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The average Dice similarity indexes between the segmenta-
tions of the automatic method and observer 1 for the left 
ilio-femoral artery, the right ilio-femoral artery and the aorta 
were 0.977 ± 0.030, 0.980 ± 0.019, 0.982 ± 0.016; the aver-
age Dice similarity indexes between the segmentations of 
the automatic method and observer 2 were 0.950 ± 0.040, 
0.954 ± 0.031 and 0.965 ± 0.019, respectively. The inter-
observer variability resulted in a Dice similarity index of 
0.954 ± 0.038, 0.952 ± 0.031 and 0.969 ± 0.018 for the left ilio-
femoral artery, the right ilio-femoral artery and the aorta. The 
average minimal luminal diameters (MLDs) of the ilio-femo-
ral artery were 6.03 ± 1.48, 5.70 ± 1.43 and 5.52 ± 1.32 mm for 
the automatic method, observer 1 and observer 2 respectively. 
The MLDs of the aorta were 13.43 ± 2.54, 12.40 ± 2.93 and 
12.08 ± 2.40 mm for the automatic method, observer 1 and 
observer 2 respectively. The automatic measurement over-
estimated the MLD slightly in the ilio-femoral artery at the 
average by 0.323 mm (SD = 0.49 mm, p < 0.001) compared to 
observer 1 and by 0.51 mm (SD = 0.71 mm, p < 0.001) com-
pared to observer 2. The proposed segmentation approach 
can automatically provide reliable measurements of the entire 
arterial accessing route that can be used to support TAVR 
procedures. To the best of our knowledges, this approach is 
the first fully automatic segmentation method of the whole 
aorto-femoral vessel trajectory in CTA images.

Keywords CTA · TAVR · Aorto-femoral · 
Segmentation · Fully-automatic

Introduction

Aortic valve stenosis is a disease particularly prevalent 
among senior citizens over the age of 65 years [1]. If left 
untreated, it is associated with a significant mortality. 

Abstract Extraction of the aorto-femoral vessel trajec-
tory is important to utilize computed tomography angiogra-
phy (CTA) in an integrated workflow of the image-guided 
work-up prior to trans-catheter aortic valve replacement 
(TAVR). The aim of this study was to develop a new, fully-
automated technique for the extraction of the entire arterial 
access route from the femoral artery to the aortic root. An 
automatic vessel tracking algorithm was first used to find 
the centerline that connected the femoral accessing points 
and the aortic root. Subsequently, a deformable 3D-model 
fitting method was used to delineate the lumen boundary 
of the vascular trajectory in the whole-body CTA dataset. A 
validation was carried out by comparing the automatically 
obtained results with semi-automatically obtained results 
from two experienced observers. The whole framework 
was validated on whole body CTA datasets of 36 patients. 
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datasets which were acquired during routine clinical prac-
tice prior to the TAVR procedures.

Methods

Centerline extraction

Since the details of the fully automatic centerline extraction 
algorithm were published in [11], we briefly summarize the 
steps below.

The CTA datasets were resampled at first to reduce the 
computation time. The centerline extraction step was executed 
on the resampled images. A wave-propagation algorithm was 
used, starting from the aortic arch which is detected automati-
cally. To detect the aorta arch, prior knowledge about aorta 
diameter from clinical research [12] was integrated into a 
Gaussian probabilistic distribution model [13]. After calculat-
ing the probabilistic model, a probability map was generated. 
From a point in the aorta arch, the algorithm propagated in two 
directions. One side propagated into the aortic root, and the 
other side propagated into the femoral arteries. After the wave 
propagation, the result image was used as a weight image for 
the Dijkstra shortest path algorithm. The Dijkstra algorithm 
was executed twice. First, to extract the centerline from the 
left femoral artery end to the aortic root. Second, to extract the 
centerline from the right femoral artery end to the aortic root. 
After these two centerlines were found, the bifurcation point 
of the two centerlines was detected. Finally, the centerlines 
were split into three parts: the centerline in the aorta, in the left 
ilio-femoral artery and in the right ilio-femoral artery.

Next, the centerlines in the femoral arteries were improved 
by a centerline refinement step. For this, a multi-scale medi-
alness response based wave-propagation scheme [14] was 
used. First, multi planar reconstruction (MPR) transversal 
image slice stacks were generated according to the initial 
centerline along the femoral artery. Next, the medialness 
response was computed from a circle centered at the initial 

Historically surgical aortic valve replacement (SAVR) was 
used to treat this disease. Unfortunately, not all patients are 
suitable for such a procedure. Especially, SAVR may be 
associated with a high perioperative mortality risk in elderly 
patients [1, 2]. Trans-catheter aortic valve replacement 
(TAVR)/trans-catheter aortic valve implantation (TAVI) 
has been developed as a therapeutic option during the last 
decade for the inoperable or very high-risk patients [3].

To minimize the procedure-related complications, spe-
cial attention should be given to the selection procedure to 
decide which patients are suitable TAVR candidates. Com-
puted tomography (CT) imaging has been proven to be able 
to predict vascular complications among patients undergo-
ing trans-femoral trans-catheter aortic valve replacement 
(TF-TAVR) [4]. Evaluation of the size and tortuosity of the 
ilio-femoral arteries is required to determine the feasibility 
of a transfemoral (TF) approach [5, 6]. Furthermore, the size 
of the entire aorta is also needed for proper device selection 
in TAVR [7, 8]. To integrate such measurements seamlessly 
and conveniently into the TAVR clinical workflow, a fully 
automatic framework was developed, allowing detection of 
the femoral/aorta access route and the vessel sizes based on 
3D contour detection approaches.

In the literature, several approaches have been described 
for the detection of the arterial contours in computed tomog-
raphy angiography (CTA) data sets. Lesage et al. [9] reviewed 
the state-of-the-art on vascular segmentation in multi-modal-
ity images. The model-based vascular segmentation approach 
is commonly used. In our study, the vessel surface was mod-
eled by a centerline curve with a generalized cylinder. This 
cross-section model with prior shape information can reduce 
the complexity of the contour detection procedure [10].

The approach that we have taken consists of two steps 
(Fig. 1), firstly, a centerline extraction from the femoral 
arteries to the aortic root [11]; and secondly, a 3D contour 
detection approach using a subdivision surface model fit-
ting method to accurately delineate the vascular access 
route [10]. Validation of this study was realized on 36 CTA 

Fig. 1 The general pipeline of trajectory contour detection, including two steps: centerline extraction and contour detection
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surface fitting. For our purposes, we distinguished two back-
ground categories: high intensity tissue (calcifications, bones, 
and metal artifacts), and low intensity tissue (muscles, fat, 
liver etc.). We masked out the surrounding background by 
an adaptive threshold method similar to Shahzad et al. [15].

This method is based on the assumption that the HU 
value (intensity) along the artery should be a smooth grad-
ual decreasing curve when this artery is without the pres-
ence of calcium [16].

Based on this, an intensity profile of the voxels along our 
initially extracted centerline was extracted (Fig. 3). Next, a 
second order polynomial curve was fitted through the inten-
sity profile data; this curve simulated the ideal case without 
calcium. Curve “b” in Fig. 3 shows this polynomial fit curve. 
Also shown is curve “a” which is an upward shifted version of 
curve “b” obtained by adding a constant value proportional to 
the standard deviation (SD) of the intensities in the profile. The 
values on curve “a” were used as the intensity threshold values 
for the high intensity structures (e.g. calcium) on the corre-
sponding image slices along the vessel centerline. A similar 
method was used to find the tissue with lower intensity than 
the contrast-filled lumen using curve “c” which is a downward 
shifted version of curve “b”. Figure 4 shows examples of the 
original and mask slices in the CTA data using this method.

Model fitting

The deformable model wasinitialized from the center-
line curves as a generalized cylinder with local diameter 

centerline point, with multi-scale radius. This response was 
constructed as to give high values inside the center of the 
lumen and lower values inside calcifications. The response 
was used as the speed function for the wave propagation and 
back tracking method to generate the final refined centerline. 
Figure 2 shows an example of the comparison of the auto-
matic extracted centerline and the refined centerline.

Contour detection

The vascular trajectory was segmented by a deformable model 
fitting method [10]. The deformable model was constructed 
from a coarse surface mesh representation created from the 
obtained centerlines. From this coarse mesh a smooth higher 
resolution surface mesh was created using a standard subdi-
vision refinement scheme. This higher resolution subdivision 
surface was next deformed by iteratively updating the coarse 
mesh description by fitting to the lumen edge information in 
the CT scans. In [10], this model was applied in CTA images 
of the carotid artery including bifurcations, and provided good 
results. A big advantage of the subdivision surface approach 
is that it is able to model the bifurcation of the iliac arteries.

Pre-processing

In our study, whole-body CTA datasets were used. In these 
images different kinds of anatomic tissues can be distin-
guished. The surrounding background of the contrast-filled 
vessels is quite complex and may confuse the subdivision 

Fig. 2 Result of centerline 
refinement step. The red crosses 
are the original centerline 
points; the blue crosses are the 
refined centerline points. The 
blue points avoid the calcium, 
and are better located in the 
middle of the cross-section of 
the artery lumen compared to 
the red points
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To compare the different segmentation results, the 
obtained 3D surface models were resliced along the center-
lines to obtain planar 2D contours. From these contours, the 
cross sectional area and the minimal diameter were calcu-
lated as clinical parameters and compared between the dif-
ferent segmentation results. Also, the Dice similarity index 
(or coefficient) was calculated between the contours from 
the different segmentation results.

To investigate the influence of image quality, also 
the mean and standard deviation of the HU values in the 
descending aorta were measured for each subject.

Statistical analysis

The results of the clinical parameters from the automatic 
segmentations were compared with the results from the 
semi-automatic segmentations of the observers by the paired 
t test. The Bland–Altman plots were calculated to quantify 
the mean error and the SD. The correlations were estimated 
by Pearson’s correlation coefficient.

The statistical analyses were conducted with SPSS (ver-
sion 20.0, SPSS Inc, Chicago, IL, USA) and MedCalc (ver-
sion 15.6, Ostend, Belgium).

Results

Data acquisition protocols

This is a retrospective study; the datasets were acquired 
before this research project started as part of routine clini-
cal care protocols. Only anonymous routine clinical datasets 
were used.

information obtained during the centerline extraction step 
[11]. At the bifurcation a dedicated model was used to best 
describe the current bifurcation configuration. After initial-
ization, the complete surface model was subdivided using 
the Loop subdivision scheme to generate a smoother sur-
face model [17]. The subdivision surface model fitting was 
next performed on the processed intensity image. The fit-
ting of the surface was based on the iterative movement of 
the control points according to the computed image forces.

During the deformation iterations, a re-initialization step 
was used [10]. During this re-initialization, a new subdivi-
sion surface model is generated based on the current fitted 
surface. For this, new centerline and diameter information 
was extracted from the current deformed subdivision sur-
face and used to initialize the new surface model. The re-
initialization allows adapting the surface mesh model to 
various vessel radii in the vessel trajectory.

To prevent unwanted deformations during the fitting, a 
non-self-intersection force was used, similar to the method 
in [18] (see Fig. 5).

The whole algorithm pipeline was implemented in C + + 
and Python using the MeVisLab environment (version 2.7, 
Bremen, Germany).

Validation

Segmentation evaluation

To evaluate the automatic segmentation method, two expe-
rienced observers independently corrected the automatic 
segmentation result. This was done using a dedicated edit-
ing tool in which the automatically obtained surface model 
could interactively be modified.

Fig. 3 Intensity profile along 
the centerline (yellow curve), 
polynomial curves (green). 
Yellow curve intensity values 
in HU of the voxels along the 
centerline (in mm). Green 
curves second order polynomial 
fit (b) of the intensity values 
with standard deviation margin 
above (a) and below (c)
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Fig. 4 Examples of pre-processed slices. a Original femoral artery 
image. b Processed femoral artery image. c Original aorta image. 
d Processed aorta image. The purple arrows in (a) and (b) indicate 

low intensity tissue that has been removed in processed image, other 
arrows indicate the processed high intensity tissue

Fig. 5 a Self-intersection in 2D cross-section contour. b 3D surface with self-intersection. c 2D cross section contour and d 3D surface with no 
self-intersection when using a non-self-intersection force
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and manual corrected centerlines was 2.55 ± 0.70 mm and the 
average mean error was 1.63 ± 0.40 mm.

Contour evaluation

Table 2 shows the Dice similarity results comparisons 
between the automatic and the observer corrected segmen-
tations for the different parts of the segmented trajectory.

The average Dice similarity indexes between the auto-
matic method and the first observer were 0.977 ± 0.030, 
0.980 ± 0.019, 0.982 ± 0.016 for the left ilio-femoral artery, 
the right ilio-femoral artery and the aorta, respectively; 
the average Dice similarity indexes between the auto-
matic method and the second observer were 0.950 ± 0.040, 
0.954 ± 0.031 and 0.965 ± 0.019, for the left ilio-femoral 
artery, the right ilio-femoral artery and the aorta, respec-
tively. The inter-observer variability resulted in a Dice simi-
larity index of 0.954 ± 0.038, 0.952 ± 0.031 and 0.969 ± 0.018 
for the left ilio-femoral artery, the right ilio-femoral artery 
and the aorta, respectively (Table 2).

To find if there is any correlation between the contour 
detection and the quality of the datasets, the mean and stan-
dard deviation of the HU value within the descending aorta 
of each patient were measured and plotted together with the 
Dice similarity index of the aorta between the automatic 
system and observer 1 (Fig. 6).

Clinical evaluation

The most important clinical parameter for the vascular 
access route is the minimal luminal diameter (MLD). In this 
study we separated the vascular access route into three seg-
ments: the two ilio-femoral arteries and the aorta. The cross-
sectional diameter was calculated at every point along each 
centerline segment to build a diameter curve.

For the ilio-femoral access, the diameter and area mea-
surements were taken along the centerline bilaterally with the 
minimum luminal measurement in both left and right side, 
including common iliac artery (CIA), external iliac artery 
(EIA), and common femoral artery (CFA) [4, 8, 20, 21]. For 
the aorta, the diameter measurements were taken along the 
centerline from the abdominal aorta until the sino-tubular 

A total of 38 patients underwent pre-operative CTA scan-
ning for TAVR. The baseline characteristics of these patients 
are listed in Table 1. Two patients were excluded for the 
following reasons: one patient did not have a whole-body 
CTA dataset, whereas in the other patient the contrast in the 
aorto-femoral vessel trajectory was very low.

The datasets were acquired in two hospitals: Leiden 
University Medical Center (LUMC) in Leiden, the Nether-
lands, and Fuwai Hospital in Beijing, China. The CTA data-
sets from LUMC were collected on a 320-row CT scanner 
(Aquilion ONE, Toshiba Medical System, Japan) by using 
a helical scan protocol. A bi-phasic injection protocol with 
intravenous contrast was used: 70 ml contrast (5 ml/s) and 
50 ml saline (5 ml/s) [19]. The datasets from Fuwai Hospital 
were acquired on a dual source CT scanner (SOMATOM 
Definition FLASH, Siemens, Germany) by using a helical 
scan protocol. A single-phasic injection protocol was used: 
350 mgI/ml (3–4 ml/s). The axial image size of the whole-
body CTA image was 512 × 512. In each patient, there were 
approximately 1000 image slices in the z axis.

Centerline evaluation

As was described in [11], in all the 36 patients (100 %) the cen-
terlines were extracted successfully from the common femoral 
arteries to the sino-tubular junction, inside the lumen of the ves-
sel. The average root mean square error between the automatic 

Table 1 Baseline characteristics

Total (38)

Age (years) 77 ± 13
Gender (% male) 21 (55)
Diabetes 7 (18)
Hypertensiona 23 (61)
Hypercholesterolemiab 21 (55)
Family history of CADc 8 (21)
Smoking 10 (26)
Obesity 4 (11)
Previous PCI 12 (32)
Previous CABG 10 (26)
Previous MI 6 (16)

Data are represented as mean ± SD, median (interquartile range) or as 
number and percentages of patients
CABG coronary artery bypass graft, CAD coronary artery disease, 
MI myocardial infarction, PCI percutaneous coronary intervention
a Defined as systolic blood pressure ≥140 mmHg and/or diastolic 
blood pressure ≥90 mmHg or the use of antihypertensive medication
b Defined as serum total cholesterol ≥230 mg/dl or serum 
triglycerides ≥200 mg/dl or treatment with lipid lowering medication
c Defined as the presence of coronary artery disease in first-degree 
family members at age <55 years in men and age <65 years in women

Table 2 Performance of automatic segmentation comparing to each of 
the observers and the observers to each other

Dice similarity index
(mean ± SD)

Automatic vs 
observer 1

Automatic vs 
observer 2

Observer 1 vs 
observer 2

Left ilio-femoral  
artery

0.977 ± 0.030 0.950 ± 0.040 0.954 ± 0.038

Right ilio-femoral 
artery

0.980 ± 0.019 0.954 ± 0.031 0.952 ± 0.031

Aorta 0.982 ± 0.016 0.965 ± 0.019 0.969 ± 0.018
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The Bland–Altman plots of the aorta MLD are shown in 
Fig. 8. The mean and SD of the difference between the MLD 
of the automatic segmentation and the observer 1 segmenta-
tion were 1.03 and 1.41 mm. The mean and SD of the differ-
ence between the MLD of the automatic segmentation and the 
observer 2 segmentation were 1.35 and 1.00 mm. The mean 
and SD of the difference between the MLD of the observer 
1 and the observer 2 segmentation were 0.32 and 1.28 mm.

Discussion

Over the past few years, the development of TAVR pre-oper-
ative planning applications has been driven by the increasing 
need for proper access route selections and prosthesis size 
selection during TAVR, and prediction of post-TAVR vascular 
complications. CT has received a lot of interest because of its 
3D imaging specifications as compared to 2D angiography’s 
limited information [20]. With MPR images, the arterial lumen 
can be measured accurately in each cross-section, appreciating 
the elliptical nature of the artery [4, 23, 24]. However, such a 
manual detection procedure will require too much time and 

junction, including abdominal aorta, descending aorta and 
ascending aorta [7].

The mean value, SD and 95 % confidence interval of the 
parameters are shown in Table 3. The correlation and Bland–
Altman bias are shown in Table 4. The correlations between 
automatic group and observer groups were 0.81–0.94, with 
p values smaller than 0.001. With the commonly used sig-
nificance level value 0.05 [22], the correlations can be called 
statistically significant.

The Bland–Altman plots of the minimal ilio-femoral 
luminal lumen diameter and area are shown in Fig. 7. The 
mean and SD of the difference between the MLD of the 
automatic segmentation and the observer 1 segmentation 
were 0.32 and 0.49 mm, respectively, and for the minimal 
luminal area (MLA) 2.53 and 5.23 mm2. The mean and 
SD of the difference between the MLD of automatic seg-
mentation and the observer 2 segmentation were 0.51 and 
0.71 mm, respectively, and for the MLA 6.19 and 7.58 mm2. 
The mean and SD of the difference between the MLD of the 
observer 1 segmentation and the observer 2 segmentation 
were 0.18 and 0.71 mm, respectively, and for the MLA 3.66 
and 6.89 mm2.

Fig. 6 The image qualities and the contour detection evaluation of the datasets: the blue line is the mean of HU value of the descending aorta, the 
red is the standard deviation (left vertical axis) and the green is the Dice index (right vertical axis)

Table 3 Results of minimal luminal diameter and area measurements from automatic, the observer 1 and the observer 2 measurement

Automatic measurement Observer 1 measurement Observer 2 measurement

Mean SD 95 % CI Mean SD 95 % CI Mean SD 95 % CI

Ilio-femoral
  Minimal luminal diameter (mm) 6.03 1.48 5.53–6.53 5.70 1.43 5.22–6.19 5.52 1.32 5.07–5.97
  Minimal luminal area (mm2) 38.43 12.95 34.04–42.81 35.90 12.28 31.74–40.05 32.24 11.14 28.47–36.01
Aorta
  Minimal luminal diameter (mm) 13.43 2.54 12.57–14.29 12.40 2.93 11.41–13.39 12.08 2.40 11.27–12.89
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are always searching in 3D space for the target boundary of 
artery. Another method which is similar to our method is the 
3D deformable cylindrical non-uniform rational B-spline 
(NURBS) model fitting [27]. However, the advantages of 
deformable subdivision surface model fitting are that it is 
able to deal with objects with complex topology such as 
artery bifurcations and it is flexible to deal with complex 
shapes in the ilio-femoral luminal areas. However, when 
the model is too flexible, there might be self-intersection 
of surface. In this study, therefore, a non-self-intersection 
force was added to overcome this problem. In the future, we 
believe that the deformable subdivision surface model can 
also be used to segment other complex anatomical struc-
tures, such as the aortic root.

The ability to detect the MLD and MLA of the ilio-fem-
oral arteries in each patient is another important feature of 
thisapplication. For the pre-operative planning of TF-TAVR, 
the minimal ilio-femoral artery diameter decides the exter-
nal sheath size. Post-operatively, vascular access site issues 
in TF-TAVR procedure are the most common companion 
disease [28]. It is the main complication in more than 15 % 
of the patients undergoing TF-TAVR in [4]. Sheath-to-ilio-
femoral artery ratio (SIFAR), defined as “sheath outer diam-
eter divided by access-side vascular diameter” is known to 
be predictive of major vascular complications which have 
high correlation with higher mortality. Whether the TF-
TAVR is acceptable will depend on the value of SIFAR [20]. 
In [4], the sheath to artery ratio was calculated by diameter 
and area, and the area’s result seems more reliable. In this 
study, both diameter and area of the ilio-femoral arteries 
were calculated, making the patient selection procedure in 
TAVR pre-operative planning reliable.

Quantitative evaluations were performed in two stages. 
The first stage was a comparison of the automatic contours 

will introduce variabilities. An automatic procedure will be 
able to reduce the effort and support both inexperienced and 
experienced observers.

In this paper, a 3D method was introduced for the auto-
matic segmentation of the vessel trajectory for TAVR pre-
operative planning in whole-body CTA images. To our 
knowledge, this is the first solution which can automatically 
segment the whole vessel trajectory from femoral artery, 
iliac artery, abdominal aorta, descending aorta up to the 
ascending aorta in a whole-body CTA image data set pub-
lished in articles.

The whole procedure only requires about 90 s on a com-
puter with Core i7 3770 and 8 GB RAM with four CPU 
threads, and can be further optimized. In our procedure, the 
quantification of the entire aorta-femoral trajectory is imple-
mented, including the ilio-femoral arteries, the thoracic and 
abdominal aorta. In previous studies on aortic aneurysms, 
aortic measurement have also been implemented. In the work 
by Müller-Eschner et al. it took 2.5–5.7 min with purely man-
ually measurement on axial slices, and 4.6–9.3 min on MPR 
images on the thoracic aorta; with a semi-automatic center-
line extraction method, the analysis time was 3.5–9.3 min 
[25]. In the study by Kaufmann et al., the mean time to only 
detect the maximal diameter of the abdominal aorta aneurysm 
manually was 104.7 ± 24.9 s with double-oblique images and 
175.2 ± 100.9 s to segment semi-automatically the abdominal 
aorta aneurysm to achieve maximal diameter [26].

In our fully automatic segmentation procedure, a deform-
able subdivision surface model fitting was used. The 
deformable subdivision surface model is a new 3D model 
which processes the entire 3D data set instead of detect-
ing the 2D transversal contour separately in each 2D image 
slice or detecting the 2D longitudinal contour on a stretched 
MPR image. The control points on the subdivision surface 

Observer 1 vs  
automatic

Observer 2 vs  
automatic

Observer 1 vs  
observer 2

Ilio-femoral
  Diameter
    Correlation 0.94 0.88 0.87
    Bias (95 % CI) −0.32 (0.64 to −1.28) −0.51 (0.89 to −1.90) 0.18 (1.57 to −1.20)
    p value <0.001 <0.001 <0.001
  Area
    Correlation 0.92 0.81 0.83
    Bias (95 % CI) −2.5 (7.7 to −12.8) −6.2 (8.7 to −21.1) 3.7 (17.2 to −9.9)
    p value <0.001 <0.001 <0.001
Aorta
  Diameter
    Correlation 0.88 0.92 0.90
    Bias (95 % CI) −1.0 (1.7 to −3.8) −1.3 (0.6 to −3.3) 0.3 (2.8 to −2.2)
    p value <0.001 <0.001 <0.001

Table 4 Results of minimal 
luminal diameter and area 
measurements; comparing the 
automatic to observer 1 and 
observer 2, and the observers to 
each other
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amount and the standard deviation of contrast in the aorta. 
It is apparent that if there is less contrast in the aorta and the 
contrast is inhomogeneous, the extraction of the aorta will 
be more difficult. But however, in our procedure, the auto-
matic segmentation results of different datasets were always 

with the manually corrected contours. The Dice similarity 
index in our study was found to be at least 0.95.

In Fig. 6, the measurement of the Hounsfield units of the 
contrast in the descending aorta was shown. This provides 
the indication on the quality of the datasets, which are the 

Fig. 7 Bland–Altman plot of minimal ilio-femoral luminal lumen comparing automatic measurement, the observer 1 and the observer 2

1 3
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In research [29], CTA-based semi-automatic segmenta-
tion software was used to measure MLD for TF-TAVR. The 
result was evaluated by manual results on projection angi-
ography (XA). The difference in MLD between the soft-
ware and the ground truth was higher than 1.2 mm in the 
ilio-femoral artery segments. In our study, the automatic 
measurement overestimated the MLA only by 0.323 mm 
compared to observer 1, and by 0.51 mm compared to 
observer 2, similar to the size of one pixel in the images 
we used.

In three cases the automatic procedure showed segmen-
tation issue, this can be explained as follows. During the 
subdivision surface model fitting step, the strongest edge in 
the intensity image was searched for within certain distance 
range. This search range was the same for both tiny vessel 
(such as femoral artery) and larger vessel such as the aorta. 
Making the search ranges variable for the different ves-
sel sizes should improve the framework and prevent these 
issues in the future.

good according to Dice similarity index. This proves the 
robustness of our method.

The second stage was the comparison of clinical param-
eters from automatic and manually-corrected segmentation. 
The correlation between the automatic method and the first 
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Fig. 8 Bland–Altman plots comparing minimal aorta luminal diameter measurements between automatic, observer 1 and observer 2
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Conclusions

In conclusion, this automatic TAVR pre-operative applica-
tion has demonstrated to be able to accurately segment the 
whole vascular access and measure minimal lumen of the 
vascular access for TAVR planning in CTA data set.
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