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Abstract
To evaluate the prognostic relevance of aortic annulus (AA) and left ventricular outflow tract (LVOT) Fractal dimension 
(FD). FD is a mathematical concept that describes geometric complexity of a structure and has been shown to predict adverse 
outcomes in several contexts. Computed tomography (CT) scans from the SOLVE-TAVI trial, which, in a 2 × 2 factorial 
design, randomized 447 patients to TAVI with the balloon-expandable Edwards Sapien 3 or the self-expanding Medtronic 
Evolut R, and conscious sedation or general anesthesia, were analyzed semi-automatically with a custom-built software to 
determine border of AA and LVOT. FD was measured by box counting using grid calibers between 0.8 and 6.75 mm and 
was compared between patients with none/trivial and mild/moderate paravalvular regurgitation (PVR). Overall, 122 patients 
had CT scans sufficient for semi-automatic PVR in 30-day echocardiography. PVR was none in 65(53.3%) patients, trace in 
9(7.4%), mild in 46(37.7%), moderate in 2(1.6%) and severe in 0 patients. FD determined in diastolic images was signifi-
cantly higher in patients with mild/moderate PVR (1.0558 ± 0.0289 vs. 1.0401 ± 0.0284, p = 0.017). Annulus eccentricity was 
the only conventional measure of AA and LVOT geometry significantly correlated to FD (R = 0.337, p < 0.01). Area under 
the curve (AUC) of diastolic annular FD for prediction of mild/moderate PVR in ROC analysis was 0.661 (0.542–0.779, 
p = 0.014). FD shows promise in prediction of PVR after TAVI. Further evaluation using larger patient numbers and refined 
algorithms to better understand its predictive performance is warranted.
Trial Registration: www. clini caltr ials. gov, identifier: NCT02737150, date of registration: 13.04.2016.
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Introduction

Paravalvular regurgitation (PVR) remains an important 
drawback of transcatheter aortic valve implantation (TAVI) 
with negative prognostic implications for the patient [1–3]. 
Apart from procedural causes, its incidence depends on 
sealing zone anatomy, quantified for example by measures 
of calcium protrusion into the lumen [4], semiquantita-
tively graded calcium bulks [5] or landing zone eccentric-
ity or nontubularity [6, 7]. However, these predictors could 
not be substantiated in all studies, and an objective quan-
tification of ‘disadvantageous anatomy’ has not yet been 
developed. It is conceivable that the use of measurements 
derived from Euclidean geometry such as eccentricity or 
simple asymmetry underestimates the complexity of the 
surface of aortic valve and perivalvular structures, which 
result from intricate growth and degeneration processes. 
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Fractal geometry might be useful to describe and analyze 
these complex structures.

Generally, a fractal is a complex set or shape which 
can be generated by recursively repeating an algorithm 
[8] and thereby ‘growing’ a structure which is self-similar, 
i.e., showing details at a certain scale which are similar 
to those observed at larger or smaller scales [9]. Many 
natural structures appear to be fractal, such as coastlines, 
clouds or plant structures [10], folds of brain or bowel [9], 
branching patterns of coronary vessels or the endocardial 
boundaries of left ventricular myocardium (Fig. 1) [11].

Fractal dimension (FD) can be thought of as a sum 
measure of complexity of a structure too rough or irregu-
lar to be entirely defined by Euclidean geometry [12]. FD 
for a line which is not straight, but space-filling will be 
between 1 (the dimension of a straight line) and 2 (the 
dimension of a plane), and will tend to 2 with increasing 
complexity and space-filling capacity of the line. FD can 
be determined objectively and has been shown to differ in 
health and disease in several cardiac conditions: The FD 
for left ventricular trabeculae in 2D cardiac magnetic reso-
nance images differed in healthy persons and patients with 
left ventricular non-compaction cardiomyopathy [13] and 
was prognostic in hypertrophic cardiomyopathy [14], and 
fractal indices of heart rate variability have demonstrated 
prognostic capability for sudden cardiac death [15, 16].

We hypothesized that FD of the annular or left ven-
tricular outflow tract (LVOT) endocardial border as a 
measure of complexity and ‘roughness’ of the anatomy 
could predict PVL incidence after TAVI. We evaluated this 
hypothesis using data from the randomized CompariSon 
of secOnd-generation seLf-expanding Versus balloon-
expandable valves and gEneral versus local anesthesia in 
Transcatheter Aortic Valve Implantation (SOLVE-TAVI) 
trial [17]. To our knowledge, this is the first application of 
this measure in the context of TAVI.

Methods

The SOLVE‑TAVI trial

The SOLVE-TAVI trial (ClinicalTrials.gov identifier: 
NCT02737150) was a 2 × 2 factorial randomized trial com-
paring the balloon-expandable Edwards Sapien 3 (BEV) 
to the self-expanding Medtronic Evolut R (SEV) and gen-
eral anesthesia to conscious sedation in a high-risk cohort 
with symptomatic severe aortic stenosis. Details of the trial 
design and the results of the primary outcome have been 
published elsewhere [17, 18]. The ethics committees of all 
participating centers and national regulatory authorities 
approved the trial and the participants gave written informed 
consent.

Assessment of outcomes

PVR was assessed by echocardiography at 30 days and 
graded as none/trace (reported as a common category), mild, 
moderate, or severe, according to VARC-2 [19] by local 
center and a blinded core lab at the Heart Center Leipzig 
at the University of Leipzig. We also assessed a compos-
ite endpoint comprising all-cause death, stroke, moderate 
or severe PVR, annular rupture and permanent pacemaker 
implantation (PPI) at 30 days. The components were defined 
according to VARC-2 criteria [19].

Manual analysis of multidetector row computed 
tomography images

Multidetector computed tomography (MDCT) was per-
formed as per site-specific protocol and analyzed at the 
study core lab at the Heart Center Leipzig using dedicated 
software (3mensio, Pie Medical Imaging, Maastricht, The 
Netherlands).

As described previously [20], the annular plane was 
defined by the 3 basal hinge points of the aortic cusps in 
the LVOT, and the LVOT plane was determined to be 5 mm 
below the annular plane. Eccentricity was calculated as 
100*(maximum diameter − minimum diameter)/maximum 
diameter. LVOT non-tubularity was calculated as (annulus 
area − LVOT area)/annulus area. LVOT and annular area and 
circumference as well as minimal and maximal diameters 
were determined by an observer blinded for outcome and 
automatically determined measurements.

Semiautomatic analysis of MDCT images

A patient was deemed suitable for semiautomatic analysis 
of the images with the current segmentation algorithm if 

Fig. 1  Fractal dimension. Row a dimension. Row b geometrical 
shapes with integer Euclidean dimensions. c Complex shape of the 
left ventricular endocardial border with a FD of approximately 1.4, 
i.e., between one-dimensional line and two-dimensional square (Mag-
netic resonance image reprinted by permission from Springer Nature 
[11])



2471The International Journal of Cardiovascular Imaging (2022) 38:2469–2478 

1 3

MDCT if luminal attenuation was above 300 Hounsfield 
units. LVOT and annulus images for each available cardiac 
phase were then exported from 3mensio in Tagged Image 
File (TIF) format (Fig. 2A) and loaded into a program cus-
tom-built using C# code in VisualStudio 2017 (Microsoft 
Corporation, Redmond, WA, USA), where the border of the 
aortic annulus was determined semi-automatically by detec-
tion of the change in pixel brightness between lumen and 
annular tissue, or calcium, respectively (Fig. 2B). In case of 
incorrect detection or fragmentation of the detected edge, 
the detected line was corrected manually. The source code 
of the program for determination of the borderline and its FD 
has been made publicly available at the Harvard Dataverse 
repository and can be accessed at https:// doi. org/ 10. 7910/ 
DVN/ Q5HXK5.

Determination of FD

FD of the annulus and LVOT border line was determined by 
automated box counting [11] in the same custom-built pro-
gram using a fixed grid with grid calibers between 0.8 and 
6.75 mm, and determining the number of boxes containing 
a part of the border line for each grid caliber (Fig. 2C–E).

The conversion factor between pixels and mm for each 
image was determined by using the diameter of the ‘com-
pass’ ring added to the image in 3mensio.

The natural logarithm of box caliber was plotted against 
the natural logarithm of the number of boxes of the respec-
tive caliber containing a part of the border line. The box 
counting dimension was determined as the absolute value 
of the slope of the fitting line constructed using the least 
ordinary squares method (Fig. 2F).

Statistical analyses

Characteristics of both groups are reported as absolute and 
relative frequencies for categorical variables and median 
and interquartile range (IQR) for ordinal variables and con-
tinuous variables which were not normally distributed. The 
denominator of proportions may differ because of missing 
values which were not imputed. Categorical variables were 
compared by Chi-Square test and Fisher’s exact test where 
appropriate. Distribution normality was assessed by Shap-
iro–Wilk test. Variables which were not normally distributed 
were compared by Mann–Whitney-U-test. Pearson’s corre-
lation coefficient was calculated for FD and variables taken 
from the literature as influencing PVR incidence. Receiver-
operator-characteristic (ROC) curves were calculated, and 
the AUC and its 95% confidence interval was determined. 
Cut-off for optimal sensitivity and specificity was deter-
mined by Youden’s method.

To assure annulus and LVOT segmentation was accurate, 
Cronbach’s alpha and intraclass correlation coefficient for 

absolute agreement were determined between the area of the 
automatically segmented structure and the respective manu-
ally segmented annuli and LVOT.

We defined significance level at 5% for two-tailed testing. 
Data analysis was performed using SPSS version 22 (IBM, 
Armonk, New York, USA).

Results

Baseline and procedural characteristics

The SOLVE-TAVI trial randomized a total of 447 patients 
between April 2016 and April 2018 (Fig. 3). Of these, 438 
patients underwent TAVI. MDCT was available in 418 of 
these patients. In 144 patients, MDCT showed a luminal 
attenuation of more than 300 Hounsfield units and hence 
was sufficient for segmentation of the aortic annulus with 
the current algorithm. Of those 144 patients, 69 (47.9%) 
received a balloon-expandable valve prosthesis (BEV, 
Sapien 3, Edwards Lifesciences, Irvine, CA, USA) and 75 
patients (52.1%) received a self-expanding valve prosthesis 
(SEV, Evolut R, Medtronic, Minneapolis, MN, USA).

Systolic MDCT images were available in 44 patients 
(30.5%), diastolic MDCT images in 48 patients (33.3%) and 
images in both phases in 52 patients (36.1%).

Data on PVR after 30 days were available in 122 patients 
(84.7%). Of those, 65 (53.3%) had no PVR, 9 (7.4%) had 
trace PVR, 46 (37.7%) had mild PVR and 2 patients (1.6%) 
had moderate PVR. There was no case of severe PVR.

Baseline characteristics are shown in Table 1. There were 
no significant differences in clinical baseline characteristics 
between patients with no/mild PVR and patients with mod-
erate/severe PVR.

MDCT analysis

Annular FD determined in diastolic images was sig-
nificantly higher in patients with mild or greater PVR 
than in patients with none or trace PVR [no/trace PVR 
1.0327 (1.0208–1.0575) vs. mild/moderate PVR 1.0522 
(1.0320–1.0731), p = 0.014, Fig.  4, Panel A]. There 
was no significant difference in annular FD deter-
mined in systolic images [1.0399 (1.0210–1.0604) 
vs. 1.0413 (1.0231–1.0636), p = 0.755, Fig.  4B] or in 
LVOT FD either in diastole [1.0368 (1.0204–1.0543) vs. 
1.0487(1.0266–1.0634), p = 0.161, Fig. 4C] or in systole 
[1.0410 (1.0235–1.0609) vs. 1.0397 (1.0283–1.0571), 
p = 0.733, Fig. 4D].

When examining BEV and SEV separately, there was 
significant difference after BEV implantation in diastolic 
annular FD [no/trace PVR 1.0313 (1.0238–1.0537) vs. 
mild/moderate PVR 1.0511 (1.0381–1.0862), p = 0.026], 

https://doi.org/10.7910/DVN/Q5HXK5
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2472 The International Journal of Cardiovascular Imaging (2022) 38:2469–2478

1 3

Fig. 2  Analysis of MDCT images and determination of FD by box 
counting. a MDCT image of aortic annulus as exported from 3men-
sio. White arrow denotes ‘compass’ ring with true diameter calibra-
tion from 3mensio. b Segmented image, border line of the aortic 
annulus is shown in yellow. c–e Examples of FD determination by 
box counting. The border line is overlaid by grids of several differ-
ent calibers (white lines). The number of boxes containing segments 

of the border line (light blue boxes) are counted for each grid. f The 
natural logarithm of the number of boxes is plotted against the natural 
logarithm of box width. Light blue dots are the datapoints generated 
from panels c–e, dark blue dots are the datapoints generated by box 
counting using different box calibers than displayed in panels c-e. FD 
of the border line is the absolute value of the slope of the fitting line 
(red frame)
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but no significant difference between the PVR groups 
was found in LVOT or systolic dimensions [annulus: 
1.0381 (1.0176–1.0558) vs. 1.0413 (1.0209–1.0628), 
p = 0.509; LVOT systolic 1.0409 (1.0216–1.0609) vs. 
1.0504 (1.0365–1.0596), p = 0.387; LVOT diastolic 1.0346 
(1.0185–1.0525) vs. 1.0492 (1.0378–1.0542), p = 0.105, 
no/trace PVR vs. mild/moderate PVR, respectively] or 
in patients after SEV implantation [annulus/diastolic 
1.0334 (1.0168–1.0589) vs. 1.0554 (1.0235–1.0731), 
p = 0.163; LVOT/diastolic 1.0368 (1.0271–1.0673) vs. 
1.0412 (1.0266–1.0672), p = 0.862; annulus/systolic 
1.0434 (1.0275–1.0691) vs. 1.0422 (1.0249–1.0767), 
p = 0.751; LVOT/systolic 1.0429 (1.0268–1.0631) vs. 
1.0356 (1.0279–1.0487), p = 0.301; no/trace PVR vs. mild/
moderate PVR, respectively].

The AUC of diastolic annular FD in ROC analysis was 
0.661 (IQR 0.542–0.779, p = 0.01, Fig. 5). Optimal sensi-
tivity (60.6%) and specificity (70.0%) was found at a FD 
level of 1.0502.

Concerning the composite endpoint of all-cause death, 
stroke, moderate or severe PVR, PPI and annulus rupture, 
we found no significant differences in FD between groups 
[1.0368 (1.0202–1.0569) vs. 1.0510 (1.0286–1.0611), 
p = 0.1, Supplementary Table S1].

There was strong correlation between the automatically 
determined area of the annulus or LVOT and the respective 
manually determined area for annulus in diastole [Cronbach’s 
Alpha 0.977, intraclass correlation coefficient for absolute 
agreement (ICAA) 0.969, 95% confidence interval (CI) 
0.923–0.985, p < 0.01], annulus in systole (Cronbach’s alpha 
0.964, ICAA 0.947, 95% CI 0.831–0.976, p < 0.01) as well 
as for LVOT area in diastole (Cronbach’s alpha 0.984, ICAA 
0.983, 95% CI 0.972–0.989, p < 0.01) and systole (Cronbach’s 
alpha 0.986, ICAA 0.980, 95% CI 0.934–0.991, p < 0.01).

When examining the correlation of FD to other measures 
of annular and LVOT geometry, we found only weak posi-
tive correlations of FD to annulus eccentricity (R = 0.337, 
p = 0.001) and the semiquantitative measure of LVOT calcifi-
cation (R = 0.207, p = 0.045). We did not find a significant cor-
relation to other anatomical parameters identified as predictors 
of PVL after TAVI by the existing literature (Table S2).

Discussion

We determined FD by semi-automated analysis of a subset 
of MDCT images from the SOLVE-TAVI trial and found 
that FD of the aortic annulus in diastole was significantly 

Fig. 3  Patient flow chart
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higher in patients who developed mild or greater PVR after 
TAVI. We did find only weak correlations to conventional 
anatomical predictors of mild or more PVR after TAVI. To 

the best of our knowledge, this is the first proof of concept 
concerning the application of FD in the prediction of out-
comes after TAVI.

Table 1  Baseline clinical 
and echocardiographic 
characteristics

IQR interquartile range, ICD implantable cardioverter-defibrillator, CRT  cardiac resynchronization therapy 
device, STS-PROM Society of Thoracic Surgeons—Predicted Risk of Mortality, PCI percutaneous coro-
nary intervention, CABG coronary artery bypass graft, COPD chronic obstructive pulmonary disease

No/trace PVR Mild/moderate PVR p = 

Number of patients 74 48
Implanted prosthesis 0.097
 BEV 40 (54.1%) 18 (37.5%)
 SEV 34 (46.0%) 30 (62.5%)

Age (years); median (IQR) 82.0 (78.0–85.0) 81.5 (79.0–86.0) 0.618
Male sex; n/total (%) 33 (44.5.2%) 22 (45.8%) 1.0
Risk scores
 STS-PROM (%); median (IQR) 4.50 (3.40–8.91) 4.70 (3.03–7.53) 0.510
 Log. EuroSCORE I (%); median (IQR) 12.60 (8.11–18.80) 13.00 (8.40–24.50) 0.583
 EuroSCORE II (%); median (IQR) 3.70 (2.45–6.10) 4.45 (2.53–6.15) 0.485
 Body mass index (kg/m2); mean ± SD 26.76 ± 4.86 26.93 ± 3.55 0.781

Arterial hypertension; n/total (%) 68 (93.2%) 42 (87.5%) 0.341
Diabetes mellitus; n/total (%) 26 (36.1%) 18 (37.5%) 1.0
Hyperlipoproteinemia; n/total (%) 42 (58.3%) 27 (56.3%) 0.852
Any coronary artery disease; n/total (%) 36 (54.6%) 21 (43.8%) 0.242
 1-vessel disease; n/total (%) 16 (24.2%) 5 (10.4%)
 2-vessel disease; n/total (%) 10 (15.2%) 6 (37.5%)
 3-vessel disease; n/total (%) 10 (15.2%) 10 (20.8%)
 Left main disease; n/total (%) 0 (0%) 0 (0%)

Prior PCI; n/total (%) 23 (31.5%) 13 (27.1%) 0.686
Prior CABG; n/total (%) 6 (8.2%) 2 (4.2%) 0.476
Prior myocardial infarction; n/total (%) 8 (11.0%) 4 (8.3%) 0.762
Peripheral arterial disease; n/total (%) 9 (12.3%) 4 (8.3%) 0.562
Prior stroke; n/total (%) 8 (11.1%) 7 (14.6%) 0.585
Any renal insufficiency; n/total (%) 54 (74.0%) 39 (81.3%) 0.501
Stages II and IIIa; n/total (%) 36 (49.3%) 23 (48.0%)
Stages IIIb, IV and V; n/total (%) 18 (24.7%) 16 (33.3%)
Atrial fibrillation; n/total (%) 33 (45.2%) 22 (45.8%) 1.0
Prior pacemaker/ICD/CRT; n/total(%) 4 (5.5%) 3 (6.4%) 1.0
COPD; n/total (%) 16 (21.9%) 8 (16.7%) 0.642
Pulmonary hypertension; n/total (%) 37 (51.4%) 28 (59.6%) 0.452
New York Heart Association Class
 I; n/total (%) 3 (4.1%) 6 (13.0%)
 II; n/total (%) 18 (24.7%) 9 (19.6%)
 III; n/total (%) 48 (65.8%) 28 (60.9%)
 IV; n/total (%) 4 (5.5%) 3 (6.5%)

Baseline echocardiographic findings
 Aortic valve area  (cm2); median (IQR) 0.70 (0.60–0.90) 0.60 (0.60–0.88) 0.355
 Mean aortic valve gradient (mmHg); median (IQR) 43.0 (34.0–49.0) 36.5 (31.3–45.0) 0.124

Left ventricular ejection fraction
 > 55%; n/total (%) 48 (66.7%) 26 (55.3%)
 45–55%; n/total (%) 19 (26.4%) 14 (29.8%)
 35–44%; n/total (%) 3 (4.2%) 2 (4.3%)
 < 35%; n/total (%) 2 (2.8%) 5 (10.6%)
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Rationale

There has been extensive research into anatomical causes 
of PVR after TAVI. Almost always, measures of asym-
metry or unevenness of LVOT or annulus such as LVOT 
or annular eccentricity [6], leaflet asymmetry, LVOT non-
tubularity [7], calcium asymmetry [21] or protrusion of 
calcium -rather than absolute calcium load- have been 
implicated. As the results were mixed and in part contra-
dictory, a more comprehensive measure such as FD may 
be useful.

Fractal dimension is no ‘size’ of the annulus but rather an 
unitless number describing its geometrical complexity [11]. 
In our analysis, there has been a weak correlation between 
eccentricity as well as LVOT calcium, and FD, yet explain-
ing only part of FD extent. Large foci of calcium would 
most likely cause indentations of the border line, thereby 
increasing FD.

Some anatomies of the LVOT have also been found to 
increase complications such as stroke [22], PVR [6], PPI 

[23] or annular rupture [24], hence assessment of a compos-
ite clinical endpoint is also reasonable.

Moderate or severe PVR is associated with increased risk 
of death and heart failure rehospitalizations. Although the 
incidence of moderate or even severe PVR has declined con-
siderably with the use of second-generation TAVI devices 
[25], there is evidence that mild PVR, which is still present 
in a sizable portion of patients, might negatively affect long-
term survival as well [1–3] and should be avoided in a low-
risk population, in which surgical aortic valve replacement 
is a viable alternative.

Clinical implications

We found that annular FD was significantly greater in 
patients with mild or more PVR than in those with none/
trace PVR and that there was a tendency towards higher 
LVOT FD in patients experiencing our combined endpoint 
of adverse outcomes, however this difference was not sta-
tistically significant. Statistical significance was probably 

Fig. 4  FD in patients with and without mild/ moderate PVR. a FD of annulus in diastole b FD of LVOT in diastole. c FD of annulus in systole. d 
FD of LVOT in systole
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missed because of the relatively low number of included 
patients.

Although in this analysis, we could not define a thresh-
old above which PVR is to be expected, and FD values of 
patients with and without mild or more FD are relatively 
close together, determination of annular FD on individual 
patient level is useful to gauge PVR risk. In patients with 
higher FDs, the operator should then specifically aim for 
optimization of procedural parameters known to be associ-
ated with PVR to reduce its probability.

Comparison of predictive performance between FD and 
known predictors of PVR based on our data is difficult due 
to relatively low numbers of patients and events and the 
absence of large trials evaluating PVR predictors in sec-
ond generation valves. However, the AUC of 0.66 for PVR 
prediction is roughly of the same magnitude as the AUC of 
previously published models, which were mostly between 
0.635 and 0.72 [7, 21, 26].

Notably, only diastolic but not systolic FD were signifi-
cantly different between groups. Annulus and LVOT are 
larger and less elliptical in systole to allow a larger orifice 
area for blood flow [27]. Probably, the anatomical differ-
ences precipitating diastolic paravalvular flow are more 

subtle in systole, especially in the context of the low abso-
lute differences in FD between patients with and without 
PVL. However, conventional anatomic predictors of PVR 
have mostly been found in MDCT during systole [6]. This 
might be because systolic MDCT is more commonly used 
for TAVI sizing.

We cannot exclude a small difference in systolic FD 
becoming more apparent if larger numbers of patients are 
analyzed. Nonetheless, for PVR prediction, evaluation of 
diastolic FD seems more useful for future analyses.

In the current analysis, we found a significant difference 
in FD especially in patients treated with BEV. Although 
adaptation to a more irregular surface might be worse in 
BEV than in SEV, the sealing skirt present in second-gen-
eration BEV should ameliorate this difference. However, 
as patient numbers are low, especially when our small pop-
ulation is further split by differentiation of prosthesis type, 
it is likely that this difference in predictive performance is 
a chance finding. Further analyses in larger patient groups 
are necessary to determine whether there is a difference 
in predictive performance of FD for different prosthesis 
designs.

Fig. 5  Predictive power of FD. 
ROC analysis of prediction of 
mild or more PVR after BEV 
treatment by FD of annulus. CI 
confidence interval, AUC  area 
under the curve
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Further steps

As automated segmentation of images for FD determina-
tion has been shown to be more reliable [28], we chose to 
use a custom-build computer program for semiautomated 
detection of the border line and automated box count-
ing. However, to clinically use the algorithm beyond this 
proof-of-concept study, the segmentation algorithm must 
be improved to work with lower luminal contrast filling, 
which should make automated FD analysis feasible in 
almost all CT images.

Applicability of the concept to newer-generation valves 
and other valve designs remains to be elicited. However, as 
a “difficult anatomy” poses some kind challenge to most 
valve designs, and FD is a quantitative means of express-
ing difficulty, it is conceivable that the results are similar.

Most importantly, reevaluation and validation of FD in 
a large cohort is necessary.

Limitations

This study has several limitations. First, patient numbers 
in each group are rather low, mainly because of the strict 
inclusion criteria for MDCT images owed to the limited 
capabilities of the segmentation algorithm and the lacking 
standardization of the images for cardiac phase, drastically 
reducing statistical power. Second, valid regression analy-
sis was not possible due to the low event number, making 
it necessary to use the statistical surrogate of comparing 
FD in different groups rather than its inclusion in a mul-
tivariate analysis of the causes of adverse events. Third, 
the study cohort comprised medium-to-high-risk patients, 
and it is possible that effects differ in a low-risk cohort.

Conclusion

In conclusion, this proof-of-concept study shows evidence 
that FD might be a useful anatomical predictor of adverse 
events after TAVI. Further investigation of this approach 
using larger numbers of patients and optimized analysis 
algorithms to gain a better understanding of the determi-
nants of FD and its predictive performance concerning 
different clinical endpoints is warranted.
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