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Abstract
To investigate the performance of a deep learning-based algorithm for fully automated quantification of left ventricular (LV) 
volumes and function in cardiac MRI. We retrospectively analysed MR examinations of 50 patients (74% men, median age 
57 years). The most common indications were known or suspected ischemic heart disease, cardiomyopathies or myocarditis. 
Fully automated analysis of LV volumes and function was performed using a deep learning-based algorithm. The analy-
sis was subsequently corrected by a senior cardiovascular radiologist. Manual volumetric analysis was performed by two 
radiology trainees. Volumetric results were compared using Bland–Altman statistics and intra-class correlation coefficient. 
The frequency of clinically relevant differences was analysed using re-classification rates. The fully automated volumetric 
analysis was completed in a median of 8 s. With expert review and corrections, the analysis required a median of 110 s. 
Median time required for manual analysis was 3.5 min for a cardiovascular imaging fellow and 9 min for a radiology resident 
(p < 0.0001 for all comparisons). The correlation between fully automated results and expert-corrected results was very 
strong with intra-class correlation coefficients of 0.998 for end-diastolic volume, 0.997 for end-systolic volume, 0.899 for 
stroke volume, 0.972 for ejection fraction and 0.991 for myocardial mass (all p < 0.001). Clinically meaningful differences 
between fully automated and expert corrected results occurred in 18% of cases, comparable to the rate between the two 
manual readers (20%). Deep learning-based fully automated analysis of LV volumes and function is feasible, time-efficient 
and highly accurate. Clinically relevant corrections are required in a minority of cases.
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Introduction

The quantification of LV ejection fraction (EF) as a measure 
of global systolic LV function is clinically important in a 
wide spectrum of cardiac conditions. LV EF is a strong prog-
nostic parameter in acute coronary syndrome [1, 2], acute 
myocarditis [3] and heart failure [4]. In heart failure, EF 
serves to distinguish heart failure with reduced, mid-range 
or preserved EF—which are considered separate conditions 
with specific treatment recommendations according to the 
most recent European Society of Cardiology guidelines 
[5]. Precise quantification of EF is also important for the 
indication of implantable cardioverter-defibrillators or car-
diac resynchronization therapy in both ischemic and non-
ischemic heart disease [6].

Cardiac magnetic resonance (CMR) imaging is estab-
lished as the clinical gold standard for the evaluation of left 
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ventricular (LV) volumes, ejection fraction and myocardial 
mass [5, 7]. In order to derive end-diastolic volume (EDV), 
end-systolic volume (ESV), stroke volume (SV) and ulti-
mately EF from CMR datasets, the epicardial and endocar-
dial contours of the myocardium need to be defined for each 
short-axis slice in diastole and systole. Manual contouring 
is time-consuming and prone to inter-observer variability. 
Many vendors now offer software tools for semi-automated 
volumetric analysis.

More recently, the dramatic evolution in artificial intel-
ligence—specifically deep learning—has enabled the 
development of fully automated algorithms for volumetric 
analysis of CMR datasets. Initials studies indicate substan-
tial time-saving and reduced observer bias compared to 
manual or semi-automated contouring [8, 9–14]. Some of 
these studies used pre-processed datasets, CMR examina-
tions of healthy individuals from population-based studies 
or highly selected patient populations. The purpose of our 
investigation was to investigate the performance of a deep 
learning-based algorithm for fully automated quantification 
of left ventricular volumes and function in CMR examina-
tions across a spectrum of cases typically encountered in 
clinical routine.

Material and methods

Ethical approval, study design and patient selection

The study was approved by the responsible institutional 
review board, informed consent was waived. The study was 
designed as a retrospective single centre cohort study. The 
study population consisted of 50 adult patients who under-
went a CMR examination at 1.5 T in 2018. We selected suit-
able patients through a retrospective search of our radiology 
information system. We excluded children (n = 8), patients 
examined at 3 T (n = 8), patients with severe congenital heart 
disease (n = 4), large left ventricular aneurysms (n = 2) and 
datasets with severe artefacts (n = 15).

Cardiac MR technique

All MRI examinations were performed on a 1.5 T MRI 
scanner  (Avantofit, Siemens Healthineers). The cardiac 
MRI protocol was tailored to the clinical indication follow-
ing national and international recommendations. All proto-
cols included steady-state free precession cine sequences in 
4-chamber view, 2-chamber view, left ventricular outflow 
tract view and as short axis stack perpendicular to the long 
axis of the LV. For the short-axis cine images, in-plane reso-
lution was 1.9 × 1.9 mm, slice thickness was 8 mm with an 
inter-slice gap of 2 mm. TR was 42 ms, TE 1.1 ms and flip 
angle 72°. Parallel acquisition (GRAPPA) was used with an 

acceleration factor of 2. The short-axis image stack typically 
consisted of 10 slices. FOV size was typically 360 mm. Ret-
rospective ECG-gating was used with 25 phases calculated 
over the cardiac cycle.

Fully automated volumetric analysis

The fully automated volumetric analysis of LV volumes and 
function was performed using a novel deep learning-based 
algorithm within a dedicated commercially available soft-
ware (cvi42, Version 5.10.1, Circle Cardiovascular Imaging 
Inc.). In brief, the network architecture is inspired by Unet 
architecture that is widely used for medical image segmenta-
tion. The architecture is adapted to maximize performance 
on CMR images in clinical settings (fast and low memory 
requirement). The network had been trained on 5000 healthy 
subjects from UK Biobank dataset combined with patho-
logical cases collected from clinical collaborators. Manual 
annotation of the training set included the LV endocardium, 
LV epicardium, and RV endocardium.

The short-axis cine stack was manually selected, and the 
deep learning-based algorithm was started with one mouse 
click. No other manual pre-processing or user interaction 
occurred. The fully automated algorithm automatically 
identified the end-diastolic and end-systolic phases and per-
formed complete contouring of the endocardial contour in 
both diastole and systole. The epicardial contour for calcu-
lation of LV mass was automatically delineated in diastole 
only. The papillary muscles were detected and not included 
with the LV volume. Time required for fully automated volu-
metric analysis was recorded.

Expert‑corrected automated volumetric analysis

After recording the results and contours of the fully auto-
mated analysis, the selection of cardiac phases, selection of 
slice inclusion and the contours were subsequently checked 
and corrected by an expert (board-certified radiologist with 
subspecialisation in cardiovascular imaging and level III 
certification for cardiac MR and CT, initials blinded) as 
necessary. The number and type of corrections were reg-
istered categorised in correction of cardiac phase (choice 
of end-systolic or end-diastolic phase), correction of slice 
inclusion (apical/basal) and fine corrections of contours. The 
time required for all checks and corrections was recorded 
and added to the time required for fully automated analysis, 
to determine the time required for expert-corrected auto-
mated analysis.

Manual volumetric analysis

Manual volumetric analysis was performed on a randomly 
selected subset of 25 cases by a radiology resident (initials 
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blinded) and a board certified radiologist currently perform-
ing a fellowship in cardiovascular radiology (initials blinded) 
using manual contouring tools within the same software 
(cvi42, Version 5.10.1, Circle Cardiovascular Imaging Inc.). 
The analysis was performed on the short axis cine stack. 
The 4-chamber cine sequence was displayed for reference 
with a reference line indicating the position of the short 
axis slice to determine the most basal and apical slices to be 
included into the left ventricle. First, the end-systolic and 
end-diastolic phases were visually determined followed by 
manual delineation of the epi- and endocardial contours in 
end-diastole and the endocardial contours in end-systole. 
Both readers had been instructed in the use of the software. 
The cardiovascular imaging fellow had significant experi-
ence in performing volumetric analysis with this software 
(approximately 50 cases), whereas the radiology resident 
had limited experience (approximately 10 cases). Readers 
generally used a threshold-based tool for segmentation of 
the endocardial border and a multi-point tool for segmenta-
tion of the epicardial border but were free to use whichever 
tools in the software they found most efficient and accurate. 
Readers were instructed to exclude papillary muscles from 
left ventricular volume. The time needed for manual analysis 
was recorded.

Analysis of clinical data

Analysis of electronic patient data was performed to assem-
ble demographic information as well as indications and 
results of the CMR examinations.

Statistical analysis

Statistical analysis was performed with Prism (version 
8.2.1, GraphPad Software Inc.) and SPSS Statistics (ver-
sion 25, IBM). Continuous values were presented as median 
and interquartile range, since normal distribution could not 
be assumed. Categorical data were displayed as absolute 

frequencies and proportions. Pairwise comparison of numer-
ical results between volumetric methods was made using 
Wilcoxon matched pairs test. Inter-method agreement was 
assessed using Bland-Altmann statistics and intra-class 
correlation coefficient for absolute agreement with a two-
way mixed model. To account for multiple testing, P-val-
ues < 0.005 were considered to indicate statistical signifi-
cance. Intra-class correlation coefficients were considered 
significantly different if 95% confidence intervals did not 
overlap.

To evaluate the frequency of clinically important differ-
ences between fully automated and expert-corrected results, 
we further categorized LV ejection fraction into five catego-
ries inspired by the recommendations of the American Col-
lege of Cardiology for the measure reporting in outpatient 
setting: hyperdynamic (> 70%), normal (50–70%), mild dys-
function (40–49%), moderate dysfunction (30–39%), severe 
dysfunction (< 30%) [15]. Differences leading to re-classifi-
cation of a patient’s LV function in a different category were 
defined as clinically important. We therefore analyzed the 
reclassification rate, i.e. how frequently expert corrections of 
the fully automated contours resulted in a different category 
of the patient’s LV function, and compared this to the reclas-
sification rate between the two manual readers.

Results

Patient characteristics and spectrum of indications

An overview of patient characteristics and CMR indications 
is given in Table 1. The majority of the 50 patients were 
male (74%). Median age was 57 years, with a range from 
18 to 80 years. Median BMI was 27.3 kg/m2 with a range of 
18.3 to 43.3 kg/m2. The most common primary indications 
for CMR examinations were known or suspected ischemic 
heart disease (n = 20, 40%), known or suspected cardiomyo-
pathy (n = 18, 36%) and known or suspected myocarditis 

Table 1  Patient characteristics 
and CMR indications

All patients Women Men

n % n % n %

Demographics 50 100 13 26 37 74
Age (years)
Median (interquartile range)

57
(46–63)

48
(37–58)

58
(48–68)

BMI (kg/m2)
Median (interquartile range)

27.3
(25.1–30.5)

25.5
(21.4–29.5)

27.5
(25.5–30.6)

Main indication for CMR
Known or suspected ischemic heart disease 20 40 4 31 16 43
Known or suspected cardiomyopathy 18 36 6 46 12 32
Known or suspected myocarditis 11 22 3 23 8 22
Other 1 2 0 0 1 3
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(n = 11, 22%). The most frequent indication in women was 
cardiomyopathy (6 of 13, 46%), while ischemic heart disease 
was the leading indication in men (16 of 37, 43%).

Findings at CMR

The results of the CMR examinations are summarized in 
Table 2. In 16 cases (32%), CMR demonstrated no patholog-
ical findings. Findings consistent with ischemic heart disease 
were present in 16 patients (32%). Non-ischemic cardiomyo-
pathy was diagnosed in 11 patients (22%), myocarditis in 
3 patients (6%) and valvular heart disease in three patients 
(6%). The 12 patients with cardiomyopathies included eight 
patients with dilatated cardiomyopathy, one patient with 
hypertrophic obstructive cardiomyopathy and two patients 
with stress (Takotsubo) cardiomyopathy.

Performance of fully automated algorithm—number 
and types of expert corrections

In all cases the fully automated algorithm operated without 
processing failures and the LV was appropriately detected 
on most slices. In 20% of all data sets (n = 10), the expert 
fully agreed with the fully automated algorithm and no cor-
rections were necessary. An example is shown in Fig. 1. 
In the remaining 80% of cases (n = 40), corrections were 
made on a median of 2 slices, with an interquartile range of 
1–4. Choice of end-systolic phase was corrected in 14 cases 
(28%), choice of end-diastolic phase was corrected in 3 cases 
(6%). Changes related to slice inclusion at the apex of the 
LV (adding or deleting a slice to be included) were made 
in 25 cases (50%), related to slice inclusion at the base of 
the LV in 5 cases (10%). Fine corrections of contours were 
performed in 28 cases (56%, Fig. 2). Incorrect contouring 
of the RV instead of the LV on one apical slice occurred in 
one case (Fig. 2).

Performance of fully automated algorithm—
compared to expert corrected results

Results of fully automated and expert corrected analyses 
are summarized in Table 3. The fully automated analysis 
slightly underestimated the values for left ventricular end-
diastolic volume (p = 0.0004), stroke volume (p < 0.0001) 
and ejection fraction (p < 0.0001) compared with the expert 
corrected findings. The end-systolic volume (p = 0.0008) 
was overestimated. Differences in the left ventricular mass 
between the two analysis were not statistically significant.

The correlation between fully automated results and 
expert-corrected results was very strong with correlation 
coefficients of 0.998 (95% confidence interval 0.995–0.999) 
for end-diastolic volume, 0.997 (0.995–0.999) for end-sys-
tolic volume, 0.899 (0.733–0.953) for stroke volume, 0.972 
(0.923–0.987) for ejection fraction and 0.991 (0.985–0.995) 
for myocardial mass (all p < 0.001, Table 4, Fig. 3). Com-
pared with the expert-corrected results, the fully automated 
algorithm showed a mean deviation of − 2.1% for end-dias-
tolic volume, + 3% for end-systolic volume, − 10% for stroke 
volume and − 7.5% for ejection fraction (Table 4, Fig. 3). 
Correlations were stronger and limits of agreement narrower 
for fully automated vs. expert corrected results than between 
the manual analysis of two radiology trainees (Table 4 and 
Supplementary Table 1). Similarly, there was a trend for 
intra-class correlation coefficients to be higher for automated 
vs. expert corrected results than between the manual analy-
sis of two radiology trainees (Table 4 and Supplementary 
Table 1), but differences were not statistically significant.

Re‑classification rate of LV function

Compared with the fully automated results, expert correc-
tions resulted in a change in the functional category in 9 
of 50 cases (18%). In 8 of these 9 cases, expert corrections 
placed the patient in a better functional category, most com-
monly (n = 4) moderate dysfunction (EF 30–39%) instead of 
severe dysfunction (< 30%). A remarkably similar re-classi-
fication rate (5 of 25 patients, 20%) was observed between 
the two manual readers.

Performance in specific sub‑groups

Median end-diastolic volume and ejection fraction were 
130.9 ml/59.1% in patients with no pathological findings at 
cardiac MR, 162.0 ml/47.8% in patients with ischemic heart 
disease and 244.2 ml/28.8% in patients with cardiomyopa-
thies (Supplementary Table 2). Relative limits of agreement 
for end-diastolic volume and end-systolic volume were simi-
lar across all subgroups. However, for stroke volume and 
ejection fraction they were wider in ischemic heart disease 
and cardiomyopathies than in patients without pathological 

Table 2  Main findings at CMR

n %

No pathological findings 16 32
Ischemic heart disease 16 32
Cardiomyopathy 11 22
DCM 8 16
HOCM 1 2
Takotsubo 2 4
Myocarditis 3 6
Valvular heart disease 3 6
 Mitral regurgitation 1 2
 Tricuspid regurgitation 1 2
 Aortic regurgitation 1 2

Suspected cardiac amyloidosis 1 2
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findings at cardiac MR (Supplementary Table 3). Intra-class 
correlation coefficients did not show significant differences 
between subgroups.

Time required of fully automated, expert corrected 
and manual volumetric analysis

The fully automated volumetric analysis required a median of 
8.4 s to complete (interquartile range 8.2–8.6 s). The expert-
corrected analysis was completed in a median of 110 s (IQ 
range 66–126 s). This includes performing the fully automated 
analysis, checking correct identification of end-systole and 
end-diastole, checking correct slice inclusion and accurate 
contouring and making any necessary corrections. The time 
required for manual volumetric analysis was approximately 
3.5 min for a cardiovascular imaging fellow (median 210 s, 
IQ range 183–280 s) and approximately 9 min for a radiology 
resident (median 525 s, IQ range 461–583 s, p < 0.001 for all 
pair-wise comparisons).

Discussion

In this paper, we investigated the performance of a deep 
learning-based algorithm for fully automated quantification 
of LV volumes and function in cardiac MRI. We observed 
that the fully automated analysis was performed successfully 
in all patients in less than 10 s. The correlation between fully 
automated and expert-corrected results was very strong—
stronger than between the manual analysis of two radiology 
trainees. Minor corrections were made in most (80%) cases. 
However, even with these corrections the expert corrected 
automated analysis took less than 2 min on average—signifi-
cantly less than the manual analysis, which on average took 
3.5 or 9 min, depending on level of experience.

Several previous publications focus on the technical 
aspects of developing and validating deep learning-based 
algorithms for fully automated volumetric analysis of car-
diac MRI [12, 16–19]. Bai and colleagues describe the 
development and validation of a fully automated method 
capable of segmenting the volume of both ventricles and 
atria based on a multi-layered fully convolutional network 
[12]. In their study, cardiac MRI images of approximately 
5000 subjects from the population-based UK Biobank cohort 
were manually annotated. Approximately 4000 were used to 
train the algorithm, 300 served as the validation cohort and 
600 datasets were used for testing its performance. In this 
cohort of predominantly normal cardiac MRIs, they found 
that the agreement between fully automated computer analy-
sis and human analysis was comparable to the inter-reader 
agreement between two human readers.

Bernard and colleagues recently provided an in-depth 
review of deep-learning techniques for automatic car-
diac MRI segmentation [11]. They summarize the results 
obtained by various deep learning-based algorithms on the 
"Automatic Cardiac Diagnosis Challenge" dataset, a pub-
licly available fully annotated dataset of 150 cardiac MRI 
examinations. The comparison of multiple algorithms tested 
on an identical dataset allowed the authors to identify typical 
challenges for deep learning based cardiac MRI segmen-
tation. In particular, they noted that segmentation results 
at the base (near the valves) and the apex are most error 
prone [11]. This is consistent with the result of our study that 
expert changes to the fully automated segmentation were 
often related to slice inclusion at the apex or—less com-
monly—the base of the LV. It is worth mentioning that in 
our study the correction-rate at the base is lower than in the 
investigation of Bernard et al. [11].

An important use case for fully automated volumetric 
analysis are large population-based cohort studies incorpo-
rating cardiac MRI examinations. The UK Biobank is on 
its way to acquire 100,000 cardiac MRI examinations by 
2020 [10] and the German National Cohort has performed 

Fig. 1  Representative example of accurate fully automated contour-
ing. Short axis cine MRI sequence of a 77-year old man with no 
pathological findings. Visualized are the fully automated generated 
contours of apex, midventricular and basal slices in systole (left) and 
diastole (right). Contours are shown in red (subendocardial), pink 
(papillary muscles) and green (subepicardial). No manual corrections 
were necessary in this case. LV ejection fraction was 65.3% for both 
fully automated and expert corrected analysis
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30,000 whole-body MRI examinations (including cardiac 
MRI sequences) [20]. It is obvious that such case volumes 
cannot reasonably be analysed manually but ideally require 
fully automated approaches. Quality control is key in this 

effort to ensure the validity of data. Using data from the UK 
Biobank, important advances have been made in developing 
a fully automated pipeline for image analysis that includes 

Fig. 2  Representative example of fully automated contouring with 
corrections. Short axis cine sequence of a 63-year old man with 
acute myocardial infarction in the anterior wall. Visualized are the 
fully automated (left two columns) and expert-corrected (right two 
columns) contours of apex, midventricular and basal slices in sys-
tole (left) and diastole (right). Contours are shown in red (subendo-

cardial), pink (papillary muscles) and green (subepicardial). In this 
case, the fully automated contouring made an error in the apical slice 
by setting contours in the right ventricle instead of the left ventricle. 
Some minor adjustments of contours were also manually performed. 
LV ejection fraction was 48.8% for fully automated and 55.7% expert 
corrected analysis

Table 3  Left ventricular 
parameters in fully automated 
and expert corrected analysis

P value is for comparison of fully automated and expert corrected results using Wilcoxon matched pairs 
test

Fully automated Expert corrected P value

Median IQR Median IQR

Absolute values
 LV EDV (ml) 160.9 124.6–211.8 162.4 126.7–213.1 0.0004
 LV ESV (ml) 73.1 48.5–121.3 66.1 46.3–118.9 0.0008
 LV SV (ml) 78.8 59.4–95.0 83.7 68.7–98.6  < 0.0001
 LV EF (%) 52.2 41.0–62.2 56.0 42.6–62.7  < 0.0001
 LV mass (g) 166.5 134.4–194.8 165.5 133.0–195.8 0.7677

Indexed to body surface area
 LV EDV (ml/m2) 78.3 63.4–98.3 79.2 65.6–100.2 0.0005
 LV ESV (ml/m2) 35.1 25.7–59.5 32.5 25.1–59.0 0.0005
 LV SV (ml/m2) 39.8 28.4–45.5 41.4 34.0–49.9  < 0.0001
 LV mass (g/m2) 81.1 64.3–91.9 80.7 66.4–89.8 0.7998
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automated checks for image quality as well as quality and 
consistency of output [10, 12, 14].

There is scarce data on the performance and utility of 
such algorithms in clinical routine. One recent study inves-
tigated a similar algorithm by a different vendor in 300 cases 
randomly selected cases from routine clinical care [13]. 
Their study found that agreement between fully automated 
and expert manual segmentation was lower for the right 
ventricle than for the left ventricle, lower at 3 T, in cases 
of compromised image quality and in cases of challenging 
anatomy such as repaired Tetralogy of Fallot [13]. Our study 
design builds on these results in several aspects: we focused 
our investigation on the left ventricle and chose to exclude 
examinations performed at 3 T, examinations with severe 
artefacts and substantially altered anatomy (severe congeni-
tal heart disease, large left ventricular aneurysms).

Our results agree with this previous publication in that 
both studies indicated that the relative differences are some-
what larger for LV stroke volume and ejection fraction than 
for end-diastolic volume, end-systolic volume and myocar-
dial mass. This is likely mostly a mathematical effect: Stroke 
volume and ejection fraction are not measured directly but 
calculated from end-diastolic and end-systolic volume such 
that measurement errors add up if errors occur in opposite 
directions. We furthermore demonstrated that agreement 
between fully automated and expert-corrected results for 
stroke volume and ejection fraction was lower in ischemic 
heart disease and cardiomyopathies than in patients without 
pathological findings at cardiac MR. In part, this may be 
attributed to the lower ejection fraction in these patients, 
which means that the same absolute deviations amount to 
wider relative limits of agreement. In part, however, this may 
also be an expression of how the algorithm was developed, 
namely initially trained on a large volume of—mostly nor-
mal—cardiac MRIs from the population-based UK Biobank 
cohort, although the algorithm was later also trained on a 
large volume of pathological cases.

To establish a precise reference standard for our analy-
sis, meticulous corrections to the fully automated contours 

were made by an expert in our study in as many as 80% of 
cases. However, many of these corrections were minor and 
may not be clinically meaningful. To address this issue, we 
performed a secondary analysis of the re-classification rate 
based on pre-specified categories of LV function. We found 
that expert corrections made a clinically meaningful differ-
ence in 18% of cases, very similar to the re-classification 
rate between the two manual readers (20% in our study). 
This suggests that only a minority of cases may require cor-
rections in clinical routine. However, we do not recommend 
using the algorithm without supervision. Rather, the results 
of fully automated volumetric analysis should be checked 
and corrected, if necessary, by a human reader. As with other 
applications of artificial intelligence, the role of humans 
imaging experts shifts from performing mechanical tasks to 
critically reflecting the results of algorithms and developing 
a professional relationship between physicians, patients and 
machine-generated data [21].

Several limitations of our study are worth noting. This 
was a retrospective analysis describing our initial experi-
ence in a limited number of cases. In particular, the number 
of patients in each subgroup was relatively small, such that 
the results of the subgroup analysis should be considered 
hypothesis-generating. An obvious limitation of our inves-
tigation is that we examined the performance of a specific 
deep learning-based fully automated algorithm. The results 
cannot be directly transferred to the algorithms of other ven-
dors or even later version of the same algorithm. However, 
we believe that our results may provide some insights into 
strengths and typical limitations of deep learning-based 
approaches to fully automated volumetric CMR analysis 
that may benefit the further development of the technique.

In conclusion, deep learning-based fully automated 
analysis of left ventricular volumes and function is feasible, 
extremely fast and shows respectable performance without 
any manual corrections. Even with manual corrections—
which are required for precise results in most patients—
this approach remains time-efficient compared to manual 
analysis.

Table 4  Agreement between fully automated and expert corrected quantification

Bland-Altmann analysis Correlation analysis

Mean bias (%) Limits of agreement (%) Intra-class correlation 
coefficient

95% confidence interval P value

LV EDV (ml) − 2.1 − 12.9/+ 8.6 0.998 0.995–0.999  < 0.0001
LV ESV (ml)  + 3 − 11.7/+ 17.9 0.997 0.995–0.999  < 0.0001
LV SV (ml) − 10 − 43.1/+ 23.0 0.899 0.733–0.953  < 0.0001
LV EF (%) − 7.5 − 33.9/+ 18.9 0.972 0.923–0.987  < 0.0001
LV mass (g)  + 0.3 − 10.5/+ 11.0 0.991 0.985–0.995  < 0.0001
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Fig. 3  Agreement between fully 
automated and expert corrected 
left ventricular volumes and 
function. Scatter plots (left 
column) visualize correla-
tion between fully automated 
(Y-axis) and expert corrected 
results (X-axis). Bland–Altman 
plots (right column) show rela-
tive difference (in %) between 
fully automated and expert cor-
rected results (Y-axis) as a func-
tion of absolute values (average 
of both methods shown on the 
X-axis). The blue dotted lines 
indicate limits of agreement 
(95% of all values). The red dot-
ted line indicates the bias (mean 
difference). EDV End-diastolic 
volume, ESV end-systolic 
volume, SV stroke volume, EF 
ejection fraction
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