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Abstract
Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for 
hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovas-
cular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the 
HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. 
A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular 
magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major 
review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for 
mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric muta-
tions, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruc-
tion. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal 
imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with 
composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of 
ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated 
energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular 
outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodel-
ling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia.
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Background

Hypertrophic cardiomyopathy (HCM) is the most common 
inherited heart disease (1:200–1:500 [1]), a leading cause 
of sudden cardiac death (SCD) in the young, and a common 
cause of heart failure and atrial fibrillation in adults [2]. The 
clinical course of HCM is complicated by multiple factors 
that can interact and exacerbate the phenotype, including 

left ventricular outflow tract (LVOT) obstruction, mitral 
regurgitation, diastolic dysfunction, arrhythmias, auto-
nomic dysfunction and myocardial ischaemia [2]. Myocar-
dial ischaemia has been identified as an area of investigative 
importance [3], because of its association with adverse left 
ventricular (LV) remodelling and poor clinical outcomes in 
early studies of HCM [4] and other cardiovascular diseases.

Despite ischaemia being considered a significant contrib-
utor to the natural history of HCM [3], recommendations to 
assess ischaemic burden are absent from clinical guidelines, 
and HCM-specific strategies to mitigate ischaemia remain 
limited. This is in part because the treatment of ischaemia 
in HCM is complicated by multiple pathophysiological 
mechanisms, with many patients demonstrating evidence of 
myocardial infarction in the absence of epicardial coronary 
stenoses [5–8], such that multiple other pro-ischaemic mech-
anisms must be considered alongside therapeutic strategies 
other than revascularisation [6]. Despite their importance, 
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the HCM-specific pro-ischaemic mechanisms are not yet 
fully understood.

Furthermore, as the major cause of SCDs in the gen-
eral population, the assessment of ischaemia in HCM may 
address some limitations of SCD risk stratification, which 
has suboptimal sensitivity [9]. This may be particularly true 
in young HCM patients [10], who carry significant SCD 
burden, and in whom acute myocardial infarction is possible 
[11], because a structural substrate for lethal arrhythmias is 
frequently absent in juvenile SCDs [12]. Although ischaemia 
is hypothesised to contribute to SCD events, the prognos-
tic value of imaging for ischaemia in HCM is not yet well 
established.

This review therefore aims to (1) reflect on the prevalence 
of ischaemia in HCM and its multifactorial causes, to estab-
lish potential therapeutic targets for the treatment of ischae-
mia without epicardial coronary stenoses; and (2) assess the 
prognostic impact of imaging for ischaemia in HCM in rela-
tion to other markers of disease severity (hypertrophy and 
fibrosis), to evaluate the role of ischaemia on imaging as a 
potentially novel SCD risk factor.

To address these aims, the present study first reviews the 
frequency of myocardial ischaemia in HCM on non-invasive 
assessment, with a focus on modern advancements made 
in cardiovascular magnetic resonance (CMR) imaging. The 
pathophysiological mechanisms underlying the development 
of ischaemia in HCM are then explored, and how these may 
contribute to adverse LV remodelling and symptomatic sta-
tus. The role of imaging for myocardial ischaemia in HCM 

as a risk marker for adverse outcomes including arrhythmias 
and heart failure is further considered, through review of 
follow-up studies. Finally, the role of myocardial ischaemia 
is discussed as a therapeutic target, through reviewing the 
latest clinical trials targeting metabolic and vascular dys-
function in HCM. We expect these findings to contribute 
to the scientific understanding and clinical management of 
myocardial ischaemia in this high-risk group of patients.

Imaging of myocardial ischaemia in HCM

Perfusion measurements are commonly used as a surrogate 
of ischaemia, as integrated measures of flow through both 
the epicardial coronary arteries and the microcirculation. 
Regional perfusion defects are characteristic of the HCM 
phenotype and present as regions of impaired myocardial 
blood flow (MBF) at rest or during exercise/pharmacologi-
cally induced hyperaemia (Fig. 1). Perfusion impairment is 
commonly inferred from a reduced ratio of hyperaemic MBF 
to rest MBF, termed myocardial perfusion reserve, and is 
generally considered an acceptable surrogate for ischaemia 
[3].

Table 1 summarises the non-invasive imaging studies that 
have assessed the presence of perfusion defects in HCM 
patients, through CMR, echocardiography and nuclear imag-
ing. However, not all imaging modalities are equally accu-
rate. Perfusion defects on Th-201 scintigraphy, for example, 
correlate poorly with acidosis [13].

Fig. 1   Stress perfusion defects 
in HCM on perfusion CMR. (A, 
D) Basal and (B, E) adenosine-
stress MBF on perfusion CMR 
in the (A, B) base and (D, E) 
mid slices of a 40-year-old 
woman with sarcomere muta-
tion positive HCM, showing 
stress perfusion impairment 
(denoted with arrows) in the 
maximally hypertrophied 
anterior wall and septum. (C, F) 
Late gadolinium enhancement 
in the same patient for the base 
and mid slices, respectively, 
showing dense focal enhance-
ment in the hypertrophied 
anteroseptum
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Since the last review of imaging techniques for myo-
cardial ischaemia in HCM in 2009 [3], ischaemia assess-
ment with CMR has been widely adopted. Perfusion CMR 
boasts MBF quantification at high resolution, without radia-
tion exposure, and has proven high sensitivity for coronary 
artery disease diagnosis in the general population [45]. The 
capability of CMR to measure multiple modalities further 
enables the assessment of ischaemic and fibrotic burden in 
quick succession (see later Table 2). Moreover, as ischaemia 

results from an imbalance between oxygen supply and 
demand, modalities such as blood oxygen level dependent 
(BOLD) CMR that is sensitive to myocardial oxygenation 
can provide further insight to oxygen supply and demand 
in HCM [46].

Across the perfusion imaging studies in Table 1, ischae-
mia is frequently identified in HCM patients, with the largest 
perfusion CMR study to date identifying inducible perfu-
sion defects in 84% of their cohort [42]. Because perfusion 

Table 1   Studies reporting 
prevalence of perfusion defects 
among HCM patients

Perfusion defects were mostly identified by visual assessment, and in some cases assessed quantitatively 
with perfusion reserve/flow measurements [25, 31, 35, 39, 41]. Studies using visual assessment identified 
patients with perfusion defects occurring at rest, stress, exclusively stress (reversible), and both at rest and 
stress (fixed)
CMR cardiovascular magnetic resonance, MCE myocardial contrast echocardiography, PET positron emis-
sion tomography, SPECT single-photon emission computed tomography, CT computed tomography, CFR 
coronary flow reserve, MPR myocardial perfusion reserve, CFVR coronary flow velocity reserve, MPRI 
myocardial perfusion reserve index, N number of HCM patients, n number of non-HCM controls

References Year Imaging modality N/n Summary of findings

[14] 1987 Th-201 emission CT 72/0 57% any, 24% fixed, 33% reversible
[15] 1989 Scintigraphy 28/0 39% any
[16] 1989 Th-201 emission CT 29/0 3% fixed, 52% stress
[17] 1993 Th-201 emission CT 82/0 33% fixed, 39% reversible
[18] 1993 Scintigraphy 23/0 78% any
[19] 1996 Scintigraphy 17/0 71% any
[20] 1996 Scintigraphy 94/0 20% fixed, 21% reversible
[21] 1998 Scintigraphy 105/0 69% any, 30% fixed, 60% reversible
[22] 1998 Th-201 emission CT 216/0 40% any, 25% fixed, 22% reversible
[23] 2004 99mTc SPECT 101/0 54% any, 28% fixed, 41% reversible
[24] 2008 CMR 37/0 46% rest
[25] 2008 Echo 68/74 46% CFR < 2
[26] 2010 SPECT + MCE 33/23 100% any (MCE), 0% any (SPECT)
[27] 2012 PET 33/0 72% reversible
[28] 2013 PET 47/0 72% any
[29] 2013 CMR 86/0 57% any
[30] 2014 CMR 33/0 87% any
[31] 2014 CMR 35/0 31% MPR < 1
[32] 2014 CMR + Echo 148/0 7% any
[33] 2015 CMR 12/9 18% rest, 73% stress
[34] 2015 CMR 80/0 30% rest
[35] 2016 Echo 706/0 38% CFVR <  = 2
[36] 2016 CMR 30/0 60% stress
[37] 2018 CMR 13/0 0% rest, 54% stress
[38] 2019 CMR 101/30 79% any
[39] 2019 CMR 35/0 71% MPRI < 1.4
[40] 2020 CMR 115/0 42% stress
[41] 2020 CMR 105/0 45% MPRI <  = 2
[42] 2021 CMR 449/0 84% stress
[43] 2021 CMR 50/28 20% any
[10] 2021 99mTc SPECT 91/0 77% any, 24% fixed, 53% reversible
[44] 2021 CMR 75/0 91% any
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defects were typically identified on visual assessment, often 
the severity of impairment was omitted. However, quanti-
tative assessments have identified a subset of 21–31% of 
patients in whom regional perfusion can fall during vasodila-
tor stress [31, 38], a finding suggestive of severe microvas-
cular dysfunction.

Pathophysiological mechanisms 
of ischaemia in HCM

With perfusion defects often remote from coronary territo-
ries [37], and in young patients likely without coronary sten-
oses [10], myocardial ischaemia in HCM is multifactorial in 
origin. Numerous post-mortem, biopsy and imaging studies 
have investigated the micro-, macrostructural and metabolic 
mechanisms underlying ischaemia in HCM.

Microstructural abnormalities in HCM

Small vessel disease

Structural abnormalities in the small blood vessels that sup-
ply the myocardium are a common finding in the histol-
ogy of HCM hearts [47, 48]. As many as 56–83% of HCM 
patients have small vessel disease to some degree [49–52]. 
The abnormalities typically include marked thickening of 
the vessel walls, luminal narrowing of small intramural 
coronary arteries [53] and increased arterial stiffness [54]. 
The luminal area of arterioles, as a percentage of total vas-
cular area, has been measured to be 13–30% lower in HCM 
patients than in controls [55–57], with 14% of small vessels 
in one study having an external diameter:lumen ratio ≥ 3 
(normally < 2.5) [58]. Other studies found small vessel dis-
ease in 92% of myocardial specimens taken from 57 HCM 
patients [59], and that the HCM myocardium had 30 × more 
abnormal intramural coronary arteries per section on aver-
age than controls [51]. The degree of small vessel disease 
may be particularly severe in patients with heart failure [12].

Reduced density of small vessels

Numerous studies have measured the density of small ves-
sels in hypertrophied HCM septal/LV tissue samples and 
have found this to be 21–44% lower than in control patients 
[54, 56, 57, 60–63]. With no convincing association with 
genotype [61], reductions in small vessel density may be 
linked to hypertrophy in HCM and are more severe in end-
stage disease patients, such as those undergoing heart trans-
plantation, than in patients referred for myectomy [62]. The 
reported association between reduced small vessel density 

and perfusion reserve blunting suggests that this is another 
cause of ischaemia [57].

Macrostructural forces in HCM

Left ventricular outflow tract obstruction

LVOT obstruction is a hallmark feature of HCM and is 
defined as a peak LVOT pressure gradient ≥ 30 mmHg. 
LVOT obstruction may be present at rest (in up to 51% of 
HCM patients [41, 64–66]) or develop during exercise (in 
33–62% [65, 66]). Severe obstruction (≥ 50 mmHg) may be 
seen in up to 20% of patients [35]. Even in the absence of 
hypertrophy, LVOT obstruction may be present due to sys-
tolic motion of the anterior mitral valve leaflet towards the 
LVOT [67]. This typically results from lengthening of the 
anterior mitral valve leaflet, abnormal chordal-mitral valve 
attachment or bifid papillary muscle hypermobility [67].

LVOT obstruction is associated with reduced perfu-
sion reserve [25, 35, 41, 68] particularly in the left ante-
rior descending artery which supplies the anterior wall and 
septum [68, 69], reduced hyperaemic MBF [70], reduced 
endo-epicardial hyperaemic MBF ratio [71], reduced per-
fusion upslope (a measure of contrast agent wash-in time) 
[72] and an additional hemodynamic forward deceleration 
wave in systole [73]. These associations may be explained 
by coronary hypoperfusion and increased oxygen demand, 
as greater myocardial work is required to overcome the 
obstruction.

Despite these reported associations, other studies have 
found no relationship between LVOT obstruction and ischae-
mia, and infarction has been reported in non-obstructive HCM 
[11], confirming the role of other mechanisms including 
microvascular dysfunction [4, 10, 27, 32, 44].

Effects during diastole and systole

Diastolic dysfunction, partially related to sarcomeric muta-
tions, is an early feature of HCM in many patients [74, 75]. 
With myocardial blood flow greatest during diastole, con-
strained diastole results in impaired perfusion [76]. In a study 
by Raphael et al., invasive measurements of coronary pres-
sure and flow showed that diastolic dysfunction in HCM led 
to impaired decompression of the microcirculation [73], and 
these effects could be exacerbated by exercise [77].

During systole, hypertrophy causes excessive compression 
of intramyocardial blood vessels, leading to abnormal coro-
nary haemodynamic forces [73], which can manifest as sys-
tolic flow reversal in septal perforator arteries of HCM patients 
[69, 78–80] even in the absence of LVOT obstruction [73].
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Myocardial bridging

Another potential mechanism of perfusion impairment among 
HCM patients is myocardial bridging, which is when a seg-
ment of a coronary artery tunnels through the myocardium 
rather than over it. This is seen in 23–41% of HCM patients 
compared to 5–7% of the general population [81, 82]. Mul-
tiple case reports highlight bridging as a possible cause of 
ischaemia [83–86], however surgical correction of myocardial 
bridging remains controversial [87, 88].

Genetic and metabolic factors

In multiple studies of genotyped HCM patients, vasodilator 
stress BOLD CMR has detected impaired myocardial oxy-
genation even in pre-hypertrophic carriers of sarcomeric 
mutations, despite preserved perfusion [46, 89, 90]. One 
possible explanation for this dissociation in oxygenation and 
perfusion often observed in the early phase of the disease is 
that myocardial oxygen demand may be increased even in the 
absence of hypertrophy [91–94]. In line with this, experimen-
tal non-hypertrophic murine models of sarcomeric mutations 
have demonstrated increased oxygen expenditure arising from 
energetic inefficiency associated with sarcomeric mutations 
[95]. In HCM patients with overt hypertrophy, the degree of 
stress oxygenation may be as severe as that seen in severe aor-
tic stenosis [90, 96].

Relationships between markers of disease 
severity and ischaemia in HCM

Myocardial hypertrophy and ischaemia

The greater the degree of hypertrophy (quantified as wall 
thickness or LV mass), the greater the degree of perfusion 
impairment (typically quantified as rest or hyperaemic MBF, 
perfusion reserve, flow velocity, or as the presence of visual 
defects). This has been reported both at a segmental level 
[26, 29, 31, 33, 34, 38, 41, 46, 48, 70, 72, 97–101] and in 
HCM patients on average [7, 15, 22, 27, 40, 44, 68, 70, 71, 
78, 79, 102]. In addition to reductions in capillary density 
[61], hypertrophy was frequently associated with enhanced 
luminal narrowing of small vessels [50, 55, 56, 58].

A further macroscopic explanation is that the increase 
in muscle mass characteristic of HCM is inadequately sup-
plied by the major coronary arteries, which have reduced 
luminal volume per unit myocardial mass [103–105]. Het-
erogeneous flow among major coronary arteries secondary 
to variable regional demand is a further consequence of 
hypertrophy [48, 68, 69, 105].

Although perfusion defects are overall more preva-
lent in cohorts with hypertrophy (Table 1), 20% of HCM 

mutation carriers without hypertrophy may still have 
perfusion defects [43], and even in hypertrophic cohorts, 
30–40% of patients may have perfusion defects in seg-
ments with only mild hypertrophy [15, 106]. When com-
pared to controls, even non-hypertrophied segments in 
HCM have reduced perfusion reserve on average [38].

Segmental and transmural distribution 
of myocardial ischaemia

Two studies reported perfusion defects [30] and exercise 
wall motion abnormalities (WMAs) [32] to be most fre-
quently septal, which is consistent with the septum and 
anterior LV wall being the most frequently hypertrophied 
regions in HCM [64]. In another cohort, the septum and 
inferior segments were most affected by perfusion defects 
[101]. Perfusion defects have also been reported as primar-
ily located in the septum in prehypertrophic HCM muta-
tion carriers [43], which may be explained by small vessel 
disease reported as mostly affecting the septum in histo-
logical analyses [51, 59]. However, Villa et al. reported a 
more diffuse burden of hypoperfusion in a cohort without 
severe hypertrophy [36], consistent with the widespread 
distribution of small vessel disease in a different histologi-
cal analysis by Varnava et al. [58].

There are also conflicting reports on the segmental dis-
tribution of perfusion defects in SPECT imaging studies 
[22, 23, 80, 107], which may be due to partial volume 
effects, given the wall thickness-dependent sensitivity of 
SPECT imaging. Indeed, PET studies, which have simi-
lar problems with partial volume effects due to its low 
resolution, sometimes report similar impairment in MBF 
between the septum and LV free wall [4, 70, 108], with 
two exceptions [28, 109].

Perfusion impairment in HCM is predominantly suben-
docardial [29, 31, 38, 42, 43, 70, 71, 97, 101, 106, 108], 
although transmural hypoperfusion has also been reported 
[38, 98].

Myocardial fibrosis and ischaemia

Repeated episodes of ischaemia have been implicated in 
fibrosis accumulation and extensive scarring in HCM [47, 
53]. A longitudinal study of HCM patients with combined 
late gadolinium enhancement (LGE) to assess fibrosis bur-
den and stress perfusion imaging found that patients with 
impaired perfusion reserve had a greater increase in LGE 
mass over time [39]. Indeed, multiple histopathological stud-
ies have shown that the presence of diseased small intra-
mural coronary arteries and reductions in microvascular 
density are topographically correlated with the presence of 
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fibrosis [12, 47, 51, 52, 59, 110], with one exception [58]. 
This was similarly reported among patients [55], with Kwon 
et al. reporting that the presence of small vessel disease is 
independently associated with 14 × increased risk of myocar-
dial scarring [50]. The association with replacement fibrosis 
appears primarily in end-stage HCM [59].

However, whereas ischaemia is predominantly subendo-
cardial in HCM [29, 31, 38, 42, 43, 70, 71, 97, 106, 108], 
fibrosis is predominantly mid-wall in HCM [33, 53, 99, 
111–116]. This transmural dissociation has been reported 
directly on imaging [29, 33]. Segment-wise associations 
between fibrosis and ischaemia have also been reported on 
imaging in HCM (Table 2), however it remains to be seen 
whether this is due to the confounding effect of disease 
severity reflected by wall thickness [31], or due to difficul-
ties in discerning regions of ischaemia and fibrosis [36].

Imaging studies that did not perform epi-endocardial 
segmentation, but controlled for wall thickness, found inde-
pendent associations between perfusion impairment and 
either LGE or extracellular volume [33, 41, 99, 101]. One 
study with epi-endocardial segmentation and control for wall 
thickness reported an independent association between LGE 
and hyperaemic MBF [38], but two smaller similar studies 
found that either this association was lost after controlling 
for wall thickness [31], or the differences in perfusion with/
without LGE were modest [106]. Patient-wise analyses typi-
cally found ischaemia-fibrosis associations [10, 28, 29, 32, 
36, 42, 102, 117, 118], with reported exceptions [40, 73].

Collectively, these findings suggest colocalization of 
pathology (microvascular dysfunction and fibrosis) and the 
potential for ischaemia to promote the fibrosis phenotype. 
However, it is possible that imaging difficulties in discerning 

Table 2   Imaging studies in which segment-wise associations between ischaemia and fibrosis have been analysed

Epi-endo segmentation refers to whether imaged LV segments were further divided into epicardial and endocardial subsegments. UAssociation 
does not control for wall thickness; MAssociation controls for wall thickness; U+M−Association is lost when controlling for wall thickness
CAD coronary artery disease, ECV extracellular volume, DM diabetes mellitus, MPRI myocardial perfusion reserve index, CMR cardiovascular 
magnetic resonance, PET positron emission tomography, N number of HCM patients, n number of non-HCM controls, N/A not assessed.

References
Modality

N/n Epi-endo  
segmentation

Relevant comorbidities Summary of findings

[38]
CMR

101/30 Yes CAD (0%)
DM (17%)

LGE associated with reduced hyperaemic MBFM

[29]
CMR

100/0 Yes CAD (5%)
DM (10%)

LGE transmurally dissociated from hyperaemic MBF impairmentU

[97]
CMR

35/14 Yes CAD (N/A)
DM (0%)

LGE associated with reduced hyperaemic MBFU

[31]
CMR

35/0 Yes CAD (0%)
DM (0%)

LGE associated with reduced MPRI, rest and hyperaemic MBFU+M−

[106]
CMR

20/10 Yes CAD (0%)
DM (N/A)

LGE associated with reduced MPR, hyperaemic MBFM. unclear if 
statistically significant

[41]
CMR

105/0 No CAD (0%)
DM (11%)

ECV, not LGE, associated with MPRI < 2M

LGE associated with reduced MPRIU

[101]
CMR

75/0 No CAD (N/A)
DM (N/A)

LGE, ECV, T1 and T2 associated with stress perfusion defectsM

[120]
CMR

55/0 No CAD (0%)
DM (N/A)

ECV, LGE, T1 associated with hypoxiaU

[100]
CMR

47/21 No CAD (0%)
DM (0%)

LGE associated with increased time to perfusion peakU

[116]
PET

34/0 No CAD (N/A)
DM (N/A)

LGE associated with reduced hyperaemic MBF, particularly if visually 
transmural LGEU

[46]
CMR

37/31 No CAD (N/A)
DM (N/A)

LGE associated with reduced MPRIU

[99]
CMR

22/13 No CAD (N/A)
DM (N/A)

LGE associated with lower maximum perfusion upslopesM

[33]
CMR

12/9 No CAD (N/A)
DM (N/A)
All < 30 years

LGE associated with lower stress/rest ratio of maximum perfusion 
upslopesM

[28]
PET

47/0 N/A CAD (0%)
DM (11%)

Delayed enhancement visually coincided with stress perfusion defectsU

[121]
Scintigraphy

6/0 N/A CAD (0%)
DM (N/A)

LGE visually coincided with stress perfusion defectsU
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regions of fibrosis and hypoperfusion could overestimate 
the fibrosis-ischaemia association [36]. Furthermore, 
assessment of LGE alone can miss any association between 
interstitial fibrosis and small vessel disease [59] and in this 
regard, it is worth considering the study in which ischaema 
was independently associated with extracellular volume, but 
not LGE [41].

Extracellular matrix expansion in myocardial regions 
remote from microvascular dysfunction has been suggested 
to be triggered by pro-hypertrophic transforming growth 
factor beta (TGF-β) signalling secondary to the sarcomeric 
mutation [119]. This non-ischaemic aetiology of fibrosis 
would support the findings of other studies where fibrosis 
can be seen in hearts with normal perfusion [28, 39].

Clinical manifestations of myocardial 
ischaemia in HCM

The main clinical manifestations of myocardial ischaemia in 
HCM patients are angina and dyspnoea [17, 25, 122, 123], 
alongside dynamic changes on exercise/vasodilator-induced 
stress electrocardiogram (ECG) testing [20, 124].

Perfusion abnormalities may also be present in the 
absence of symptoms [14, 20, 22, 23, 40, 41, 102], so the 
relationship between pathology and symptoms may not 
always be consistent. Of interest, post-mortem studies of 
HCM patient hearts have noted a relative absence of histori-
cal symptoms among individuals with transmural infarction 
[53]. This confirms the potential for ischaemia to be silent, 
possibly through small fibre neuropathy reducing afferent 
pain signal detection. Mildly abnormal troponin levels are 
also common among HCM patients, reported in 74% [125], 
and likely represent myocyte injury or necrosis thought to 
be exacerbated by myocardial ischaemia.

Mechanisms of myocardial ischaemia 
progression in HCM

Figure 2 summarises the likely progression of factors affect-
ing oxygen supply and demand in HCM. Early in develop-
ment, ATP depletion arising from the sarcomeric mutation 
likely causes stress oxygenation impairment [46, 89], and 
could contribute to phenotype development through SERCA 
ATP starvation, calcium accumulation and hypertrophy via 
calcium signalling [126]. The cause of subsequent meta-
bolic abnormalities in HCM is unclear [91, 127, 128]. Small 
vessel disease, present even in those < 1 year of age [51], 
could emerge during embryonic development driven by sar-
comeric mutations [129], and is proposed to be one of the 
earliest factors in the cascade of events related to ischaemia 
[3]. Pre-hypertrophic diastolic dysfunction secondary to 

the sarcomeric mutation [74, 75] could contribute by limit-
ing the time for myocardial relaxation, leading to increased 
rest MBF [76], which could promote vascular remodelling 
through increased shear stress. However, perfusion impair-
ment reported in the absence of diastolic dysfunction [98] 
suggests that diastolic dysfunction is not the only contribu-
tor. Early perfusion defects seen on stress imaging of HCM 
patients may occur due to the microscopic steal phenomenon 
secondary to small vessel disease, or due to an abnormal 
vasomotor response of diseased myocardium to pharmaco-
logically induced vasodilation [38].

As cells become hypertrophied, either to compensate 
for cells lost through ischaemia-induced fibrosis or other 
pathological processes, ischaemia is further promoted by 
local reductions in small vessel density [61], greater ener-
getic demands, increased extravascular compression, and 
LVOT obstruction. Post-hypertrophy diastolic dysfunction 
(possibly exacerbated by ionic remodelling in hypertrophied 
segments [130]) may be a key contributor to ischaemia as 
the diastole-specific perfusion reserve is more strongly cor-
related with wall thickness than the time-averaged perfu-
sion reserve [48]. Moreover, the increased oxygen demand 
of hypertrophy leads to resting vasodilation, giving rise to 
‘maxed out’ vasodilation at rest [31, 43, 69, 71, 131] and 
explains why perfusion defects are more prevalent in cohorts 
with hypertrophy [42] than those without [43].

With disease progression, the ischaemic threshold is incre-
mentally lowered, such that acute episodes of ischaemia are 
inducible despite non-stenotic epicardial coronary arteries. In 
some HCM patients, transient increases in energetic demands, 
such as during AF-induced increases in ventricular pacing [11] 
or during exercise [132], are sufficient to trigger an ischaemic 
episode, which can precipitate lethal ventricular arrhythmias.

In patients with the most severe small vessel disease and 
insufficient capillary density, ischaemia leads to gross mac-
roscopic transmural scarring [3, 12, 59, 62, 111], which con-
tributes amongst other factors (mitral regurgitation [42]) to 
the 2–16% subset of HCM patients that progress to end-stage 
disease [133, 134]. Myocyte death eventually leads to total 
replacement of myocardial regions with fibrosis, such that 
affected regions are devoid of myocytes that could hyper-
trophy, leading to wall thinning, LV stiffening and systolic 
dysfunction [39, 42, 135]. In this stage, LVOT gradients are 
resolved at the peril of reduced ejection fraction.

Prognostic value of myocardial ischaemia 
in HCM

Composite endpoints

The studies in Table 3 have analysed the association of 
ischaemia in HCM with adverse events using composite 
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endpoints, where non-arrhythmic events such as heart fail-
ure or all-cause death were included. Although many studies 
found hypoperfusion to be associated with adverse outcomes 
on multivariate analysis [4, 25, 35, 121, 124, 136], they did 
not assess focal fibrosis burden, which is an independent 
predictor of mortality in HCM [137]. In the study that did 
account for fibrosis confounding, exercise WMAs were an 
independent predictor of cardiac events—not visual assess-
ment of perfusion defects on CMR [32]. Although WMAs 
are not specific for myocardial ischaemia, a strong associa-
tion between perfusion defects and WMAs has been reported 
[32]. In the largest study to date, exercise WMAs were sub-
stantiated as a possible risk factor in HCM, particularly 
when considered alongside non-invasive quantitative per-
fusion reserve measurements [35].

Overall, the studies in Table 3 demonstrate that quantita-
tive assessment of ischaemia identifies a subgroup of HCM 
patients at high risk of adverse outcomes, with the hyper-
aemic MBF threshold on PET optimally associated with 
outcomes estimated as 1.1–1.35 ml/min/g [4, 134, 136]. 
There is mixed evidence from studies of visual perfusion 
assessment, suggesting that further studies may benefit from 
quantitative perfusion analysis.

The prognostic value of other pathophysiological mecha-
nisms, such as myocardial bridging, is debatable. Although 
bridging has been shown to predict poorer prognosis in one 
paediatric cohort [138], this association was not consistent 
elsewhere [139]. Furthermore, Sorajja et al. did not observe 
an association between bridging and poor outcomes in adult 
HCM patients [140].
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Arrhythmia and sudden cardiac death

Acute myocardial ischaemia (in the absence of epicardial 
coronary stenoses) may be an important cause of fatal 
arrhythmias and SCD in HCM [5–7, 143], as multiple case 
reports describe arrhythmias precipitated by acute myocar-
dial ischaemia in young patients [11, 132, 144]. In a post-
mortem study of 19 young (≤ 35 years) SCD victims with 
HCM, 11 had physical evidence of acute-subacute myo-
cardial ischaemia (coagulative necrosis, neutrophilic infil-
trate, myocytolisis, granulation tissue healing, infarction) 
in the septal myocardium [47]. Multiple foci of transmural 
infarction have also been reported in some deceased HCM 
patients, despite having normal epicardial coronary arteries 
[53].

Numerous studies (Table 4) have analysed the association 
between ischaemia and arrhythmia in HCM. Many studies 

accounted for confounding by fibrosis and found independ-
ent associations between ischaemia measurements and 
arrhythmia [34, 40, 44, 109]. The specific association was 
variable across studies, and it is unclear the extent to which 
differences in imaging modality, protocol and cohort may 
have contributed to this variety. Importantly, however, there 
is some suggestion that measurements of MBF heterogene-
ity predict arrhythmic risk [109, 145], motivating further 
study of regional perfusion quantification. There is further 
evidence from echocardiographic and scintigraphic studies 
that ischaemia is associated with syncopal episodes in HCM 
[15, 18].

Heart failure

Some studies report an association between ischaemia and 
heart failure. Hamada et al. used Th-201 scintigraphy to 
study 48 HCM patients and found that development of 
heart failure was associated with perfusion impairment 

Table 3   Studies that investigated the association between ischaemia and prognosis in HCM patients, where composite endpoints were used

Follow-up durations given as mean or median, with variability given as ± standard deviation or [lower quartile, upper quartile], where available. 
UUnivariate analysis; MMultivariate analysis controlling for fibrosis; M*Multivariate analysis not controlling for fibrosis; U+M−Association is lost 
when controlling for fibrosis
CMR cardiovascular magnetic resonance, PET positron emission tomography, SPECT single-photon emission computed tomography, WMA wall 
motion abnormality, N number of HCM patients, n number of non-HCM controls

References
Year

N/n Ischaemia measure Follow-up (years) Summary of findings

[141]
1996

62/0 123I-BMIPP SPECT metabolic impairment 
score ≥ 30 vs. < 30

3 ± 1 11 × risk of deathU

[124]
1997

79/0 ST segment depression on dipyridamole ECG 6 ± 1 6 × risk of cardiac eventsU

Independent predictor of cardiac eventsM*

[22]
1998

216/0 Fixed perfusion defect(s) on SPECT 3 ± 2 Unrelated to HCM-related deathM*

2 × risk of historical syncope / ventricular 
fibrillationU

[4]
2003

51/12 Lowest tertile of hyperaemic MBF on PET 8 ± 2 10 × risk of cardiac deathM*

20 × risk of unfavourable outcomeM*

[23]
2004

101/0 Fixed perfusion defect(s) on SPECT 6 ± 3 Unrelated to cardiac deathU

3–4 × risk of severe complicationsU

[25]
2008

68/74 Perfusion reserve < 2 on echo 2 ± 1 4 × risk of cardiac eventsM*

[121]
2011

55/0 Anterior junction stress score > 2 on scintigraphy 6 8 × risk of cardiac eventsM*

[142]
2013

35/0 LAD perfusion reserve < 2 on Doppler catheter 9 3–6 × risk of cardiac eventsU

[32]
2014

148/0 Perfusion defects and exercise WMAs on 
CMR + echo

7 ± 2 Perfusion defects associated with 5 × risk of cardiac 
eventsU+M−

Exercise WMAs associated with 400 × risk of 
cardiac eventsM

[35]
2016

706/0 Perfusion reserve < 2 and WMAs on echo 4
[2, 6]

5 × risk of cardiac eventsM*

[136]
2016

100/0 Lowest tertile of hyperaemic MBF on PET 4 ± 2 7 × risk of unfavourable outcomeM*

[10]
2021

91/0 Perfusion defects on SPECT 8
[4, 11]

3 × risk of cardiac eventsU
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[107]. Similarly, Olivotto et al. used stress PET in 51 HCM 
patients and found that adverse LV remodelling and sys-
tolic dysfunction were predicted by quantitative assess-
ment of perfusion [134]. SPECT imaging of 65 HCM 
patients also found an association between metabolic 
impairment and heart failure [141]. Similarly, perfusion 
and LGE CMR of 62 HCM patients found that reduced 
MBF was the only independent predictor of functional sta-
tus when LGE and hypertrophy were accounted for [102]. 
However, in the largest longitudinal perfusion CMR study 
to date of 449 HCM patients, perfusion defects on visual 
assessment were unable to predict heart failure [42]. LGE 
progression may instead be a more prominent factor in the 
development of heart failure as an independent association 
has been reported [39].

Confounding by coexisting pathology

In evaluating the independent prognostic contributions of 
perfusion defects and presence of LGE, not only are per-
fusion defects confounded by presence of LGE due to the 
possibly causal link between ischaemia and fibrosis in 
HCM [39], but some perfusion defects correspond to sites 

of LGE [40]. It is therefore unclear whether SCDs in HCM 
are caused by (i) primary ventricular arrhythmia related to 
fibrosis [137], or (ii) secondary ventricular arrhythmia dur-
ing ischaemia [34]. Simultaneous echo and perfusion CMR 
in 148 HCM patients showed that cardiac event rates were 
highest when both LGE and exercise WMAs were observed 
[32], hence both factors may contribute to increased risk. 
This is further supported by the finding that both fixed and 
reversible perfusion defects have prognostic value [10], as 
perfusion abnormalities present at rest are thought to rep-
resent severe fibrosis [34]. Ischaemia may be relevant to 
the cases of juvenile SCDs in which replacement fibrosis 
is absent [12].

As a possible cause of ischaemia, LVOT obstruction is 
already recognised as a risk factor for SCD in adults [149] 
and children [150]. Further confounding may arise from 
atrial fibrillation due to its association with ischaemia [147].

Exercise

Myocardial ischaemia in HCM is relevant in the context of 
evolving clinical guidelines on exercise restrictions. If SCD 
is related to exercise [151], then ischaemia is a plausible 

Table 4   Studies that investigated the association between ischaemia and arrhythmia in HCM patients

Ages given as mean or median, with variability given as ± standard deviation or [lower quartile, upper quartile], where available. UUnivariate 
analysis; MMultivariate analysis controlling for fibrosis; M*Multivariate analysis not controlling for fibrosis
CMR cardiovascular magnetic resonance, ICD implantable cardioverter defibrillator, (NS)VT (non-sustained) ventricular tachycardia, AF atrial 
fibrillation, PET positron emission tomography, SPECT single-photon emission computed tomography, N number of HCM patients, n number of 
non-HCM controls

References
Year

N/n Ages (years) Ischaemia measure Summary of findings

[146]
1997

84/0 43 ± 12 Perfusion reserve / transmural MBF gradients on PET Unrelated to syncope or NSVT on HolterU

[147]
2009

95/0 41 ± 15 Lower hyperaemic MBF on PET Associated with history of AFM*

[102]
2011

62/35 47 ± 16 Lower rest MBF on CMR Associated with NSVT on HolterU

[34]
2015

80/0 50 ± 18 Rest perfusion abnormalities on CMR Associated with NSVT on HolterM

[109]
2018

133/0 50 ± 15 High hyperaemic MBF heterogeneity on PET 4 × risk of VT on ICD electrogram/HolterM

[7]
2019

104/0 65 Decreased perfusion on angiography Associated with paroxysmal supra-VT and 
VT on HolterU

[145]
2020

25/0 57 ± 13 Decreased hyperaemic endo/epicardial MBF ratio on PET Associated with NSVT on ICD electrogramU

[40]
2020

115/0 52 ± 11 Perfusion defect on CMR 6 × risk of NSVT on HolterM

[10]
2021

91/0 14
[10, 16]

Perfusion defect on SPECT Associated with NSVT on follow-upU

[148]
2021

32/0 62 ± 16 Reduced perfusion upslope on CMR Associated with VT on HolterU

[44]
2021

75/0 55 ± 15 Perfusion defect on CMR 2 × risk of supra-VT on Holter, but not VTM
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arrhythmic substrate through exercise-induced ischaemia 
[152], latent LVOT obstruction [66] and reduced diastolic 
filling time [77] during increased workload. Measurements 
derived from stress perfusion imaging could contribute to 
decisions made with patients on exercise, although at present 
there is limited clinical evidence that this would be useful.

Of note, two meta-analyses have shown that SCDs in 
young HCM patients are 75% more common in athletes than 
non-athletes [153, 154]. Age appears to be a factor in the 
association between exercise and SCD in HCM [155], with 
Weissler-Snir et al. reporting 80% of HCM-related SCDs 
in those ≤ 20 years old being related to exercise, compared 
to < 5% of those above 20 [151]. Interestingly, a study of 
1380 HCM patients showed that, on multivariate analysis, 
only NSVT induced by exercise was associated with SCD—
not NSVT generally [156]. In this analysis, 21% of patients 
with exercise-induced NSVT had preceding ST depression, 
and most were < 40 years of age. There are other varying 
reports of SCD-predictive measures derived from exercise 
[152, 157, 158], including the ventilation-to-CO2 (VE/ CO2) 
slope and anaerobic threshold during exercise, all of which 
could indicate prospensity for underlying myocardial ischae-
mia on cardiopulmonary exercise testing.

Clinical perspective: myocardial ischaemia 
in HCM as a therapeutic target

The potential for ischaemia as an early therapeutic target in 
HCM [43] is reinforced by the improvements in myocardial 
perfusion and patient symptoms that typically accompany 
invasive surgical relief of LVOT obstruction [159, 160]. 
By reducing the perfusion sink, relief of LVOT obstruction 
may cause less vasodilatory reserve to be exhausted at rest, 
in addition to reductions in wall stress and extravascular 
compression.

Multiple promising studies of pharmacologic treatments 
with the potential to minimise ischaemic burden in HCM 
are ongoing or have been completed (Fig. 2). These include 
angiotensin receptor blockers, vasodilators, metabolic modu-
lators, late sodium blockers, negative inotropes as well as 
novel allosteric myosin inhibitors.

Angiotensin receptor blockers (‘-sartans’), which target 
both vascular function and the TGF-β signalling pathway 
(also associated with the emergence of fibrosis [119]), 
have shown efficacy in limiting phenotype development. 
Although it is unknown whether sartans affect perfusion 
defects in HCM [43], candesartan and valsartan may attenu-
ate the HCM phenotype [161–163], with valsartan being 
more efficacious in those with less hypertrophic remodel-
ling [163].

Perhexiline, a vasodilator and metabolic modula-
tor, recently showed lack of efficacy to improve exercise 

capacity in HCM patients with moderate to severe heart 
failure (trial NCT02862600). However, the findings of this 
interventional study may have been significantly influenced 
by the advanced disease progression into heart failure of 
the recruited patients and the choice of primary endpoint. 
RESOLVE-HCM (trial NCT04426578) is another study 
which is assessing the impact of perhexiline on LV hyper-
trophy [164]. This trial includes changes in oxygen-sensi-
tive CMR measures as a secondary endpoint, which could 
directly evidence anti-ischaemic pharmacologic treatment. 
Trientine, a modulator of copper metabolism, is also being 
investigated in HCM (trial ISRCTN57145331). The novel 
class of metabolic modulator drugs, sodium-glucose co-
transporter 2 inhibitors, may also have potential in HCM 
(trial NCT05182658). As a further potentially novel thera-
peutic target due to their effects on vascular function and 
metabolism [165], ceramides have been implicated in the 
development of various cardiovascular diseases [166], which 
may be relevant to HCM.

Late sodium blockers, which target the pathologically 
increased late sodium current in HCM cardiomyocytes 
[130], were hypothesised to ameliorate diastolic dysfunction 
[167] and thus downstream ischaemic effects. However, in 
RESTYLE-HCM (trial 2011-004507-20), ranolazine showed 
no efficacy in reducing diastolic dysfunction or pro B-type 
natriuretic peptide in non-obstructive HCM patients, despite 
finding a possible antiarrhythmic effect [168]. Potential ame-
lioration of ischaemia-induced arrhythmia by ranolazine is 
also described in a recent study [169]. LIBERTY-HCM (trial 
NCT02291237) was terminated early due to a lack of effi-
cacy of eleclazine administration [170]. Finally, although 
disopyramide ameliorates symptoms and reduces LVOT 
obstruction in HCM, these effects are attributed to its nega-
tive inotropic action rather than late sodium block [171].

Perhaps most promising is the novel allosteric myo-
sin inhibitor mavacamten, which (in contrast to the drugs 
previously introduced) specifically targets the under-
lying pathogenic drivers of contractile dysfunction in 
HCM at the sarcomeric level [172]. Both the results of 
EXPLORER-HCM (trial NCT03470545) [173] and addi-
tional studies [174] have proven mavacamten effective at 
improving cardiac function in HCM patients, including 
the reduction of LVOT obstruction gradients. The marked 
reductions in N-terminal pro B-type natriuretic peptide 
and cardiac troponin I during mavacamten treatment indi-
cate that the drug may reduce the extent of ischaemic 
injury in HCM [175], likely through attenuation of the 
downstream pro-ischaemic effects of sarcomeric impair-
ment, as shown in Fig. 2.
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Future research

All the above routes towards a refined diagnosis and tar-
geted treatment of myocardial ischaemia in HCM constitute 
important and promising prospects for future research into 
the amelioration of symptoms and risk of SCD in HCM. 
If successful, their integration into HCM risk stratification 
models and clinical guidelines is expected to yield signifi-
cant advances for the management of this high-risk group of 
patients, as well as further insights on the overall contribu-
tion of ischaemia in cardiovascular disease. However, fur-
ther research is needed to elucidate the clinical significance 
of ischaemia on imaging, and the relative contributions of 
the various pro-ischaemic mechanisms in HCM.

Although ischaemic HCM phenotypes are consistently 
identified as a high-risk subgroup on long term follow-up 
(Table 3), the role of imaging in assessing ischaemic bur-
den for risk prediction needs rigorous testing. Reported 
ischaemia-arrhythmia associations are heterogeneous 
(Table 4) and might be explained by monitoring of ECG 
(Holter monitors) during conditions of rest to assess 
patients’ arrhythmic burden. Future work might consider 
whether ischaemia on non-invasive imaging is associated 
with arrhythmias on stress testing, particularly as some 
arrhythmias are preceded by ischaemic ECG changes 
[156]. Such multimodal approaches have already been 
evaluated in HCM, such as the combined use of perfu-
sion CMR and echocardiography [32], demonstrating its 
potential to improve diagnosis and prognostic stratification 
of HCM patients.

Another consideration is that despite the strong age-
dependence of SCD risk in HCM, most analyses relating 
ischaemia and arrhythmic risk were performed in midlife 
cohorts (Table 4), which may be more likely to have a 
fibrotic substrate due to the presence of more advanced 
structural LV remodelling. Future analyses of imaging 
for ischaemia in younger HCM cohorts may have distinct 
implications, given that exercise-induced ECG changes are 
emerging as predictive of outcomes [176].

Importantly, multi-centre studies to evaluate ischaemic 
burden are needed to elucidate the incremental value of 
perfusion imaging for ischaemic myocardial substrates over 
potentially irreversible substrates like LGE, particularly 
in subgroups where guidelines are less certain (ESC SCD 
risk < 6%).

Conclusion

In this review, we have presented a comprehensive dis-
cussion of the latest evidence corroborating profound 
links between myocardial ischaemia, disease severity and 

prognosis. This notably broadens former studies by cov-
ering HCM-specific ischaemic factors, the impairment of 
perfusion by myocardial hypertrophy, the characteristic 
distributions of ischaemic burden in HCM ventricles, 
the relationship between (hypo)perfusion and fibrosis, 
mechanisms of ischaemia progression in HCM, its clini-
cal manifestations and prognostic value. Altogether, our 
analysis substantiates myocardial ischaemia as a strong 
and multifactorial contributor to adverse LV remodel-
ling, arrhythmia, and SCD events in HCM. Despite the 
strong associations reported, further studies are needed 
to understand which non-invasive methods of ischaemia 
assessment have independent prognostic value in HCM, 
over and above co-existing myocardial fibrosis and LVOT 
obstruction.
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