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Introduction

Despite a decrease in age-standardized mortality rates for 
cardiovascular death over recent decades, ischemic heart 
disease (IHD) remains a leading cause of death worldwide 
[1, 2]. Left ventricular ejection fraction (LVEF) is the most 
widely used parameter for the assessment of global LV sys-
tolic function,[3] providing both prognostic information and 
guiding management of patients with IHD and myocardial 
infarction [4, 5]. LVEF, however, is limited in its charac-
terization of systolic function by its dependence on loading 
conditions and ventricular geometry [6]. Echocardiographic 
speckle tracking strain analysis is more sensitive than LVEF 
for the detection of systolic dysfunction,[3] and LV global 
longitudinal strain (GLS) has been demonstrated to have 
incremental prognostic value to LVEF in patients with 
IHD [7]. Cardiac magnetic resonance (CMR) imaging is 
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Abstract
Risk stratification of patients with ischemic heart disease (IHD) still depends mainly on the left ventricular ejection frac-
tion (LVEF). LV inward displacement (InD) is a novel parameter of LV systolic function, derived from feature tracking 
cardiac magnetic resonance (CMR) imaging. We aimed to investigate the prognostic impact of InD in patients with IHD 
and prior myocardial infarction. A total of 111 patients (mean age 57 ± 10, 86% male) with a history of myocardial infarc-
tion who underwent CMR were included. LV InD was quantified by measuring the displacement of endocardially tracked 
points towards the centreline of the LV during systole with feature tracking CMR. The endpoint was a composite of all-
cause mortality, heart failure hospitalization and arrhythmic events. During a median follow-up of 142 (IQR 107–159) 
months, 31 (27.9%) combined events occurred. Kaplan-Meier analysis demonstrated that patients with LV InD below the 
study population median value (23.0%) had a significantly lower event-free survival (P < 0.001). LV InD remained inde-
pendently associated with outcomes (HR 0.90, 95% CI 0.84–0.98, P = 0.010) on multivariate Cox regression analysis. InD 
also provided incremental prognostic value to LVEF, LV global radial strain and CMR scar burden. LV InD, measured 
with feature tracking CMR, was independently associated with outcomes in patients with IHD and prior myocardial infarc-
tion. LV InD also provided incremental prognostic value, in addition to LVEF and LV global radial strain. LV InD holds 
promise as a pragmatic imaging biomarker for post-infarct risk stratification.
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the reference standard for assessing LV volumes and func-
tion, due to its high accuracy and reproducibility [8]. CMR 
can also provide information on myocardial infarction scar 
burden which is associated with unfavourable outcomes in 
patients with IHD [9]. Nowadays, CMR feature tracking 
(FT) techniques allow the assessment of myocardial defor-
mation from standard cine CMR images [10, 11]. Impaired 
LVGLS, measured with CMR-FT, has been linked to mor-
tality and cardiovascular events in patients with IHD [12, 
13]. GLS has become the dominant deformation parameter 
used in clinical practice, and while it is a highly sensitive 
marker of global systolic dysfunction, it has limited regional 
sensitivity and reflects only longitudinal deformation. LV 
wall motion has been used to evaluate regional and radial 
function for more than four decades on X-ray ventriculog-
raphy, and has also been applied to echocardiography and 
CMR. In principle, analysis of inward wall motion over-
comes the limitations of LVGLS with respect to regional 
function and radial function, but hitherto it has been based 
on non-mathematical visual analysis of wall motion only. 
FT technology allows much more accurate tracking of the 
endocardial border, resulting in a novel parameter of LV 
wall motion, namely LV inward displacement (InD). LV 
InD is defined as the displacement vector from each point 
of the endocardial border to the LV center. The potential 
advantage of LV InD is that it could provide a robust and 
effective measure of regional myocardial motion. [14] The 
prognostic implications of CMR-FT derived LV InD have 
not been investigated in patients with IHD and previous 
infarction. The aim of the current study was, therefore, to 
characterize LV InD with CMR in individuals with prior 
myocardial infarction, and to analyse the prognostic impact 
of this new LV function parameter in comparison to LVEF, 
LVGLS and LV global radial strain (LVGRS).

Methods

Study population

Patients with previous myocardial infarction who under-
went clinically indicated late gadolinium contrast-enhanced 
(LGE)-CMR between 2004 and 2017 were evaluated ret-
rospectively. Individuals who underwent LGE-CMR within 
30 days of myocardial infarction or previous surgical LV 
reconstruction were excluded from the analysis. Baseline 
demographic and clinical data were collected from the elec-
tronic medical record system of the cardiology department 
(EPD Vision, version 12.5.4, Leiden University Medical 
Centre, Leiden, The Netherlands). Cardiovascular medica-
tions were optimized according to contemporary guidelines 
and titrated at the discretion of the treating physician [5, 

15]. Cardiac resynchronization therapy (CRT) devices and 
implantable cardioverter-defibrillators (ICD) were inserted 
during follow-up, according to prevailing guidelines [16–
19]. The institutional review board of the Leiden University 
Medical Centre approved the retrospective analysis of clini-
cally acquired data and waived the need for written patient 
consent on an individual level.

Cardiovascular magnetic resonance data acquisition 
and analysis

CMR was performed on a 1.5-T Gyroscan ACS-NT/Intera 
MR system or on a 3.0-T Ingenia MR system (Philips 
Medical Systems, Best, The Netherlands) using retrospec-
tive gating. Cine steady-state free precession (SSFP) CMR 
images were acquired in the long (2-, 3- and 4-chamber 
views) and short axes of the LV. LGE-CMR images were 
acquired 15 min after bolus injection of gadolinium diethy-
lenetriamine pentaacetic acid (Magnevist, Schering, Ber-
lin, Germany) (0.15 mmol/kg) with an inversion recovery, 
three-dimensional, turbo-field echo sequence with parallel 
imaging. The heart was imaged in one or two breath-holds 
with short-axis slices at various levels, depending on the 
size of the heart [19, 20].

CMR data analysis was performed offline using Medis 
Suite software (Medis Medical Imaging BV, Leiden, The 
Netherlands). LV endocardial and epicardial contours were 
drawn automatically using the AutoQ function on both short-
axis and long-axis cine images. Subsequently, LV contours 
were automatically propagated in all frames throughout the 
entire cardiac cycle. Papillary muscles were considered part 
of the LV cavity, and epicardial adipose tissue was excluded 
from the region of interest. In case of inadequate automated 
tracing, the endocardial border was manually adjusted. LV 
end-diastolic volume, LV end-systolic volume, and LVEF 
were calculated from short axis reconstructions (QMass 8,1, 
Medis Suite software). LVGRS was calculated from short 
axis views and LVGLS was calculated from the long-axis 
views (2, 3, and 4-chamber) with commercially-available 
software (QStrain 4.1, Medis Suite software) utilizing FT-
CMR. LV InD was quantified by measuring the displace-
ment of (automatically) tracked endocardial points towards 
the centerline of the LV during systole from long-axis 
images (2, 3, and 4-chamber). The centerline was located 
along the LV long axis with a position that varied between 
one-half and two-thirds of the base-apex distance and was 
determined automatically by the software (Fig. 1). The 
endocardial displacement was expressed as a percentage, 
after normalization to the distance at end-diastole between 
the endocardial points and the corresponding LV centerline 
[14]. The American Heart Association 17-segment model 
was used to evaluate segmental LV InD,[21] and the LV InD 
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was calculated as the mean value of the end-systolic LV InD 
for each myocardial segment (Fig. 1).

LGE (scar) was assessed on the basis of signal intensity 
(SI) [20]. The myocardial segment with the most dense scar 
was visually identified and used to define the reference max-
imum SI by drawing a region of interest. LV myocardium 
with a SI ≥ 35% of the maximal SI was defined as scar tissue 
on automated analysis, and expressed as a percentage of LV 
volume [20, 22].

Follow-up and endpoints

The study endpoint was a composite of all-cause mortal-
ity, heart failure hospitalization and arrhythmic events. Data 
on mortality and heart failure hospitalization were obtained 
from the departmental cardiology information system (EPD 
Vision, version 12.5.4, Leiden University Medical Centre, 
Leiden, The Netherlands) which is linked to the governmen-
tal death registry database. Arrhythmic events were defined 
as documented ventricular fibrillation, sustained ventricu-
lar tachycardia lasting > 30 s, appropriate ICD therapy or 

resuscitation after cardiac arrest. The occurrence of ICD 
therapy was assessed by device interrogation.

Statistical analysis

Continuous data were presented as mean ± standard devia-
tion when normally distributed or median and interquartile 
range (IQR) when not normally distributed. Categorical 
variables were expressed as frequencies and percentages. 
The study population was dichotomized according to the 
median value of LV InD. LV InD groups were compared 
using the independent samples Student t-test for continuous 
variables with a normal distribution, or the Mann-Whitney 
U-test for non-normally distributed continuous variables, 
whereas categorical variables were compared using the 
Pearson chi-square test or Fisher’s exact test, as appropri-
ate. Kaplan-Meier survival analysis was used to estimate 
the event-free survival rate for the composite endpoint. 
Bivariate and multivariate Cox regression analyses were 
performed to evaluate the association between baseline 
variables and the composite endpoint. Significant variables 
on bivariate analysis (P-value < 0.05) were included in the 

Fig. 1 Measurement of left ventricular inward displacement
Measurement of left ventricular (LV) inward displacement of two 
representative cases (normal LV systolic function (panels A-C) and a 
patient with an apical aneurysm (panels D-F)). Endocardial and epi-
cardial contours were automatically drawn on long-axis cine images 
(panels A, D). The LV inward displacement of the endocardium was 
visualized in two dimensions, with the border geometry displayed in 
end-systole (yellow contour) and in end-diastole (green contour) for 

each long-axis cine view (panels B, E). Inward displacement was 
quantified by measuring the change in position of the endocardial 
tracking points from the corresponding centreline of the LV during 
systole, expressed as a percentage (panel B). LV segmental inward 
displacement is shown in parametric format, using a 17-segment 
model (panel C, F). Segments which shorten during systole are repre-
sented in red, whilst dyskinetic segments are shown in blue
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(SPSS, Inc., Chicago, IL, USA) and R (version 4.1.1; R 
Foundation for Statistical Computing, Vienna, Austria).

Results

Study population: clinical and imaging 
characteristics

A total of 111 patients (mean age 57 ± 10 years, 86% male) 
with a history of myocardial infarction, who underwent 
LGE-CMR imaging, were included based on inclusion and 
exclusion criteria. The median time from the index acute 
MI to CMR was 81 [IQR: 53–168] days. The typical indica-
tions for CMR were to assess myocardial viability (n = 92, 
83%). Other indications were for the assessment of ven-
tricular function (n = 14, 13%), diagnosis of other etiologies 
of LV dysfunction (n = 3, 3%), or assessment of myocar-
dial ischemia by stress CMR (n = 2, 2%). The majority of 
patients were classified as ST-segment elevation myocardial 
infarction (STEMI)(n = 101, 94%), while the remainder had 
non-STEMI (n = 7, 6%). For the measurement of LV InD, 
9 (10%) of patients required manual contour adjustment. 
Amongst cardiovascular risk factors, diabetes mellitus 
and chronic kidney disease were seen more commonly in 
patients with LV InD < 23.0. The use of aspirin, angioten-
sin-converting enzyme inhibitors (or angiotensin receptor 
blockers), beta-blockers and statins exceeded 95% in all 
groups (Table 1). ICD or CRT implantation was performed 
in 22 (19.8%) patients after CMR.

The mean LVEF was 50.4 ± 13.4% and 47 (41%) patients 
had an LVEF < 50%. The LV end-diastolic and end-systolic 
volumes were significantly larger in the group with LV 
InD < 23.0, while the LVEF, LVGLS and LVGRS were more 
impaired in this group. On LGE-CMR, LV scar tissue was 
present in 97 (89%) patients (transmural in 40 patients and 
subendocardial in 57 patients). The median LV scar vol-
ume was 15.4% [IQR5.2-22.7%], and the burden of post-
infarction scar was significantly greater in patients with 
LV InD < 23.0. LV scar burden was also greater in patients 
with transmural scar than in those with subendocardial scar 
(17.0 ± 9.7% vs. 8.5 ± 7.5%, P < 0.001). LV InD (17.3 ± 7.2% 
vs. 23.7 ± 6.1%, P < 0.001) and LVGLS (12.3 ± 6.4% vs. 
17.4 ± 5.4%, P < 0.001) were lower in patients with transmu-
ral scar than in those with subendocardial scar only.

Survival analysis and incremental value of LV InD

Over a median follow-up of 142 (IQR 107–159) months, 
31 (27.9%) events occurred (12 all-cause deaths, 5 heart 
failure hospitalizations and 14 arrhythmic events). Arrhyth-
mic events included 1 episode of ventricular fibrillation, 

multivariate regression analysis. To avoid multicollinearity, 
variables with a variance inflation factor exceeding 10 were 
excluded from the multivariate analysis. To investigate the 
incremental prognostic value of LV InD over various clini-
cal and imaging parameters, including age, sex, LVEF, scar 
burden, LVGRS and LVGLS, the change in the likelihood 
ratio (LR) chi-square value for nested models was calcu-
lated. Fourteen random patients were selected for the evalu-
ation of intra- and inter-observer variability of LV InD, using 
intraclass correlation coefficients for absolute agreement of 
average measures. Moreover, intra- and interobserver agree-
ment for LV InD was evaluated by Bland-Altmann analysis. 
Two-sided P-values < 0.05 were considered significant. The 
statistical analyses were performed using SPSS version 25 

Table 1 Baseline patient characteristics
Variables Overall 

population
(n = 111)

LV 
InD < 23.0
(n = 55)

LV 
InD ≥ 23.0
(n = 56)

P-value

Age 57.4 ± 9.9 59.4 ± 10.6 55.5 ± 8.9 0.059
Sex, male, n 
(%)

96 (86%) 48 (87%) 48 (86%) 0.810

Arterial hyper-
tension, n (%)

46 (41%) 24 (44%) 22 (39%) 0.642

Hyperlipidae-
mia, n (%)

31 (28%) 20 (36%) 11 (20%) 0.050

Diabetes mel-
litus, n (%)

14 (13%) 11 (20%) 3 (5%) 0.024

Chronic kid-
ney disease, 
n (%)

6 (6%) 6 (11%) 0 (0%) 0.012

Medical 
therapy
Aspirin, n (%) 106 (95%) 53 (96%) 53 (95%) >0.999
ACEI/ARB, 
n (%)

110 (99%) 54 (98%) 56 (100%) 0.495

Beta-blocker, 
n (%)

107 (96%) 52 (95%) 55 (98%) 0.364

Statin, n (%) 111 (100%) 55 (100%) 56 (100%) >0.999
CMR 
parameters
LVEF (%) 44.8 ± 14.5 34,5 ± 11.9 55.3 ± 8.0 < 0.001
LVEDV (ml) 214.4 ± 66.8 255.3 ± 65.3 172.8 ± 35.2 < 0.001
LVESV (ml) 125.9 ± 71.0 172.5 ± 71.2 78.5 ± 23.9 < 0.001
LVGRS (%) 38.3 ± 21.4 48.1 ± 20.8 28.3 ± 17.1 < 0.001
LVGLS (%) 16.1 ± 6.5 10.9 ± 4.2 21.2 ± 3.8 < 0.001
LV inward 
displacement 
(%)

22.1 ± 7.7 15.6 ± 4.4 28.6 ± 3.9 < 0.001

LV scar bur-
den (%)

15.4 
[5.2–22.7]

22.7 
[13.8–31.9]

7.2 
[0.9–12.4]

< 0.001

Values are expressed as mean ± SD or median [25-75%]. ACEI, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin recep-
tor blocker; InD, inward displacement; LVEDV, left ventricular end-
diastolic volume; LVEF, left ventricular ejection fraction; LVESV, 
left ventricular end-systolic volume; LVGRS, left ventricular global 
radial strain; LVGLS, left ventricular global longitudinal strain
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Reproducibility of CMR-derived LV InD

The intra-observer agreement for LV InD was good, with a 
mean difference of 1.6 ± 4.0% between repeated measures 
(Fig. 4A). The intraclass correlation coefficient for intra-
observer comparison was 0.99. Similarly, good agreement 
was noted between measurements obtained by different 
observers, with a mean difference of -0.5 ± 3.2% and an 
intraclass correlation coefficient of 0.99 (Fig. 4B).

Discussion

In patients with IHD and previous myocardial infarction, 
FT-CMR-derived LV InD was independently associated 
with long-term outcomes. Furthermore, LV InD provided 
incremental prognostic value to LVEF, LVGRS and LV scar 
burden, but not to LVGLS.

2 sustained ventricular tachycardias, 2 resuscitations after 
cardiac arrest, and 9 appropriate ICD therapies. Patients 
with more impaired LV InD (< 23.0) experienced a signifi-
cantly lower event-free survival (P < 0.001) (Fig. 2). Age, 
LVEF, LV scar burden, LVGRS, LVGLS and LV InD were 
associated with the combined endpoint of all-cause mortal-
ity, heart failure hospitalization and arrhythmic events on 
bivariate Cox regression analysis. On multivariate analysis, 
age and LV InD (P = 0.010) remained independently associ-
ated with the composite endpoint (Table 2). LVEF, LVGRS, 
and LVGLS were excluded from the multivariate model due 
to multicollinearity.

LR nested analysis demonstrated incremental prog-
nostic value when adding LV InD to models including 
LVEF (P = 0.041), LV scar burden (P = 0.009) and LVGRS 
(P = 0.012). LV InD did not add significant incremental pre-
dictive value to a model which included LVGLS (P = 0.079)
(Fig. 3).

Fig. 2 Kaplan-Meier curve for the composite endpoint of survival, 
heart failure hospitalization and arrhythmic events, using a threshold 
of 23% for left ventricular inward displacement

A significantly greater event-free survival was observed in patients 
with left ventricular inward displacement InD ≥ 23%, compared to 
those with a InD < 23%.
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Table 2 Cox regression analysis for the composite endpoint
Bivariate analysis Multivariable analysis

Variables HR 95% CI P-value HR 95% CI P-value
Age 1.06 1.02–1.11 0.002 1.04 1.00-1.09 0.036
Sex, male 0.63 0.26–1.54 0.312 - - -
Arterial hypertension 1.28 0.63–2.60 0.486 - - -
Hyperlipidaemia 1.66 0.81–3.43 0.168 - - -
Diabetes mellitus 1.01 0.35–2.90 0.982 - - -
Chronic kidney disease 2.29 0.69–7.53 0.174 - - -
Aspirin 0.76 0.18–3.20 0.711 - - -
ACEI/ARB 0.20 0.03–1.50 0.118 - - -
Beta-blocker 0.59 0.14–2.45 0.464 - - -
LVEF (%) 0.95 0.93–0.97 < 0.001 - - -
LVGRS (%) 0.96 0.94–0.98 < 0.001 - - -
LVGLS (%) 0.88 0.83–0.93 < 0.001 - - -
LV inward displacement (%) 0.89 0.84–0.93 < 0.001 0.90 0.84–0.98 0.010
LV scar burden (%) 1.04 1.02–1.06 0.001 1.00 0.95–1.06 0.959
ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CI, confidence interval, HR, hazard ratio, LVEDV, left 
ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; LVGRS, left ventricular 
global radial strain; LVGLS, left ventricular global longitudinal strain

Fig. 3 Likelihood ratio test for the incremental value of left ventricular 
inward displacement for the composite endpoint of survival, heart fail-
ure hospitalization and arrhythmic events
LV InD adds significant prognostic value to models including baseline 
clinical parameters (age and sex), LVEF (panel A), LV scar burden 

(panel B) and LVGRS (panel C). No significant increase in the chi-
square value was observed when LV InD was added to LVGLS (panel 
D). InD, inward displacement; LVEF, left ventricular ejection fraction; 
LVGRS, left ventricular global radial strain; LVGLS, left ventricular 
global longitudinal strain
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predictive value over post-infarction scar, when imaged by 
LGE CMR.

LV deformation parameters, such as LVGLS or LVGRS, 
while being sensitive to detect global systolic LV function, 
are more limited in their ability to identify regional LV sys-
tolic impairment. In addition, these strain parameters reflect 
LV deformation in one direction only, while in reality, LV 
contraction comprises circumferential, radial, and longitu-
dinal changes. Systolic LV wall motion can be described by 
the inward motion of the endocardium towards the center-
line of the ventricle, which potentially overcomes the limi-
tations of existing strain parameters, i.e.: (1) it can reflect 
multidirection (radial and longitudinal) LV wall motion and 
(2) it may be more sensitive for the identification of regional 
systolic function [14]. While systolic wall motion analysis 
has been used for four decades, with both echocardiogra-
phy and CMR, it has not been based on a solid analytical 
model of endocardial motion. FT-CMR, despite being most 
commonly used for deformation analysis, has also allowed 
a paradigm shift to occur in LV systolic wall motion analy-
sis, due to the highly accurate tracking of the endocardial 
border. This has resulted in the emergence of a novel param-
eter of LV wall motion, namely LV InD, which is not based 
merely on visual analysis. In the current study, LV InD pro-
vided incremental prognostic value over LVEF and LVGRS. 
These results might be explained by the fact that LV InD 
affect not only radial motion as indicated by LVGRS, but 
also LV wall motion in multiple directions. Conversely, LV 
InD was not clearly shown to be superior over LVGLS in 
the present study. LVGLS is highly sensitive to wall motion 
abnormalities in patients with IHD, since it primarily affects 
longitudinal, subendocardial myocardial fibres [3, 29]. The 
prognostic value of LV InD might, therefore, be limited in 
comparison to LVGLS, specifically in patients with IHD. 
This does not detract from the fact that LV InD may provide 

LVEF has been the mainstay of LV systolic function 
quantification for six decades, and it is recommended to 
measure LVEF in all patients with myocardial infarction 
[3]. LVEF has also robust data to support its use as prognos-
tic marker in patients who have experienced a myocardial 
infarction [4, 23]. LVEF, however, is subject to a number of 
important limitations, e.g. its load-dependency, insensitivity 
to mild dysfunction, its dependence on LV geometry (e.g. 
hypertrophy) and dyssynchrony (e.g. left bundle branch 
block) [6, 24, 25]. Deformation imaging is more sensitive 
to subtle changes in LV systolic dysfunction, and also less 
load-dependent than LVEF. LVGLS has been found to pro-
vide incremental prognostic value over LVEF for patients 
with IHD [3]. Strain can be measured not only from speckle 
tracking strain echocardiography, but also from FT-CMR, 
which has emerged as a superior parameter of LV systolic 
function for post-infarct risk stratification when compared 
to LVEF [12, 26]. In a multicentre study including > 1200 
patients with history of myocardial infarction, LVGLS, LV 
global circumferential strain, and LVGRS derived from 
FT-CMR, were all significantly associated with outcome. 
In particular, LVGLS demonstrated additive predictive 
value for all-cause mortality over and above LVEF, and it 
has become the preferred deformation parameter in clinical 
practice due to its reproducibility [12].

The presence and extent of LGE are predictive of ven-
tricular arrhythmias and sudden cardiac death in patients 
with and previous myocardial infarction, since the border 
(transition) zone between normal myocardium and scar tis-
sue creates the substrate for an electrophysiologic re-entry 
circuit to be established [27, 28]. While extensive scar tissue 
(represented by LGE on CMR) impacts on LV systolic func-
tion, it nevertheless represents an independent risk factor 
for long-term outcomes in these patients due to its associa-
tion with lethal arrhythmias. LV InD demonstrated additive 

Fig. 4 Intra- (A) and inter-observer (B) agreement for left ventricular inward displacement, assessed by Bland-Altman analysis
SD: standard deviation
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