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Abstract Vascular and cardiac disease remains a

leading cause of morbidity and mortality in developed

and emerging countries. Vascular and cardiac inter-

ventions require extensive fluoroscopic guidance to

navigate endovascular catheters. X-ray fluoroscopy is

considered the current modality for real time imaging.

It provides excellent spatial and temporal resolution,

but is limited by exposure of patients and staff to

ionizing radiation, poor soft tissue characterization and

lack of quantitative physiologic information. MR

fluoroscopy has been introduced with substantial

progress during the last decade. Clinical and experi-

mental studies performed under MR fluoroscopy have

indicated the suitability of this modality for: delivery

of ASD closure, aortic valves, and endovascular stents

(aortic, carotid, iliac, renal arteries, inferior vena cava).

It aids in performing ablation, creation of hepatic

shunts and local delivery of therapies. Development of

more MR compatible equipment and devices will

widen the applications of MR-guided procedures. At

post-intervention, MR imaging aids in assessing the

efficacy of therapies, success of interventions. It also

provides information on vascular flow and cardiac

morphology, function, perfusion and viability. MR

fluoroscopy has the potential to form the basis for

minimally invasive image–guided surgeries that offer

improved patient management and cost effectiveness.
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Introduction

The rapid evolution of minimally invasive vascular

and cardiac interventions is shaping the demand for

high temporal and spatial resolution imaging that

offers safety, accuracy, flexibility and functionality.

Recent improvements in signal processing, tissue

characterization and angiographic integration allowed

MR-guidance in complex interventional procedures,

which require optimal spatial resolution and orienta-

tion [1, 2]. MR fluoroscopy offers rapid acquisition,

reconstruction and display of 3D images. Therefore, it

has been used in biopsies [3–7], brachytherapy [8, 9],

focused ultrasound [10–13], thermometry [10, 14–17],

functional imaging integrated into MR guided neuro-

surgical interventions [18, 19], local drug delivery

[20, 21], endoscopy [22], intravascular interventions

[23–34] and intra-operative imaging [19, 35–40].

X-ray fluoroscopy

X-ray fluoroscopy is routinely used in patients to

guide vascular and cardiac interventions, because of
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its ability for real-time imaging and easy access to

patients during interventions [41–43]. X-ray fluoros-

copy, however, is limited for defining soft tissue and

obtaining functional information. The poor contrast

between pathologic and healthy surrounding tissue

hinders X-ray fluoroscopy in defining targets [44],

which subsequently leads to blind delivery of ther-

apies to the targets [20, 45]. Furthermore, there is a

growing body of evidence that exposure to ionizing

radiation from X-ray procedures is associated with an

increased risk of cancer [46–50].

Interventional MR magnets

Different MR magnet designs have been developed,

namely open and hybrid, for MR guided vascular and

cardiac interventions [51]. Open magnets were

designed to ease patient access. Both open and

double donut XMR hybrid magnets use 0.2T and

0.5T fields and have low gradient strength. These low

field magnets offer suboptimal image quality and

slow switching speeds that do not meet the need of

cardiovascular interventions. For example, Wacker

et al. [52] found that 1.0T closed-bore halved the

procedure time during stent deployment compared to

0.2T open-bore magnet. Another hybrid XMR system

consists of an angiographic laboratory adjacent to

closed-bore 1.5T MR magnet, wherein an on-track

patient table could be moved rapidly between the two

imaging modalities (Fig. 1a) [53, 54]. More recently,

another XMR hybrid system has been developed that

has a side-by-side 1.5T magnet and C-arm X-ray

system (Personal communication) (Fig. 1b). The

in-suite operation consoles and display monitors are

of great help in instant imaging acquisition and

monitoring.

The advantages of hybrid XMR systems are: (1)

intermodal movement is minimized because a patient

will remain on a sliding table throughout the imaging

session; (2) unlike single system, the XMR hybrid

system permits evaluation of the impact of interven-

tional procedures via MR monitoring; (3) it permits

rapid deployment of catheters, and efficient execution

of desired interventions without the obligation of

using MR compatible devices; (4) it reduces radiation

exposure [55] and (5) offers the convenience of a

single visit. However, currently XMR systems are

available only in few medical centers.

Devices for MR interventions

Unfortunately, endovascular catheters and devices

are optimized for their mechanical properties and

visibility under projection X-ray imaging. There are,

therefore, substantial metallic components within the

plastic sheath that may be ferrous in nature. Visual-

ization of these commercial endovascular catheters

and devices has been difficult on MR imaging due to

the susceptibility artifacts derived from the ferro-

magnetic material, geometry and design [56, 57].

Unlike ferromagnetic material, nickel-titanium alloy

(nitinol), platinum, gold, copper, nonbraided or

plastic catheters cause substantially less susceptibility

artifacts [57–59] and produce less radiofrequency

Fig. 1 Two types of hybrid XMR suites equipped with a

closed bore 1.5T MR magnet and C-arm X-ray fluoroscopy.

The a suite consists of 2 rooms separated by a sliding door

(Phillips Medical Systems). The recently developed hybrid

system b is an example of a more advanced facility, where both

C-arm X-ray fluoroscopy and 1.5T MR systems are in the same

room, thereby making interventional procedures shorter and

more efficient (courtesy of Dr. Graham Wright, Sunnybrook,

Toronto)
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heating in vivo [60, 61]. Nitinol stents and guide-

wires are currently used for revascularization of

stenosed blood vessels. Mekle et al. [62, 63] used a

synthetic MR friendly polymer-based guide-wire for

dilatation of an artificial stenosis in phantoms and in

the carotid artery, aorta, and iliac arteries of swine

[63]. More recently, investigators manufactured a

guide wire based on micropultruded fiber-reinforced

material doped with iron particles to improve visibility.

At the distal part of the guide-wire a nitinol wire was

attached to provide flexibility to the tip [64].

In vitro studies showed that MR fluoroscopy can

track and navigate nitinol catheters (Fig. 2). At the

present time, few prototype catheters have been

designed [21, 65–67], but require further investiga-

tion. The catheters used for local drug delivery under

MR fluoroscopy contain a steering device and needle-

adjusting scale pistol at one end and a nitinol needle,

which is a part of a thin nitinol catheter runs inside

the catheter at the other end.

Investigators used three approaches for endovas-

cular catheter tracking and navigation, namely pas-

sive tracking (Fig. 3), active tracking (Figs. 2, 3) and

magnetic catheter steering (Fig. 4). Investigators also

used dysprosium markers mounted on 3F non-braided

catheters for tracking and visualizing the catheters.

The contrast between the catheter and background

blood can be improved by injecting MR contrast

media, which prevents flow artifacts because the

steady state is reached earlier [54, 68]. Bakker et al.

[24] were the first to use the passive tracking

approach for steering basilica veins of healthy

volunteers. Later, this passive approach was adapted

by Manke et al. [69] and Razavi et al. in patients [70].

The advantage of this technique is that it requires no

hardware or instrument modifications and, thus,

appears to be particularly promising in terms of

potential clinical applications. The disadvantage is

that the catheter disappears when it is out of the

image plane due to the motion.

Active tracking is another approach for tracking

endovascular catheters (Figs. 2, 3). This technique

relies on specially designed micro-coils, electrified

wire loop and self-resonant radiofrequency circuits.

The coils pick up signal during slice excitation and

generate a frequency-encoded recall echo, which can

be detected in 3D at a spatial resolution of approx-

imately 1 mm. The micro coils provide robust

tracking of the catheter shaft and tip that allows the

user to identify its position and target (Fig. 3) [71–

74]. Quick et al. [75] used antennas for active

catheter tracking and imaging of the abdominal aorta,

superior mesenteric artery, renal arteries, hepatic

artery and celiac trunk. In another study, they were

able to simultaneously visualize vascular tree, cath-

eter shaft and tip [76]. The advantage of this

technique is that it allows for visualization of longer

portion of the catheter or guidewire when a loopless

antenna is placed. On the other hand, the disadvan-

tage includes the need for special hardware and

software. Furthermore, the support patient systems,

interventional devices and surgical instruments must

be MR-compatible. MR-compatible equipment for

anesthesia, assessment of physiologic parameters and

contrast media injection are currently offered by

multiple venders.

Fig. 2 MR images show the activated coils in a water bath.

a Shows the external surface coil elements, b a coil placed on

the shaft of the catheter and c a coil placed at the catheter tip.

This type of active catheter has been frequently used for

transendocardial delivery of stem cells and angiogenic genes
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Fig. 3 Selected MR fluoroscopic images show the passive a,

b and active c, d catheters in the left ventricle hitting

myocardial targets (arrows). The passive catheter is labeled

with MR contrast media, while the active catheter wrapped

with coil. Note that the background anatomy of the heart and

great vessels can be clearly visualized using both the active

catheter and active body coil (d)

Fig. 4 Dynamic coronal MR images of a 2.5F two axis

(saddle and helical) coil-tipped catheter deflected and

advanced up the left (a, b) and right c, d of a phantom (B0-

Bore of magnet). The in vivo study shows the catheter in the

superior mesenteric artery (red arrows, e, f)
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The safety of active endovascular devices is still a

major concern. The conductive nature of the long

metallic braid creates a safety hazard in the MR

environment, as the braided shaft can interact with

incident RF energy and the electric field transmitted

from the RF coil [60, 61, 77]. The heat created by the

active coils causes necrosis of the tissue adjacent to

the catheter and blood clotting, which may lead to

vascular embolization. The methods for mitigating

the potential for heating include using unbraided

catheters, insulating the conductive structure, limiting

the RF power to which it is exposed, or altering its

interaction with the RF energy source [78]. The FDA

limits the allowable power deposition via MR

imaging to 8 W/kg and temperature change to 2�C.

Patients with internalized devices containing long

conductive structures, such as deep brain stimulators

[79] and cardiac pacemakers [80–82], are presently

scanned with MR imaging provided additional safety

steps are taken. These typically include heightened

patient monitoring, lower permissible specific absorp-

tion rate levels, and the use of local transmit RF coils.

Magnetic catheter steering is a new approach for

tracking endovascular catheters using remote control

[83]. It relies on a small magnetic moment created by

application of an electrical current to copper coils on

the catheter tip, which results in alignment of the

catheter in the direction of the B0 field (Fig. 4) [84,

85]. Magnetic catheter steering approach allows for

more efficiency in navigating small, tortuous blood

vessels, which are currently difficult to catheterize

due to build-up of friction at vascular bends. In

addition to improved visualization of the endovascu-

lar catheter at low power levels, this technology

permits deposition of thermal energy for ablation of

tissues at higher power levels. This technology is

under active investigation [86, 87].

MR contrast media

MR fluoroscopy and catheter tracking can be

expanded using a variety of MR contrast media with

high safety profiles [88–90]. Investigators used

extracellular and intravascular MR contrast media

with T1-enhancing or T2-enhancing capabilities for

labeling different types of cells [91, 92]. Extracellular

MR contrast media have small molecular weights

(\1 kDa), brief plasma half-life and are clinically

used in vascular angiography and in assessing

myocardial viability. On the other hand, intravascular

(blood pool) MR contrast media have high molecular

weights ([50 kDa), mass and T1 relaxivity with

prolonged plasma half-life. Preclinical experiments

showed that intravascular contrast media provide

better vascular angiograms. Moreover, contrast media

have been used on MR fluoroscopy to improve

visualization of endovascular devices [20], in road

mapping blood vessels [93, 94] and defining patho-

logic targets [95]. Investigators also used MR

contrast media for labeling different types of cells

[91, 92], which assist in monitoring the distribution of

the injected cells in vivo [96–98].

A study showed that high dose or repeated admin-

istration of gadolinium might be a concern, especially

in patients with impaired renal function [99]. This

problem can be reduced by paying attention to a

glomerular filtration rate of[30 ml/min/1.73 m2 and

contrast agents with high molecular stability [100].

MR fluoroscopy sequences

MR fluoroscopy became possible because of the

major advancements in the speed of data acquisition,

data transfer, and interactive control and display.

Other factors include highly uniform magnetic fields,

rapidly changeable magnetic field gradients, multi-

channel receivers and computing systems. MR fluo-

roscopy sequences achieve their high speeds by

maximizing the switching rates of gradients and RF

pulses. The temporal and spatial resolution in MR

fluoroscopy are often complementary factors. The

speed of imaging is determined by how quickly

spatial encoding can be performed and how fast

k-space data can be acquired. Actively shielded,

strong, fast-switching gradients and fast electronics

have allowed data acquisition intervals to be reduced.

Fast MR imaging techniques have been developed

in recent years, allowing frame rates almost compa-

rable to those achieved with X-ray fluoroscopy. Most

modern real-time MR implementations employ bal-

anced steady state free precession techniques because

of efficient use of magnetization, high SNR, and short

repetition times [101–103]. The performance of these

sequences is currently in the range needed to perform

MR guided procedures at [5 fps [104]. The SSFP

acquisitions have been performed using radial [105],

and spiral [106] k-space trajectories. These acquisition

techniques in conjunction with spiral or radial filling of
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the k-space are considered very reliable for high

spatial and temporal resolutions. These imaging

sequences also benefit from the use of multiple

receiver coil elements [107–109]. Parallel imaging

accelerates acquisition by using the different spatial

sensitivities of the coils to correct for under-sampling

of image data [110]. Other sequences that can improve

imaging speed while simultaneously balancing imag-

ing quality include non-Cartesian k-space sampling,

temporal data sharing between images, and adjusting

the tradeoff between temporal and spatial resolution

[102]. The use of 32 channel receiver arrays that will

perform rapid 3D cardiac imaging and parallel trans-

mission techniques to permit more efficient parallel

data collection are also under active investigation

[111]. It should be noted that MR fluoroscopy is not

free of limitations. For example, the closed configu-

ration of MR magnets[1.5T limit access to the patient

and RF pulses induce heating when conductive

material is applied in devices; MR imaging has

relatively low spatial and temporal resolution com-

pared with X-ray fluoroscopy; and is sensitive to

magnetic field inhomogeneity, pulsatility and motion

of spins and chemical shift.

In pre and post-intervention the following MR

sequences were used: (a) balanced fast field echo CINE

images for measuring LV volumes, ejection fraction,

cardiac output, stroke volume, LV mass, wall thickness

and radial strain [90, 112–114], (b) tagged gradient

echo planar imaging for measuring circumferential

strain and LV rotation [115, 116], (c) phase-contrast

velocity-encoded gradient echo planar imaging for

measuring longitudinal strain [117], (d) T2-weighted

turbo spin echo sequence for measuring interstitial

edema after ablation, (e) T2* multi-echo gradient echo

sequence for measuring vascular and myocardial

hemorrhage after intervention [118], (f) T1-weighted

gradient echo (radiofrequency spoiled) perfusion

imaging sequence for measuring myocardial perfusion

changes after delivery of therapy, and (g) delayed

contrast enhanced 3D T1-weighted gradient echo

sequence for assessing tissue viability.

Applications of MR fluoroscopy

Vascular interventions

MR imaging provides detailed information on vas-

cular layers and is able to differentiate between

plaque components, such as fibrous, lipid rich and

calcified tissue [119, 120]. In the last decade MR

imaging has been extended from a diagnostic to a

dynamic modality, which can be used to guide

intravascular guidewires and catheters and to assess

the success of endovascular procedures. In 1997 the

first human MR-guided study was performed and

showed excellent visualization of an endovascular

catheter labeled with dysprosium ring markers [24].

In this study, investigators did not use guide wires

during the movement of the catheter in the cephalic

vein of healthy volunteers. Later, MR-guided percu-

taneous transluminal angioplasty has been conducted

without complications in 13 patients with iliac

stenosis [121] and in 15 patients with femoral and

popliteal artery stenosis [122].

MR-guided procedures (stenting and/or angio-

plasty) have been performed for dilatation of the

aorta, pulmonary, coronary, renal iliac and femoral

arteries [45, 57, 121–124]. MR-guided imaging has

been used for delivery of stents in major and minor

blood vessels [45, 52, 57, 125–131]. Vascular stents,

vena cava filters, cardioseptal occluders or prosthetic

heart valves require, however, post-interventional

follow-up, which are usually made under X-ray or

CT. MR imaging, with its superior soft-tissue

contrast, arbitrary slice orientation and flow mea-

surement would be the preferred imaging technique;

however, most conventional vascular implants made

of metal create image artifacts and masked visuali-

zation of the lumen. The three main types of MR

artifacts associated with metallic vascular implants

are susceptibility artifacts, flow-related artifacts and

RF artifacts. Active MR resonant stents provide non-

invasive visualization of instant thrombosis and

restenosis without the need for MR contrast media.

Visualization of the lumen of vascular implants is

important for a safe and reliable examination on MR-

guided procedures.

Mahnken et al. used MR-guided procedures for

placement of aortic stents grafts [132]. More recently,

Kos et al. used a polyetheretherketone-based MR

imaging-compatible guidewire in swine for aortic

stenting and vena cava filter placement [133]. Several

groups have successfully used MR-guidance for

placement of vena cava filters [134, 135]. Pulmonary

artery stents have also been accurately implanted

across the pulmonary valve [57, 58, 136]. It should be

noted that only a few investigators have performed

122 Int J Cardiovasc Imaging (2012) 28:117–137

123



vascular stenting in patients under MR guidance

[121, 122]. Manke et al. [121] successfully deployed

stents under MR-guidance in iliac arterial stenosis in

patients. Post-interventional MR imaging showed the

localization and function of the stents. MR fluoros-

copy has been recently used for assessment of the

pulmonary arterial pressure in pediatric and adult

patients with congenital heart disease [70, 137]. A

variety of MR-guided interventions have been per-

formed in patients with congenital heart diseases

including; placing transjugular, intrahepatic porto-

systemic stents, radiofrequency ablation, aortic coarc-

tation, atrio-septal defect (Fig. 5) and cardiac

catheterization. In 2006, Krueger et al. performed

the first MR-guided study using balloon angioplasty

for treating aortic coarctation in 5 patients. This was

an important step toward MR-guided treatment of this

congenital disease [138].

Kuehne et al. [139] demonstrated successful

implant of a self-expanding stent valve in the aorta

via percutaneous access under MR fluoroscopy.

Transcatheter aortic valve implantation, either retro-

grade through a transfemoral approach or antegrade

through a transapical approach, has become a clinical

reality in the treatment of critical aortic stenosis in

high-risk patients. MR fluoroscopy plays an impor-

tant role in transcatheter aortic valve implantation

and replacement of insufficient aortic or pulmonic

valves [57, 58, 136]. MR imaging enables accurate

and reproducible quantifications of regurgitate

fraction before and after valve placement. Under

MR fluoroscopy, McVeigh et al. [140] used apical

access to guide the placement of a prosthetic aortic

valve in beating heart. MR imaging offered the

visualization of both coronary ostium during stent

implantation and allowed aortic flow assessment.

Cardiac interventions

Percutaneous closure of atrio-septal defects and ven-

triculo-septal defects is increasingly performed under

X-ray, which brings the disadvantages of ionizing

radiation and lack of soft-tissue contrast. MR imaging

is a technique that provides high-resolution 3D images

of the heart. Three-dimensional MR imaging before

intervention is particularly important because it

improves our understanding of the anatomic basis of

complex arrhythmias. Closure of such congenital

defects under MR-guidance has been proved in

animals [141], but is hampered by image artifacts

produced by the materials of the closure devices and

the use of fast sequences for cardiac imaging [142].

Few studies showed that MR imaging is useful for

arrhythmic substrate identification [143, 144].

MR-guided procedures have been successfully

used in thermal ablation and after intervention to

assess the success of ablation [145–150]. Clinical

studies showed atrial scar on contrast enhanced MR

imaging that results from RF ablation [151–153].

Other studies have demonstrated the association

Fig. 5 A balloon at the tip of endovascular catheter (arrow)

filled with MR contrast medium (a), and CT contrast medium

(b), used for sizing ASD under MR (a), and X-ray fluoroscopy

(b). Note the close estimate of the waist (arrows), representing

the ASD diameter
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between infarct scar, border-zone and the risk of

monomorphic ventricular tachycardia [144, 154,

155]. Dong et al. found that 3D MR imaging is

helpful for tailoring ablations to the variant pulmon-

ary vein anatomy in 47% of patients with atrial

fibrilation [156]. They also noted that 3D images of

the atria helped in localizing areas along the tissue

ridge separating the left atrium from the pulmonary

vein [156, 157]. The ability of MR fluoroscopy to

visualize the needle tip in the inferior vena cava,

atria, fossa ovalis, and surrounding vasculature

during transseptal cardiac punctures has also been

demonstrated [158–161].

Atrial septal defect (ASD) is another congenital

defect common in children, leading to heart failure

and pulmonary hypertension. Percutaneous transcath-

eter delivery of an ASD occluder has been performed

on X-ray fluoroscopy [162]. A recent study showed

that MR imaging provides reliable diagnosis of ASD

[163]. Substantial experience has been obtained in

animal models where MR fluoroscopy was used for

delivery of ASD closure [164, 165] and sizing of the

ASD (Fig. 6) [166]. The ASD occluders, delivered on

MR fluoroscopy, are made of a nitenol mesh to

reduce the artifacts [161]. Others used a commercial

nitinol snare coaxial catheter system for delivering

septal occluders [166]. Schalla et al. [161] simulated

clinical-grade pediatric diagnostic catheterization in

an animal model of ASD. The advancement of the

delivery system through the IVC to the right atrium

was monitored under MR fluoroscopy (Fig. 7). In

another study, they advanced an active catheter,

under MR fluoroscopy, to right and left sides of the

heart and invasively measured pressure and oxygen in

both right and left sides of the heart [70, 161]

(Figs. 7, 8). Measurements of flow from velocity

encoded MR imaging and blood pressure from the

catheter were used to calculate pulmonary resistance.

The flow and resistance data obtained from Fick and

MR cardiac catheterization methods were in agree-

ment [70, 161], suggesting accurate physiologic data

can be obtained on MR imaging.

Fig. 6 Simulation of deployment of the septal occluder device

in vitro (a, b), and corresponding selected real-time MR

images in vivo (c, d). The device was easily detected as a

signal void on real time MR images. The closure device was

advanced inside the delivery sheath until the folded first disk

appeared (c) followed by the release of the second disk in the

right atrium (d)
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A recent study in 10 patients and 5 volunteers

showed that MR fluoroscopy is suited to guide flow

directed catheters for measurement of invasive

pulmonary artery pressures [167]. Pulmonary vas-

cular flow was noninvasively measured using veloc-

ity-encoded cine MR imaging, while pulmonary

pressure was measured invasively through a catheter

guided into the pulmonary artery under MR-guid-

ance. The results indicate that MR imaging is a

promising tool for measurement of pulmonary

vascular resistance in patients with different degrees

and forms of pulmonary hypertension. MR fluoros-

copy has also been used in connecting cardiac

chambers and blood vessels in a swine model, where

Arepally et al. connected the right and left atrium by

puncturing the interatrial septum using an active

Brockenbrough-style needle [168]. In a clinical

study in seven patients, Dick et al. conducted

Fig. 7 Catheterization of main pulmonary artery under MR-guidance. Image planes: inferior vena cava (a), right ventricular outflow

tract (b), and outflow-tract– pulmonary artery (c) and a pulmonary artery pressure curve in mm Hg (d)

Fig. 8 Selected MR fluoroscopy images show antegrade catheterization of LV (femoral venous/transseptal access). The images

show advancement of tracking catheter from RA (a), transseptally into LA (b), and LV (c). Catheter tip is detected as a cross
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trans-septal puncture and balloon septostomy under

MR fluoroscopy [169].

MR guided delivery of genes and stem cells

Vascular and cardiac disease is a major public and

economic health problem leading to more than

7 million deaths world wide each year. Current

treatments of this disease include pharmaceutical

drugs, deployment of devices and interventional

therapies. These method, however were unable to

replace necrotic, apoptotic cells and damaged vessels

by new cardiomyocytes or blood vessels. Clinical

studies confirmed that there are an increasing number

of patients who have persistent chronic angina,

despite having multiple coronary revascularization

procedures. Heart transplantation is the definitive

therapy for these patients, but this option is limited to

*2,000 donor hearts annually. Thus, there is a

mandate for alternative treatment and minimally

invasive approaches, such as endovascular catheter-

based techniques, for local delivery of new therapies

to restore cardiomyocytes and blood vessels. Angio-

genic growth factor, gene and stem cell therapy have

been recently used as an alternative treatment to

restore cardiomyocytes and blood vessels in end stage

patients, in combination with coronary artery bypass

grafting [170–175]. Recent preclinical and clinical

studies showed that percutaneous intramyocardial

and intraarterial delivery of therapies is possible

[176–180], but Hou et al. found that 11, 2.6 and 3.2%

of the delivered cells are retained in the myocardium

after intramyocardial, intracoronary, and interstitial

retrograde coronary venous delivery [181].

Local delivery approaches include surgical and

catheter-based delivery of various types of angio-

genic proteins, genes and stem cells. Open-chest

surgery, however, is impractical in end-stage patients

because this strategy increases morbidity and mor-

tality as well as limiting the feasibility of repeat

administration [182]. The advantages of catheter-

based local delivery of therapies are: (1) targeting

only the diseased region, (2) delivering a high local

dose, (3) eliminating a high systemic dose and side

effects and (4) reducing the chance of angiogenesis in

hidden tumor sites especially in elderly patients

[170–175, 183].

Gene therapy is a new approach for treating

ischemic heart disease and it is an exciting area of

modern medicine. Recent MR-guided studies dem-

onstrated the success of catheter-based transendocar-

dial delivery of genes (Fig. 2). Preclinical studies

have indicated that MR imaging provides quantitative

data on infarct size, infarct transmurality, microvas-

cular obstruction and hemorrhage). These capabilities

have positioned MR imaging as an important

approach to persue for assessing the benefits of

locally delivered genes [20]. The MR-guided

approach for delivering plasmid-VEGF gene has

been validated using histopathology as a gold stan-

dard, which ensured the efficacy of delivered therapy

into infarcted myocardium by demonstrating the

formation of new blood vessels in treated animals

(Fig. 9). Another MR study showed the increase in

collateral blood flow of infarcted myocardium after

delivering vascular endothelial growth factor [184].

Post et al. [185] demonstrated an improvement in

regional radial strain after intramyocardial injection

of adenovirus coding for P39 gene. Furthermore, Liu

et al. found a significant improvement in LV ejection

fraction and smaller number of segments with wall

motion abnormality after intramyocardial injection of

fibroblast growth factor [186].

Stem cell transplantation is another approach for

treating ischemic heart disease as it improves cardiac

function and revascularizes ischemic myocardium.

The therapeutic effect of stem cells seems to be

related to the release of angiogenic factors rather than

trans-differentiation of delivered stem cells. Two

predominant routes for stem cell delivery to infarcted

myocardium are intracoronary infusion and direct

intramyocardial injection. Each of these delivery

routes attempts to maximize the retention of deliv-

ered cells to infarcted myocardium namely. Early

clinical studies indicated that cell transplantation,

delivered under MR fluoroscopy, is safe and feasible

[97, 187–189]. MR imaging has been used not only to

track stem cells in the myocardium, but also to non-

invasively evaluate ventricular function, perfusion

and viability [190]. Cell tracking on MR imaging is

based on labeling injected cells with US FDA

approved super paramagnetic iron oxide particles

[189, 191]. It has been shown that iron labeled cells

maintain their viability, proliferation and differenti-

ation [97]. The cluster of iron labeled cells appear

dark on T2* and T2 MR images [189, 191, 192].

Several factors affect the detection of labeled cells,

which include the (1) magnetic field, (2) labeling
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efficiency, (3) type of cells and (4) time of imaging

after delivery. Investigators found that the duration of

MR detection varies between cells; up to 5 weeks for

embolic stem cells [193] and up to 16 weeks for

skeletal myoblasts [194]. Investigators also found

hypo-intense tiny regions far from the site of

injection, indicative of migration of stem cells within

the infarction several weeks after delivery. MR

imaging was used to evaluate changes in LV

remodeling following the delivery of cellular therapy

[98, 195–199]. Amado et al. [200] were able to

identify a time-dependent recovery of local contrac-

tility associated with the appearance of new tissue

resulting from transplantation of allogeneic stem cells

in a pig model of myocardial infarct.

Recent randomized clinical trials demonstrated the

safety of bone marrow mononuclear treatment after

intracoronary injection [201, 202]. Promising clinical

results from intracoronary delivery of autologous

bone marrow derived stem cells and progenitor cells

showed improved myocardial function [201, 203–

206]. The proposed mechanisms of protection by

stem cells include angiogenesis via the release of

angiogenic factors, myogenesis, cytoprotection via

the release of paracrine factors, recruitment of stem

cells and suppression of inflammation [207]. More

recent 5 year follow-up studies showed that cell

therapy causes no significant improvement in LV

ejection fraction compared to placebo [208, 209].

Major limitations of intracoronary delivery include:

(1) no delivery access to infarct related to permanent

coronary artery occlusion; (2) inadequate cellular

migration into the interstitial space during the first

pass transit; (3) microembolization [210]; (4) sys-

temic delivery to non-cardiac tissue [211] and (5)

possibility of intimal dissection [212]. It has been

shown that approximately 2% of intracoronary

delivered bone marrow mononuclear cells were

retained by infarcted myocardium in humans, but

when the investigators used enriched bone marrow

Fig. 9 Photomicrographs of representative infarctions in

control (a, b) and VEGF gene–treated animals (c, d). Sections

a and c were stained with Masson trichrome stain, while b and

d were stained with biotinylated isolectin B4. Sections a and

c show chronic infarction (I) in both groups which is comprised

of homogeneous replacement fibrosis with a distinct boundary

at the interface between scar and viable myocardium (M).

Treated animal contained numerous vessels c, d) (arrows),

while control infarction contained very few vessels. Biotinyl-

ated isolectin B4 localized vessels with brown reaction

product, accentuating the neovascularity in VEGF gene–treated

infarct (d) as compared with infarct in control animal (b).
Calibration bars = 80 lm
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mononuclear cells the retention increased to 14–39%

[213].

Ripa et al. [214] used MR imaging to monitor the

changes in LV function after subcutaneous granulo-

cytes colony stimulating factor (G-CSF) injection in

patients with ST-elevated infarct. They found that

G-CSF caused no improvement in LV function.

Investigators used different types of cells, such as

progenitor cells, myocytes, adipocytes, fibroblasts, and

smooth muscle cells, in patients with ischemic heart

disease [202, 203, 214–223]. Three randomized con-

trolled studies have been published using bone marrow

cells for promoting angiogenesis [202, 203, 218]. In

the BOOST study 60 patients were enrolled to evaluate

the effect of intracoronary autologous bone marrow

cells after myocardial infarction [203]. MR imaging

showed a significant increase in ejection fraction from

50 to 57% in treated patients versus 51–52% in

untreated patients [203]. A more recent update from

the BOOST study found the beneficial effects of bone

marrow cells were sustained at 18 months [219].

Several complications have been reported after local

delivery of growth factor and cell therapies including

hemangioma [224], in-stent stenosis and hyperplasia

[225] as well as arrhythmia [226].

Summary

During the last decade medical imaging and mini-

mally invasive cardiovascular interventions have

made substantial progress. Improvements in temporal

resolution, tissue component characterization and

angiographic integration have allowed guidance in

complex interventional procedures. MR imaging

provides 3D datasets, excellent soft-tissue contrast,

multi-planar views, dynamic imaging in a single

imaging session and guidance of interventional

vascular and cardiac procedures. MR imaging allows

monitoring of treatment success after intervention

that is not available on X-ray fluoroscopy. These

advantages of MR imaging are complementary to its

potential advantage against the harmful effects of

X-ray guided procedures. In recent studies, balloon

dilation, stent placement, valvar replacement, atrial

septal defect closure, radiofrequency ablation and

local gene and cell delivery have been shown to be

feasible. In addition, MR-guided procedures involving

gene or stem cell therapy represent a new discipline

whose systematic development will foster minimally

invasive interventional procedures and will hasten the

identification and deployment of effective new thera-

pies for revascularization and myogenesis.

At present, cardiovascular interventions are

addressed by multimodality imaging using computed

tomography, invasive angiography and transesopha-

geal echocardiography. Whether MR is suited to

obviate the need for multimodality imaging is

currently unclear and needs to be further evaluated.

Furthermore, the availability of safe MR compatible

devices will guide future minimally invasive cardio-

vascular procedures. MR-guided percutaneous trans-

luminal angioplasty and vascular implants

placements (such as stents, vena cava filters, heart

valves) are examples of future clinical applications.

Catheter-based MR guidance enables a substan-

tially reduced level of invasiveness compared with

open-chest surgery, potentially resulting in treatment

on an outpatient basis, rapid patient recovery, elim-

inate radiation exposure and cost savings to the health

care system. It should be noted, however, that

translation of MR-guided interventions to clinical

use has been very slow due to limited availability of

MR-friendly catheters, wires, devices and financial

funding by National Institute of Health and venders.
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