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IVUS detects more coronary calcifications than MSCT;
matter of both resolution and cross-sectional assessment?
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Amongst the advanced cardiac imaging modalities,

multi-slice computed tomography MSCT has emerged

as a reliable non-invasive method for the assessment

of coronary anatomy, coronary artery disease, and

cardiac function [1–16]. Multiple studies involving

over several thousands of patients have established

that MSCT is highly accurate for delineation of the

presence and severity of coronary atherosclerosis

[17–30]. MSCT may also reveal the total plaque

burden, i.e., both calcified and non-calcified compo-

nents, for individual patients with coronary athero-

sclerosis [31–38]. The advent of prospectively gated

acquisition techniques for 64-slice MSCT has deep-

ened our insight in soft versus hard plaques together

with a significant reduction in dose exposure [39–43].

Apart from MSCT, plaque calcifications can also be

recognized by MRI and, in particular, by intravascu-

lar ultrasound (IVUS) [44–49]. However, smaller

calcifications might be missed on MSCT due to its

lower resolution and it is unknown to which extent

calcifications can be detected with MSCT.

In the current issue of the International Journal of

Cardiovascular Imaging, van der Giessen et al. [50]

compared the detection of calcifications on contrast

enhanced MSCT with IVUS. They randomly selected

23 patients (18 male, mean age 54 ± 11 years) from

the subpopulation that was imaged for the PROSPECT

trial. The authors aimed for 100 calcifications on

IVUS, which was reached by inclusion of 23 patients.

Of these patients only non-stented coronary arteries

were included. The coronary arteries of patients with

myocardial infarction or unstable angina were imaged

by 64-slice MSCT angiography and IVUS. The IVUS

and MSCT images were registered and the arteries

were evaluated on the presence of calcifications on

both modalities independently. The length and the

maximum circumferential angle of each calcification

on IVUS were measured. In 31 arteries, 99 calcifi-

cations on IVUS were found, of which only 47

calcifications were also detected on MSCT. A total of

107 calcifications were identified on either IVUS or

MSCT. We identified calcifications on both IVUS

and MSCT, 52 calcifications were identified on

IVUS only and 8 were identified on MSCT only.

The calcifications missed on MSCT (n = 52) were

significantly smaller in angle (27� ± 16� vs. 59� ±

31�) and length (1.4 ± 0.8 vs. 3.7 ± 2.2 mm) than

those detected by IVUS. Calcifications could only be

detected reliably on MSCT if they were larger than

2.1 mm in length or 36� in angle. The authors

concluded that more than half (53%) of the calcifi-

cations seen on the IVUS images could not be
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detected on contrast enhanced 64-slice MSCT angi-

ography images because of their size.

This is the first study [50] that compares the ability

to detect coronary calcifications in contrast enhanced

64-slice MSCT and IVUS on a cross-sectional basis.

The authors claim the limited resolution of MSCT in

combination with the obscuring effects of the contrast

in the lumen as the main reason for missing small

calcifications. The findings are at variance with previous

comparisons between MSCT and IVUS which showed

generally good to excellent correlations [51, 52]. The

authors legitimate their findings by stating that the

presence of calcifications by previous studies was

examined on a vessel or segmental basis rather than

on a cross-sectional basis. This difference might explain

the discrepancy between previous and present find-

ings. A cross-sectional approach might potentially

detect more calcified lesions. However, the authors

make a bigger case for the ‘poor’ resolution of MSCT

versus IVUS as the main explanation for their

findings.

In general, IVUS image quality can be described

by two important resolution issues: (1) spatial

resolution (axial and lateral resolution), and (2)

contrast resolution (grayscale/dynamic range). The

spatial resolution (axial and lateral resolution) is the

ability to discriminate small adjacent objects within

the image. It depends on the MHz level: the lower the

MHz, the deeper the image penetration, the higher the

MHz, the higher the image quality. For a 40 MHz

IVUS transducer the typical resolution is 80–

100 microns axially and 200–250 microns laterally.

The contrast resolution (dynamic range) offers the

capacity to differentiate different tissues. Distribution

of the gray-scale of the reflected signal; a low

dynamic range ‘‘black and white’’ with only a few ‘‘in

between’’ gray-scale levels versus a high dynamic

range image which has more shades of gray, is often

‘‘softer’’ and has more preserved subtleties in the

image presentation. Based on these parameters, IVUS

technology is capable of 500–600 images per centi-

meter of artery. It also shows a 360� cross-sectional

view allowing the visualization of lumen size and

shape together with plaque topography and compo-

sition. In the present study [50], a 40MHz IVUS was

used providing a stack of gated IVUS images with an

axial spacing of approximately 0.5 mm.

Although the spatial resolution is excellent for

IVUS compared to MSCT, the spatial resolution for

MSCT is theoretically better than ‘poor’. In a review

article by the same group, both the spatial resolution

and the temporal resolution for MSCT were called

high. Mollet et al. [53] reported that the spatial

resolution in the x/y axis of current MSCT scanners is

0.4 9 0.4 mm. The spatial resolution in the z axis is

determined by the minimum slice thickness, which

varies from 0.5 to 0.75 mm depending on the manu-

facturer. These features permit reconstruction of high

quality images with a sub-millimeter, nearly isotropic

(same size in every dimension) voxel size. This high

spatial resolution reduces partial volume effects and

also allows visualization of coronary segments down

to diameters of 1.5–2 mm. In the present study [50],

using a 64-slice MSCT scanner, the in-plane voxel

size was 0.3 mm and the slice thickness 0.4 mm. This

might be slightly improved by using 320-row MSTC

scanners but the main advantage of 320-row MSCT is

its improved temporal resolution [54–56]. Conse-

quently, the spatial resolution of MSCT is inferior to

that of IVUS but cannot be labeled as strictly ‘poor’.

To conclude, the interesting study by van der

Giessen et al. [50] clearly shows that 53% of the

calcifications seen on the IVUS images cannot be

detected on contrast-enhanced 64-slice MSCT angi-

ography images because of their size. Both differ-

ences in spatial resolution and the evaluation by

IVUS on a cross-sectional basis rather than on a

vessel or segmental basis play a dominant role in

explaining the observed phenomenon.
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