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Abstract
To assess the prognostic value of convolutional neural networks (CNN) on coronary computed tomography angiography 
(CCTA) in comparison to conventional computed tomography (CT) reporting and clinical risk scores. 5468 patients who 
underwent CCTA with suspected coronary artery disease (CAD) were included. Primary endpoint was defined as a com-
posite of all-cause death, myocardial infarction, unstable angina or late revascularization (> 90 days after CCTA). Early 
revascularization was additionally included as a training endpoint for the CNN algorithm. Cardiovascular risk stratification 
was based on Morise score and the extent of CAD (eoCAD) as assessed on CCTA. Semiautomatic post-processing was 
performed for vessel delineation and annotation of calcified and non-calcified plaque areas. Using a two-step training of a 
DenseNet-121 CNN the entire network was trained with the training endpoint, followed by training the feature layer with 
the primary endpoint. During a median follow-up of 7.2 years, the primary endpoint occurred in 334 patients. CNN showed 
an AUC of 0.631 ± 0.015 for prediction of the combined primary endpoint, while combining it with conventional CT and 
clinical risk scores showed an improvement of AUC from 0.646 ± 0.014 (based on eoCAD only) to 0.680 ± 0.015 (p < 0.0001) 
and from 0.619 ± 0.0149 (based on Morise Score only) to 0.6812 ± 0.0145 (p < 0.0001), respectively. In a stepwise model 
including all prediction methods, it was found an AUC of 0.680 ± 0.0148. CNN analysis showed to improve conventional 
CCTA-derived and clinical risk stratification when evaluating CCTA of patients with suspected CAD.

Keywords  Convolutional neural networks · Coronary computed tomography angiography · Prognosis · Coronary artery 
disease

Abbreviations
ACS	� Acute coronary syndrome
AUC​	� Area under the curve
CAC​	� Coronary artery calcium
CAD	� Coronary artery disease
CAG​	� X-ray coronary angiography
CCTA​	� Coronary computed tomography angiography

CNN	� Convolutional neural networks
CT	� Computed tomography
DL	� Deep learning
FRS	� Framingham risk score
eoCAD	� Extent of coronary artery disease
LAP	� Low-attenuation plaque
MACE	� Major adverse cardiac events
ML	� Machine learning
SCPR	� Stretched curved planar reconstructions

Introduction

Coronary computed tomography angiography (CCTA) has 
been widely incorporated into the clinical setting as a first 
line strategy in ruling out obstructive coronary artery disease 
(CAD) in patients with low to intermediate risk [1].
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Beyond the identification and grading of coronary artery 
stenosis, it allows the characterization of atherosclerotic 
plaque features that have prognostic implications such as 
low-attenuation plaque, spotty calcification, napkin-ring sign 
and remodeling [2, 3].

Semi-automatic and semi-quantitative evaluations of 
high-risk plaques have been extensively developed for sev-
eral years. However, CCTA-based risk assessments are not 
yet taken regularly into account in the clinical decision-
making process, mainly because it demands quite a time 
expenditure of highly trained professionals for a still limited 
additional benefit compared to other risk prediction models.

With the rise of automatic machine learning (ML) algo-
rithms including deep learning (DL) there is an expecta-
tion of improvement in diagnosis and prognostication for 
patients with cardiovascular diseases [6]. The identification 
of plaque features using ML tools has been shown already to 
outperform conventional quantitative and qualitative CCTA 
analysis [4–6].

A type of deep-learning algorithm, the so called con-
volutional neural networks (CNN), has been developed to 
process imaging data exhibiting natural spatial invariances 
[7]. Using a training sample of images, it is able to learn 
features from images and execute tasks such as labeling an 
image to a group or class, detecting an object or generating 
a new image, so that CNN is considered nowadays the state 
of the art in image analysis [8, 9].

With the increasing importance of diagnostic imaging 
and the rapid expansion of medical recorded data, CNN may 
be helpful in evaluating computed tomography datasets more 
effectively and has the potential to even recognize imaging 
patterns that the human eye can not see in traditional gray-
scale computed tomography (CT) scans.

Therefore, the aim of our study was to evaluate the long-
term prediction of major cardiovascular events using CNN 
on CCTA-images of patients with suspected CAD in com-
parison with clinical and conventional CCTA-based risk 
scores.

Materials and methods

Study population

In this study, we enrolled 5468 consecutive patients who 
underwent CCTA for suspected coronary artery disease 
(CAD) at the German Heart Center in Munich, Germany 
from October 2004 to January 2018.

Patients with acute coronary syndrome, presence of a life-
threatening situation, a lack of stable sinus rhythm during 
the examination, prior stent implantation or coronary bypass 
surgery were excluded from analyses. Before examination, a 
structured interview was performed, including patient age, 

height and weight, as well as history of cardiac disease, pre-
sent concerns and current medication.

Laboratory results and cardiac risk factors were assessed. 
The pretest probability of CAD was calculated using the 
Morise score [10], which includes age, gender, risk factors 
and symptoms to predict the probability of obstructive CAD. 
According to the number of coronary arteries with obstruc-
tive CAD (defined as ≥ 50% stenosis) the extent of coronary 
artery disease was classified as 0-, 1-, 2- or 3-vessel disease.

Follow-up information was gathered either through clini-
cal visits, questionnaires sent by mail or phone contact. Of 
the 7770 patients initially enrolled in the study, 5605 could 
be reached for clinical follow-up. 25 patients had to be 
excluded due to absent individual cardiovascular risk factor 
values and further 137 individuals had missing or non-diag-
nostic images. Primary combined endpoint of the study con-
sisted of major adverse cardiac events (MACE) defined as 
composite of all-cause death, myocardial infarction, unstable 
angina, or late revascularization (> 90 days after CCTA).

Training endpoint included additionally patients undergo-
ing coronary revascularization within 90 days after CCTA 
and was used together with the primary endpoint in the two-
step training of the full network.

Image acquisition

Throughout the study period 4 different CT scan generations 
were used for image acquisition (Fig. 1).

A 64-slice single source CT system from October 2004 
to September 2006, a 64-slice dual source CT system from 
October 2006 to March 2009, a 128-slice dual source CT 
system from April 2009 to May 2014, and a 192-slice dual 
source CT system from June 2014 to January 2018 (all Sie-
mens Medical Solutions, Erlangen, Germany).

According to the patient’s heart rate and absence of con-
traindications intravenous beta-blocker medication was 
administered targeting a heart rate less than 60 beats/min. 
Sublingual nitrates were applied if systolic blood pressure 
was higher than 100 mmHg.

The coronary prospective ECG-synchronized CTA was 
triggered into the diastolic phase (70% of RR-interval). 
Tube voltage was selected by the technician and/or physi-
cian between 70 and 120 kVp, tube current was adapted 
automatically based on body size (CARE Dose). Contrast 
circulation time was determined using a testbolus with 10 ml 
contrast media (Imeron 350, Bracco Imaging GmbH, Kon-
stanz, Germany), followed by a 50 ml 0.9% saline chaser. 
The coronary CT angiogram was performed with a 50 ml 
contrast bolus at 5.0 ml/s, followed by 30 ml 0.9% saline 
chaser.

Axial thin slice images were reconstructed with 0.6 mm 
slice width and increment of 0.4.
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Plaque assessment from CCTA​

Coronary artery luminal stenosis was evaluated and inter-
preted by at least two experienced radiologists and graded 
as none (0%), minimal (1–24%), mild (25–49%), moderate 
(50–69%), and severe (≥ 70%). Coronary artery plaques 
were characterized as non-calcified only, predominantly 
non-calcified, predominantly calcified or calcified only.

Image annotation and preprocessing

The 3D dataset was analyzed using a commercially available 
software (Syngo.via, Siemens Healthineers, Erlangen, Ger-
many) and the coronary artery tree was segmented automati-
cally with manual correction of inconsistencies. This yielded 
centerlines and a mask denoting vessel lumen and vessel 
wall including plaques for all detectable vessel branches. 
The vessel regions containing non-calcified and partially 
calcified plaques were marked manually, calcified plaques 
were annotated automatically using a threshold algorithm: 
along the centerline of each segment mean and maximum 
contrast intensity was calculated. Calcification was marked, 

if pixel intensity was more than 150HU above maximum 
vessel contrast. To correct for outliers, maximum contrast 
was limited to 120% of mean contrast.

Coronary arteries were reformatted into 2D multi angle 
images as stretched curved planar reconstructions (SCPR). 
Up to five reformations (1 for RCA, 2 for LAD, and 2 for 
LCx territory) were then integrated in one image with 
a 224 × 224 matrix holding each pixel data, annotation 
mask, and distance from vessel ostium in one color chan-
nel (Fig. 2), for each patient 36 reconstructions of different 
angles around the centerline were calculated.

Model architecture and model training

An ImageNet DenseNet-121 a binary classification layer 
was used.

The whole dataset was split randomly into five groups 
stratified by scanner generation, both endpoints, gender and 
age (dichotomized by median).

Hyperparameter optimization was done on a 4:1 training-
validation-test split. Hyperparameters are listed in Table 1. 
The parameters selected for the main training are marked 

Fig. 1   CCTA images of 4 dif-
ferent CT generations used for 
acquisition throughout the study 
period. Image A: 64-slice single 
source CT; Image B: 64-slice 
dual source CT; Image C: 128-
slice dual source CT; Image D: 
128-slice dual source CT
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bold. In the optimized configuration 72 images per patient 
were used resulting on average in 38,477 training images and 
9629 validation images.

The final results were acquired using five time cross vali-
dation with one group serving as validation group and the 
other as training group.

Densenet models are pretrained on nonmedical image. 
These models failed to converge on the clinical endpoint. 
We therefore chose a two-step approach. First the network 
was trained using the training endpoint, which included early 
revascularization; then it was further optimized using the 
primary endpoint.

Model training was performed in Python 3.8.5 (open-
source; Python Software Foundation, Wilmington, Del) by 
using pytorch 1.7.1 and scikit-learn 0.23.2 libraries on a 

GPU-workstation with a 8-core Intel-Core i7 9700 K-CPU at 
3.6 GHz (Intel, Santa Clara, Calif), 64 GB DDR4-SDRAM 
and 4 GeForce RTX 2080ti 11 GB graphical processing 
units (Nvidia, Santa Clara, California) running Linux system 
(Ubuntu 20.04; Canonical, London, England) with CUDA 
11.3 (Nvidia, Santa Clara, CA).

Statistical analysis

The prediction of the fully trained model, normalized by the 
softmax function was used as a variable for further statistical 
tests. Outcome prediction and incremental value compared 
to the extent of CAD was done by receiver operating sta-
tistics. All statistical tests were performed two-sided and a 
significance level of 5% was used. The statistical package 
R version 2.10.1 including the package rms was used for 
statistical analysis.

Results

A total of 5468 patients were included, with a mean age 
of 61.1 ± 11.2 years, and 66.5% were male. In total, 334 
primary endpoint events (168 deaths, 27 non-fatal myo-
cardial infarction, 1 unstable angina and 154 late revascu-
larization) occurred during a median follow-up duration of 
7.2 years. Additionally early revascularizations occurred in 
405 (7.4%) patients. Table 2 shows the characteristics of the 
study participants.

Of the 5,468 patients, 419 (7.6%) showed diabetes, 
1757 (32.1%) were currently or had a history of smoking 
and 1885 (34.5%) had a positive family history of car-
diovascular disease (CAD). Hypercholesterolemia was 

Fig. 2   Model architecture overview. Initially (step 1), coronary artery 
segments were reformatted in multi angle stretched curved planar 
reconstructions (SCPR). Next (step2), images were integrated with 
the annotation mask of non-calcified, partially calcified and calcified, 
as well as distance from vessel ostium. 224 × 224 matrix was used as 

input for an ImageNet pretrained DenseNet-121 with a two-step train-
ing: first, the full network was trained using the training endpoint 
(step 3), which included early revascularizations; then, the feature 
layer was further trained using only the primary endpoint (step 4)

Table 1   ImageNet DenseNet-121

Hyperparameter Values tested

DenseNet Model type 121, 161, 169, 201
Usage of pretrained Model Yes, no
Optimizer Adam
Batch size 4, 8, 16
Epochs 12, 24, 36, 64
Image augmentation, horizontal flip Yes, no
Image augmentation, number of stretched 

CPRs
9, 18, 36

Percentage of positive endpoints 25, 33, 50
Sets with different negative endpoints 1, 2, 4, 6, 12
Learning rate, initial value 0, 001.0, 01, 0, 1, 0, 2, 0.5
Learning rate, gamma 0.02, 0.05, 0.1, 0.2
Learning rate, step 4, 8, 12
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found in 2992 (54.8%) patients and hypertension in 2983 
(54.6%) patients. The study population showed an average 
Morise risk score of 11.1 ± 2.74. No CAD was observed in 
1108 patients (20.3%), 2994 patients (54.7%) were diag-
nosed with non-obstructive CAD, and 1366 patients (25%) 
showed obstructive CAD. Baseline differences in terms of 
cardiovascular risk factors between groups with or without 
the occurrence of primary and training endpoint are shown 
in Table 3.

The primary and secondary endpoints are shown in 
Table 4.

CNN based risk prediction for primary endpoints had an 
area under the curve (AUC) of 0.631 ± 0.015. Regarding the 
training endpoint it was observed an AUC of 0.720 ± 0.010 
with the CNN algorithm. When combining CNN analysis 
with CT-based parameters, we found an improvement of 
AUC to predict primary endpoints from 0.646 ± 0.014 (based 
on eoCAD only) to 0.680 ± 0.015 using CNN in addition 
to eoCAD (p < 0.0001). Clinical risk assessment using the 
Morise score demonstrated an AUC of 0.619 ± 0.0149 for 
predicting the combined primary endpoint, while combining 

Table 2   Patient characteristics (n = 5468)

Data presented as mean ± standard deviation or absolute number (per-
centage)

Demographics
 Age (years) 61.1 ± 11.2
 Male sex, n (%) 3637 (66.5)
 Body-mass-index (kg/m2) 24.8 ± 42.1

CAD risk factor
 Diabetes, n (%) 419 (7.6)
 Smoking, n (%) 1757 (32.1)
 Hypertension, n (%) 2983 (54.6)
 Hypercholesterolemia, n (%) 2992 (54.8)
 CAD family history, n (%) 1885 (34.5)

CAD risk scores
 Morise risk score 11.1 ± 2.74
 No CAD (%) 1108 (20.3)
 No-obstructive CAD (%) 2994 (54.7)
 Obstructive CAD (%) 1366 (25)
 1 958 (70.1)
 2 307 (22.5)
 3 101 (7.4)

CAD-RADS
 0 1108 (20.2)
 1 1111 (20.3)
 2 1883 (34.4)
 3 1056 (19.3)
 4a 261 (4.8)
 4b 22 (0.4)
 5 27 (0.5)

Table 3   Baseline differences between groups with and without the 
occurrence of primary endpoint

Data presented as mean ± standard deviation or absolute number (per-
centage)
CAD coronary artery disease, eoCAD the number of obstructive ves-
sels on CTA​

Negative
n = 5,134

Positive
n = 334

p value

Age (years) 60.8 ± 11.1 66.8 ± 10.8  < 0.0001
Male sex, n (%) 3397 (66.2) 240 (71.9) 0.036
Hypertension 2725 (53.1) 220 (65.9)  < 0.0001
Smoking, n (%) 1641 (32) 116 (34.7) 0.3
Diabetes, n (%) 378 (7.36) 41 (12.3) 0.002
Hypercholesterolemia, n (%) 2802 (54.6) 181 (54.2) 0.91
CAD family history, n (%) 1783 (34.7) 102 (30.5) 0.12
Total cholesterol mg/dl 206 ± 50.6 201 ± 56 0.086
LDL 128 ± 38.7 126 ± 41.3 0.49
HDL 59.7 ± 24.2 55.1 ± 17  < 0.0001
Triglicerides 142 ± 106 146 ± 90.8 0.48
Morise risk score 11.1 ± 2.74 12.2 ± 2.58  < 0.0001
Low 911 (17.8) 20 (6.01)
Intermediate 3984 (78) 274 (82.3)
High 215 (4.21) 39 (11.7)
eoCAD 1.02 ± 0.668 1.4 ± 0.625 p < 0.0001
No CAD (%) 1083 (21.1) 25 (7.49)
Non-obstructive (%) 2843 (55.4) 151 (45.2)
Obstructive (%) 1208 (23.5) 158 (47.3)

Table 4   Primary and secondary endpoints

Data presented as absolute number (percentage)
PCI Percutaneous coronary intervention
a Combined primary endpoint

Events

All-cause deatha 169 (3.09)
Cardiac death 97 (1.77)
Non-cardiac death 72 (1.32)
Myocardial infarctiona 27 (0.494)
Unstable anginaa 1 (0.0183)
Coronary artery bypass graft surgery 32 (0.585)
Early coronary artery bypass graft surgery 17 (0.311)
Late coronary artery bypass graft surgery 15 (0.274)
Percutaneous coronary intervention 572 (10.5)
Early PCI 428 (7.83)
Late PCI 144 (2.63)
Revascularization 599 (11)
Early revascularization 445 (8.14)
Late revascularizationa 154 (2.82)
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it with CNN showed an increased AUC of 0.6812 ± 0.0145 
(p < 0.0001).

In a stepwise model combining all prediction methods, 
it was found an AUC from 0.619 ± 0.0149 for Morise score 
alone, increasing  to 0.676 ± 0.015 after adding eoCAD 
(p < 0.0001) and, eventually, to 0.680 ± 0.0148 by means 
of Morise score, eoCAD and CNN combined together 
(p = 0.0001) (Fig. 3).

Discussion

Our study shows an improved risk prediction for MACE 
in patients undergoing CCTA combining CNN with con-
ventional CT parameters and clinical risk factors. These 
results highlight the potential of integrating machine learn-
ing (ML)-based image analysis into the evaluation of coro-
nary plaque features in order to improve prognostication of 
patients with suspected CAD.

To our knowledge, this is the first approach to use a CNN 
algorithm directly on risk assessment of patients with sus-
pected CAD. Up to now, ML-based models were used to 
optimize prediction based on known plaque features and 
CNNs were used to automate the detection of these features. 
Our CNN model was fed with only a scarce amount of infor-
mation about the coronary plaque characteristics and was 
able to enhance the prognostication of MACE evaluating 
not 3D CT data, but merely 2D integrated images of the 
coronary arteries.

Previously, ML-based models in cardiac CT imaging 
were either used to optimize prediction of cardiovascular 
outcome or to simply automate and enhance morphologic 
plaque characterization. CCTA-based qualitative and quan-
titative plaque features were used by Al’Aref et al. to create 
a ML model to predict culprit lesions among acute coro-
nary syndrome (ACS) patients and showed a significantly 
higher AUC when compared to models based on high-risk 
plaque features, diameter stenosis and lesion-level plaque 
analysis [11]. This model also demonstrated a specificity of 
89% for predicting non-culprit lesions in patients who under-
went CCTA without presenting acute coronary syndrome. 
Motwani et  al. [12] analyzed clinical and CCTA-based 
risk scores for the prediction of 5-years all-cause mortality 
and found an improved AUC using ML when compared to 
Framingham risk score (FRS) or CCTA data alone.

Our group performed a ML-based time-to-event analysis 
in a similar cohort of patients with suspected CAD [13], 
which showed a superior performance for the long-term pre-
diction of MACE than the use of clinical and CCTA derived 
variables or scores, independently.

In a multicentric study, Lin et al. [14] developed and 
externally validated a deep learning based algorithm to 
measure total plaque volume and minimal luminal area that 
correlated closely with expert reader measurements and 
intravascular ultrasound. However, an association between 
an increased risk of myocardial infarction and deep learning-
based total plaque volume could only be shown after adjust-
ment for clinical risk scores and the presence of obstructive 
stenosis.

Fig. 3   ROC-Curves for Prediction of Major Cardiovascular Events
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Using a multi-task recurrent convolutional neural net-
work (RCNN) Zreik et al. [15] demonstrated the feasibility 
of an algorithm for an automatic detection and charac-
terization of coronary plaques and stenosis. This method 
showed a high accuracy in detecting and determining the 
significance of coronary stenosis but only a moderate reli-
ability in classifying coronary plaques, as the differen-
tiation of the mixed plaque from the calcified and non-
calcified plaques remains a major challenge.

The main focus in applying neuronal networks to X-ray 
coronary angiography (CAG) is automated stenosis detec-
tion and characterization. In CT angiography, there are 
several commercially available systems, but their algo-
rithms are not known in detail. In invasive coronary angi-
ography Stralen et al. compared three CNNs for stenosis 
detection in the right coronary artery in 9278 invasive 
angiography and identified EfficientDet D3 as the best per-
forming model [16]. Cong et al. compared different CNN 
architectures for classifying stenosis as < 25% or > 25% 
based on QCA-data from 230 invasive angiographies and 
identified Inception-v3 as best performing model [17].

The aim of this study was not to automatically detect 
single image parameters but to use the clinical outcome 
as ground truth and the main challenge was to adapt one 
of the many available CNNs to this new endpoint and the 
additional variance. DenseNet family was chosen because 
of the relatively large size of the input matrix, its usage 
in other studies in the field and the good performance in 
classification of non-medical images [18, 19].

Reliable risk assessment based on coronary plaque fea-
tures is challenging as quantitative and qualitative analysis 
softwares are often time-consuming with more than 40 dif-
ferent plaque characteristics to be considered. Even after 
years of development, semi-automatic plaque evaluations 
still show restricted inter- and intraobserver agreement, 
especially in patients with higher coronary disease burden 
when evaluating calcified and low-attenuation plaques [4, 
20–22]. Additionally, plaque analysis is not performed in 
a strictly standardized fashion among different research 
centers, since acquisition protocols, CT scans, software 
algorithms and levels of experience of CT readers may 
differ between medical care centers.

The good performance of the new ML algorithms 
emphasizes the complex nature of plaque analysis where 
different parameters carry only a fraction of the prognostic 
information. Assuming that relevant prognostic informa-
tion lies in the coexistence of different parameters and 
part of this is still unknown, we tried to use the unbiased 
learning approach of CCNs to optimize prognostication 
and in addition to the image data only provided basic addi-
tional information of coronary segmentation and lesion 
localization.

The results demonstrate the feasibility of the approach. 
Prognostic value of the CNN algorithm alone was compa-
rable with eoCAD and Morise score, but improved predic-
tion significantly in combination with the others. It seems 
the algorithm can detect relevant prognostic information not 
used by standard CCTA assessment, but obviously it cannot 
use all information available.

Without providing coronary segmentation and lesion 
localization the algorithm did not improve at all, thus still 
requiring preprocessing of the data. The integration of fully 
automated lesion detection would be the logical next step 
of improvement. To account for the length of follow-up, it 
would also be relevant to use a time-to-event model in fur-
ther studies.

Limitations

The results of the present study were not externally vali-
dated on a separate cohort. The majority of our patients 
were males from an urban area of mainly caucasian people. 
Throughout the image acquisition period of 160 months four 
different CT scan generations were used and improvement 
of image quality may have affected the results. Due to the 
limited number of primary endpoints, we could not set aside 
a testing sample to train the algorithm.

Conclusion

We developed a novel CNN model based on CCTA images 
to assess risk prediction for MACE and found an improved 
AUC when combining it with conventional CT and clinical 
parameters. Our results highlight the value of CNN tools in 
assessing CCTA images and hold great potential for further 
improvement in prognostication of patients with suspected 
CAD. In the future, we would like to identify which spe-
cific variables the CNN model had used to predict MACE. 
It would be also interesting to abdicate of plaque annotations 
or develop an automatic detection and characterization of 
coronary plaques and stenosis for further risk analysis tools.
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