduced sodium 
intake are associated with lower rates of major adverse 
cardiovascular events and death from all causes [7, 27]. 
Additionally, multiple observational studies have shown 
that higher potassium levels reduce the risk of both supra-
ventricular and ventricular tachyarrhythmias [2–4]. Yet, 
current clinical guidelines only make specific recommenda-
tions on sodium intake but potassium intake in patients with 
cardiovascular diseases is not addressed. The present study 
adds that increased potassium intake also seems to increase 
mechanical myocardial function and might in part explain 
the positive effect seen on cardiovascular risk.

To our knowledge this is the first study to investigate 
myocardial function after actively increasing potassium lev-
els in a randomized controlled setting. The study showed an 
improvement in GLS which has been repeatedly reported to 
be a strong predictor of arrhythmias [28, 29], and improve-
ment in e’ and E/e’ which have been shown to be associated 
with all-cause mortality and cardiovascular hospitalizations 
[30, 31]. Thus, the echocardiographic parameters that were 
improved in the current study links mechanical left ventric-
ular function to electrophysiological events. E/e’ has also 
been associated with left ventricular filling pressure, left 
atrial pressure and diastolic function. These parameters are 
related to many variables which could be affected indirectly 
by an increase in potassium intake such as loading condi-
tions. This complicates interpretation of the mechanism 
behind the association between the intervention and E/e’ 
presented in this study. The effect sizes of the potassium-
increasing intervention on GLS, e’ and E/e’ were small. Still 
the observed improvements in mechanical function may 
relate to the well-known protective effects of potassium on 
cardiovascular risk. A 24% reduction in heart failure events 
and death has previously been reported that for every 1% 
improvement in GLS [32]. The effect of potassium-increas-
ing intervention on arrhythmias and other cardiovascular 
outcomes observed in earlier studies may therefore not be 
purely electrical.

Safety

No patient in either group was hospitalized due to electrolyte 
disturbance or renal failure between baseline and follow-up.

Discussion

This study was designed to determine whether increased 
potassium levels influence systolic and diastolic myocardial 
performance. It is the first randomized intervention study to 
indicate that targeting high-normal p-K levels using dietary 
guidance, oral potassium supplements and MRAs improves 
echocardiographic indices of myocardial systolic and dia-
stolic function. No difference in changes was found in con-
tractile heterogeneity measured by MD between groups.

The findings of the present study are in line with pre-
vious experimental and observational studies investigating 
myocardial mechanical function in relation to potassium 
depletion. Induced potassium depletion in a canine-model 
(n = 27) has been associated with impaired systolic and 
diastolic responses to stress tests with epinephrine and 
increased preload [9]. Potassium depletion of healthy 
adults (n = 10) to a p-K < 3.5 mmol/l caused an impairment 
in echocardiographic indices of diastolic function [10]. In 
a recent study of patients (n = 67) with chronic potassium 
depletion due to primary hyperaldosteronism impairment in 
GLS was demonstrated [12]. In these studies, subjects were 
hypokalemic which diverts from the current study in which 
an increase in p-K from a normokalemic to high-normal 
level was investigated.

In exploratory analysis of a subset of 131 patients from 
the TOPCAT trial, there was a trend towards improvement 
of Longitudinal Strain in patients treated with spirono-
lactone (1.1% [-0.2;-2.4], P = 0.09) [18]. Additionally, an 
association between spironolactone and improvement in 
diastolic function by e’ and E/e’ has been demonstrated in 
another randomized trial of patients with heart failure with 
preserved ejection fraction. E’ was increased by 0.4 cm/s 
(0.1–0.6), P = 0.002 and E/e’ was decreased by 1.5 (-2.0;-
0.9), P < 0.001 in the spironolactone arm [25]. These find-
ings are consistent with those from the current study. MRAs 
have effects on the renin-angiotensin-aldosterone-system, 
on prevention of adverse myocardial remodeling and fibro-
sis, collagen metabolism which could affect myocardial 
function independent of blood pressure [26]. Of note how-
ever, is that the sensitivity analysis demonstrated that the 
findings in the present study were similar for a subgroup 
of patients in the intervention group that were only treated 
with potassium supplements. Furthermore, no difference in 
systemic blood pressure was found between groups. This 
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labelled and therefore patients in the control group could 
have been motivated to increase their potassium intake 
independent of the trial. This is not likely to be an important 
factor as p-K levels in the control group were unchanged 
from baseline to follow-up. The study was limited by a low 
sample size and larger trials are needed to confirm the find-
ings. Further, the study was designed as an all-comer trial of 
patients with low-normal- to moderately reduced left ven-
tricular ejection fraction. Thus, the cohort is heterogeneous 
which could affect the generalizability of the results. The 
primary analysis is not conclusive on whether the effects 
seen with the intervention on myocardial function is caused 
by changes in potassium homeostasis per se or the effects 
of MRAs. However, the sensitivity analysis of patients only 
receiving potassium supplements showing similar results 
strengthens confidence in the main hypothesis.

Conclusion

Targeting p-K between 4.5 and 5.0 mmol/l with dietary 
guidance on a potassium rich diet, oral potassium supple-
ments and MRAs improved indices of systolic and dia-
stolic left ventricular function in patients with low-normal 
to moderately reduced LVEF. These findings may in part 
explain previously reported beneficial effects of increased 
potassium intake and prove to be of clinical importance.
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