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Abstract
Perivascular adipose tissue is known to be metabolically active. Volume and density of periaortic adipose tissue are associ-
ated with aortic calcification as well as aortic diameter indicating a possible influence of periaortic adipose tissue on the 
development of aortic calcification. Due to better spatial resolution and signal-to-noise ratio, new CT technologies such as 
photon-counting computed tomography may allow the detection of texture alterations of periaortic adipose tissue depending 
on the existence of local aortic calcification possibly outlining a biomarker for the development of arteriosclerosis. In this 
retrospective, single-center, IRB-approved study, periaortic adipose tissue was segmented semiautomatically and radiomics 
features were extracted using pyradiomics. Statistical analysis was performed in R statistics calculating mean and standard 
deviation with Pearson correlation coefficient for feature correlation. For feature selection Random Forest classification was 
performed. A two-tailed unpaired t test was applied to the final feature set. Results were visualized as boxplots and heat-
maps. A total of 30 patients (66.6% female, median age 57 years) were enrolled in this study. Patients were divided into two 
subgroups depending on the presence of local aortic calcification. By Random Forest feature selection a set of seven higher-
order features could be defined to discriminate periaortic adipose tissue texture between these two groups. The t test showed 
a statistic significant discrimination for all features (p < 0.05). Texture changes of periaortic adipose tissue associated with 
the existence of local aortic calcification may lay the foundation for finding a biomarker for development of arteriosclerosis.
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Abbreviations
AAT   Abdominal periaortic adipose tissue
CT  Computed tomography
GLCM  Grey level co-occurence matrix
GLDM  Grey level dependence matrix
GLRLM  Grey level run length matrix
GLSZM  Grey level size zone matrix
NGTDM  Neighboring grey tone difference matrix
PCCT   Photon-counting computed tomography

RF  Random forest
ROI  Region of interest

Introduction

Cardiovascular diseases remain the leading cause of mortal-
ity and morbidity in developed countries [1] whereas arterio-
sclerosis counts as a leading cause of vascular diseases [2] 
and a vital cardiovascular disease risk marker [3, 4]. During 
the last years, incidence and mortality declined through the 
change in health behaviors and treatment for specific risk 
factors (i.e. hypercholesterolemia and hypertonia). Vascular 
mortality rates decreased from 700 per 100.000 per year in 
1950 to < 100 per 100.000 per year in 2010 in middle-aged 
men in the United Kingdom [2]. Nevertheless, increasing 
efforts are needed to guarantee a further decline in incidence 
and mortality.

Specific adipose tissue depots have an associa-
tion with cardiovascular diseases including subclinical 
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atherosclerosis [5–9]. Especially perivascular adipose tis-
sue, defined as fat deposits immediately surrounding blood 
vessels, is known to be metabolically active [7, 10–14]. 
Several studies have demonstrated a relationship between 
the volume and density of epicardial adipose tissue and the 
burden of coronary artery sclerosis [15–17], suggesting a 
local inflammatory effect on the vessel wall [9, 18, 19]. 
Additionally, the volume of the periaortic adipose tissue 
surrounding the descending thoracic aorta is associated 
with abdominal aortic calcification and coronary artery 
calcification [20]. The volume of periaortic adipose tissue 
surrounding the abdominal aorta was even associated with 
the aortic diameter outlining a potential effect on aortic 
remodeling and the development of an aortic abdominal 
aneurysm [21].

In the last few years, the main focus lay on the volumet-
ric analysis of periaortic adipose tissue. However, initial 
results concerning the peri-coronary adipose tissue showed 
significant differences in the texture parameters in patients 
with and without plaques in the right coronary artery [22]. 
Radiomics feature analysis is an emerging technique that can 
extract pixel-based information from images to create data-
sets of hundreds of parameters [23–25]. Those features can 
be subdivided into the group of first-order statistics, which 
only describe the distribution of voxel without considering 
the spatial relationship, and the group of higher-order statis-
tics summarizing texture features, shape-based parameters, 
and transform-based parameters. Texture features define the 
spatial distribution of voxels and hence visualize the hetero-
geneity of the area of interest [26]. This allows the extraction 
of image characteristics not visible to the human eye [25, 
27] using dedicated software packages [28]. In recent years, 
Radiomics played a crucial role in the field of oncologic 
imaging and tumor analysis in terms of tumor classification 
[29–31] and outcome prediction [32, 33]. First analyses even 
support the strength of texture analysis in perivascular fat for 
risk stratification of cardiovascular patients [34]. However, a 
relevant limitation of radiomics evaluation in clinical routine 
is the need for a sufficient signal-to-noise ratio and optimal 
spatial resolution [35–37]. Through the implementation of 
photon-counting computed tomography (PCCT) these limi-
tations could be overcome. The PCCT converts in contrast to 
conventional CT X-ray photons directly into an electric pulse 
without the intermediate step of converting them to visible 
light, so each photon contributes to the final visible image. 
This results in a better spatial resolution, a more sufficient 
contrast to noise ratio, and lower beam-hardening artifacts 
[38, 39].

The aim of the study is hence to analyze whether texture 
changes of periaortic adipose tissue depending on calcifica-
tion of abdominal aorta can be revealed by texture analysis 
using PCCT, outlining a potential early biomarker for the 
development of arteriosclerosis.

Materials and methods

Study design

For this retrospective single-center study patients with clini-
cally indicated thoracic and abdominal CT were enrolled 
between December 2021 and March 2022. In total 30 patients 
(10 males, 20 females, mean age 57 years, range: 23–84 years) 
were selected. All patients were examined using a clinically 
approved first-generation whole-body dual-source Photon-
counting CT system. Patients were excluded in case of insuf-
ficient image quality (n = 3) or in case of metal artifacts (n = 2). 
Additionally, abdominal scans were screened for computer 
tomographic signs of mesenteric panniculitis or chronic pan-
creatitis by a radiologist with 9 years of experience (I.A.) and 
excluded in case of visible periaortic adipose tissue alterations. 
The electronic health record was reviewed for all patients to 
exclude diseases possibly affecting retroperitoneal adipose 
tissue or the vessels themselves. All investigations were con-
ducted according to the Declaration of Helsinki. The retrospec-
tive study had an institutional review board approval. Table 1 
shows an overview of the patient’s characteristics, as well as 
scan characteristics.

Abdominal CT acquisition protocol

All 30 patients were examined using the first whole-body dual-
source Photon-counting computer tomography (NAEOTOM 
Alpha; Siemens Healthcare GmbH, Forchheim, Germany). 
The contrast-enhanced scan was performed using weight-
adapted 70–90 ml of iodine contrast agent (Imeron 400, 
Bracco Imaging Deutschland GmbH, Konstanz, Germany) 
followed by a 20 ml saline chaser (NaCl 0.9%) with a weight-
based flow rate via antecubital venous access. Bolus tracking 
was used to trigger the start of the arterial contrast phase of 
the thoracic organs by placing a region of interest (ROI) in 
the descending thoracic aorta (threshold 140 HU at 90 kV). 
An additional scan of the abdominal organs was done 75 s 
post-threshold.

Abdominal CT reconstruction

The axial slices with 1.5 mm slice thickness and 1.5 mm spac-
ing of the contrast-enhanced portal venous abdominal CT scan 
were exported from PACS and anonymized. Window-level and 
-width were determined using the standard window-level set-
ting from the clinical routine.

Image evaluation parameters and segmentation

For each patient, abdominal aortic calcification was diag-
nosed based on computed tomography by a clinically 
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experienced radiologist on specially reconstructed virtual 
non-contrast enhanced images (I.A.), resulting in a classifi-
cation of patients into two groups with and without abdomi-
nal aortic calcification. Segmentations were performed in 
the open-source software 3DSlicer by a medical student 
(H.T. with 2 years of experience in segmentation) (Ver-
sion 4.11) [40]. Abdominal periaortic adipose tissue (AAT) 
was defined as any voxel between −195 and −45 HU as 
it was done in previous studies [41]. For segmentation a 
ring of 5 mm was drawn around the abdominal aorta includ-
ing the defined voxels (Fig. 1). The region of measurement 
ranged from below the junction of the renal arteries with the 
abdominal aorta to the aortoiliac bifurcation. For volumetric 
evaluation of calcification, the calcifications of the infrarenal 
aorta were segmented.

Radiomics feature extraction and statistical analysis

Radiomics features were extracted using pyradiomics, an 
imaging biomarker standardization initiative definition-
based Python package [28]. First-order features and second-
order features gray level co-occurence matrix (glcm), gray 
level size zone matrix (glszm), gray level run length matrix 
(glrlm), neighbouring gray tone difference matrix (ngtdm), 
and gray level dependence matrix (gldm) as defined in the 
pyradiomics documentation were extracted.

The statistical analysis of the calculated features was 
performed in R [42] and RStudio (version 1.3.1093, Bos-
ton, MA, USA) [43]. Mean and standard deviation values 
of quantitative parameters were calculated.

Radiomics feature extraction produces a vast amount of 
features that show high levels of redundancy. The random 
forest (RF) algorithm-based R package Boruta [44] was 
used to identify the most important features and plot the 
permutation-based variable importance.

Using the python package Complex Heatmap [45] all 
patients and features were plotted in a hierarchically clus-
tered heatmap by euclidean distance. The most important 
features determined by the Boruta RF-feature selection were 
analyzed for significant differences using an unpaired two-
tailed t-test. Additionally, the selected final features were 
visualized in boxplot diagrams.

Table 1  Patient collective 
overview.

Mean and (SD) given for continuous variables

Overall No calcification Calcification p value

Patient parameters
 n 30 15 15 N/A
 Age 57 (12.8) 50 (11.09) 63 (10.96) 0.002
 Sex 10 male (33.3%) 4 male (26.7%) 6 male (40.0%) 0.699
 Aortic abdominal calcifications 15/30 0/15 15/15 N/A

Calcification volume in  mm3 0 1181.74 (1333.33) N/A
 Nicotine abuse 4/29 1/14 3/15 0.642
 Hypertonia 8/29 0/14 8/15 0.005
 Hyperlipidemia 5/29 0/14 5/15 0.060
 Diabetes mellitus 5/29 0/14 5/15 0.060

Scanner parameters
 Tube voltage 120 kV 120 kV 120 kV N/A
 Slice thickness 1.5 mm 1.5 mm 1.5 mm N/A
 Kernel Br40 Br40 Br40 N/A
 Collimation 0.4 mm 0.4 mm 0.4 mm N/A
 Dose modulation CARE Dose4D CARE Dose4D CARE Dose4D N/A
 Detector PCD PCD PCD N/A

Fig. 1  Segmentation of the peri-aortic abdominal adipose tissue was 
performed on axial view with a slice thickness of 1.5 mm. An exam-
ple case of a 65-year old female patient is shown
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Results

Cluster analysis

Unsupervised hierarchical clustering based on the euclid-
ean distance between radiomics features extracted from the 
periaortic adipose tissue of each patient was performed after 
standardization. The heatmap was split into radiomics signa-
tures of 15 patients with and 15 patients without calcification 
of the abdominal aorta. These results were visualized in a 
heatmap (Fig. 2).

Feature selection

Important features for the differentiation of patients were 
selected based on peri-aortic abdominal adipose tissue 
texture using Boruta/Random Forest-based feature selec-
tion. The selected features from patients with calcification 
and without calcification in the abdominal aorta showed 
seven second-order features as the most important for 
differentiation between both groups: “glcm_Contrast”, 
“glcm_DifferenceVariance”, “glcm_DifferenceAverage”, 
“glcm_DifferenceEntropy”, “glcm_JointEntropy”, “glszm_
GrayLevelVariance”, and “glcm_MaximumProbability” 
(Fig. 3). GLCM and GLSZM features describe the distribu-
tion of intensity values. The exact ranking can be found in 
supplemental material S2. Furthermore, distortion of fea-
tures by beam-hardening artifacts of aortic calcifications can 
be excluded in radiomics texture maps.

Statistical analysis

The final selection of features was tested for statistical signif-
icance between both groups using the two tailed—unpaired 
t-test. All of these features showed a significant difference 
(p < 0.05) in mean values: “glcm_Contrast” (p = 0.007), 
“glcm_DifferenceVariance” (p = 0.009), “glcm_Differ-
enceAverage” (p = 0.010), “glcm_DifferenceEntropy” 
(p = 0.015), “glcm_JointEntropy” (p = 0.014), “glszm_Gray-
LevelVariance” (p = 0.006), and “glcm_MaximumProb-
ability” (p = 0.031) (Table 2). The boxplot diagram allows 
visualization of the significantly different features (Fig. 4). 
Volumetric analysis of calcification showed a value of 
1181.74 (1333.33)  mm3 (mean [SD]).

Discussion

Our study demonstrates the association of texture features of 
periaortic adipose tissue with the presence of local abdomi-
nal aortic calcifications. Differentiation between patients 

with and without abdominal aortic calcifications was possi-
ble through seven different texture-related higher-order fea-
tures, revealing a prediction of the presence of calcifications 
using radiomics analysis of periaortic adipose tissue solely, 
which may suggest that periaortic adipose tissue can be used 
as a biomarker for atherosclerosis.

The importance of perivascular adipose tissue has already 
been shown in recent studies but needs to be investigated 
further, particularly on the imaging basis. Several studies 
have demonstrated a relationship between the volume and 
density of epicardial adipose tissue and the burden of coro-
nary artery sclerosis [15–17], suggesting a local inflamma-
tory effect on the vessel wall [9, 18, 19].

The preliminary results of our study are in line with previ-
ously published studies: Lehmann et al. were able to show 
that the volume of periaortic adipose tissue surrounding 
the descending thoracic aorta is associated with abdominal 
aortic and coronary artery calcification [20]. Furthermore, 
it was shown that the volume of periaortic adipose tissue 
surrounding the abdominal aorta was associated with the 
aortic diameter outlining a potential effect on aortic remod-
eling and the development of an aortic abdominal aneurysm 
[21]. Shields et al. were able to demonstrate an association 
between a higher density of periaortic adipose tissue and 
arteriosclerosis in women suffering from systemic lupus 
erythematosus, possibly revealing an adipose dysfunction 
as well as visualization of fibrotic changes. Additionally, 
they revealed a correlation between higher density and 
volume of periaortic adipose tissue [46]. In line with these 
results, Alvey et al. found more dense visceral adipose tis-
sue in association with coronary artery calcifications as well 
as arteriosclerosis, suggesting an excess collagen produc-
tion in response to chronic inflammatory reaction [47]. In 
contrast to this, different studies revealed an association of 
lower dense adipose tissue with cardiovascular disease and 
cardiometabolic risk [48, 49]. Until now, there is still disa-
greement in the literature on whether higher or lower dense 
adipose tissue shows an influence on aortic calcification. 
Radiomics texture analysis can potentially overcome this 
disadvantage by generating a deeper insight. Through texture 
analysis special texture features of periaortic adipose tissue 
could be determined depending on the presence of focal aor-
tic calcification, focusing not only on the measured density 
alone. This may allow a potential texture feature biomarker 
to be defined, which can possibly predict the development 
of aortic calcification in the future.

Through the implementation of PCCT the previous limi-
tations of radiomics texture analysis in cardiac CT can be 
overcome by achieving better spatial resolution and contrast-
to-noise ratio. The analysis of finer structures with PCCT 
may lay the foundation for determining such a potential 
imaging biomarker in the future, offering new possibilities 
of cardiovascular prevention. Additional analysis of the time 
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course of structural changes in periaortic adipose tissue tex-
ture could help to identify underlying mechanisms and their 
power as a predictor. Yet, this work is the first to investigate 
texture features of periaortic adipose tissue in association 
with aortic calcifications in a photon-counting CT dataset. 
This may boost the development of early diagnostic tools for 
aortic arteriosclerosis and the implementation of periaor-
tic adipose tissue texture as a biomarker for cardiovascular 

events. Especially in the context of machine learning mod-
elings, first results in cardiovascular diseases have shown 
very promising results and could, besides the classical diag-
nostic applications, lead to a more precise cardiovascular 
risk stratification [50].

Finally, a number of potential limitations need to be 
considered in the interpretation of this work. This study 
was designed as a retrospective analysis of a small number 
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Fig. 2  Unsupervised clustered heatmap for patients with or without abdominal aortic calcification
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of patients, due to the novel implementation of PCCT. 
Although this approach allows us to take advantage of the 
more accurate spatial resolution power of photon-counting 
CT which is new to clinical practice, further analysis would 
be necessary on a larger cohort to develop possible predic-
tive models from this correlation. Limitations concerning 
the radiomics methodology, especially reproducibility [24], 
need to be considered but have been addressed by a single-
scanner approach using a high-resolution detector. Further 

studies should also regard the limitation of not taking clini-
cal characteristics as well as atheromatosis into account. 
Additionally, further prospective studies with a larger popu-
lation should outline the benefit of periaortic adipose tissue 
as a biomarker for arteriosclerosis especially over time on a 
longitudinal study.

In conclusion, this study outlines the effect of texture 
changes of the periaortic adipose tissue on development 
of local aortic calcifications generating the hypothesis of a 
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possible structural change through inflammatory and fibrotic 
processes. The preliminary results of this study may pave the 
way for additional studies revealing an imaging biomarker 
for early prediction of arteriosclerosis.
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Table 2  Higher order radiomics 
features.

Mean and (SD) given for continuous variables

Calcification No calcification p value

original_glcm_MaximumProbability 0.16 (0.06) 0.21 (0.07) 0.031
original_glszm_GrayLevelVariance 3.17 (1.10) 2.02 (1.00) 0.006
original_glcm_JointEntropy 4.05 (0.33) 3.74 (0.32) 0.014
original_glcm_DifferenceAverage 0.76 (0.11) 0.67 (0.07) 0.010
original_glcm_DifferenceEntropy 1.50 (0.13) 1.40 (0.08) 0.015
original_glcm_DifferenceVariance 0.54 (0.10) 0.46 (0.05) 0.009
original_glcm_Contrast 1.14 (0.27) 0.92 (0.15) 0.007

Fig. 4  Distribution of “glcm_Contrast”, “glcm_DifferenceVari-
ance”, “glcm_DifferenceAverage”, “glcm_DifferenceEntropy”, 
“glcm_JointEntropy”, “glszm_GrayLevelVariance”, and “glcm_

MaximumProbability”,”glcm_DifferenceEntropy” features within the 
dataset visualized by a boxplot diagram
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