CORRECTION

Correction to: The influence of treatment on hormone receptor subgroups and breast cancer-specific mortality within US integrated healthcare systems

Cody Ramin¹ · Gretchen L. Gierach¹ · Mustapha Abubakar¹ · Lene H. S. Veiga¹ · Jacqueline B. Vo¹ · Rochelle E. Curtis¹ · Erin J. Aiello Bowles² · Heather Spencer Feigelson^{3,4} · Diana S. M. Buist^{2,3} · Amy Berrington de Gonzalez¹ · Clara Bodelon¹

Published online: 10 October 2022 © Springer Nature Switzerland AG 2022

Correction to: Cancer Causes & Control (2022) 33:1019–1023 https://doi.org/10.1007/s10552-022-01589-4

Following publication of the original article [1] the authors identified that the name of Erin J Aiello Bowles was

incorrectly spelled. The correct spelling is shown above. In addition, the legend of Fig. 1 and Table 1 were incorrectly printed and digits in the revised values were mixed with digits in the original values. The corrected versions of Fig. 1 and Table 1 are included.

The original article can be found online at https://doi.org/10.1007/s10552-022-01589-4.

Clara Bodelon clara.bodelon@nih.gov

- ¹ Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive, Bethesda, MD, USA
- ² Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- ³ Bernard J. Tyson Kaiser Permanente School of Medicine, Pasadena, CA, USA
- ⁴ Institute for Health Research, Kaiser Permanente, Denver, CO, USA

Fig. 1 Cumulative incidence of breast cancer-specific mortality accounted for competing risks (non-breast cancer mortality) among 11,737 women who survived ≥ 1 years after being diagnosed with a first primary breast cancer with known ER/ PR status at Kaiser Permanente Colorado (n = 5068 between)1994 and 2014) or Kaiser Permanente Washington (n = 6669between 1990 and 2016). P value was based on the Gray's test. One patient diagnosed with ER+/PR+ had a breast cancer-related death 25 years after her initial diagnosis and this event does not appear in the table above

Table 1 Risk of breast cancer cancer-specific mortality for hormone receptor subgroups in Kaiser Permanente Colorado and Kaiser Permanente Washington (N = 11,737)

Hormone receptor subgroups	No. of women at risk	No. of breast cancer deaths	Unadjusted HR (95% CI)	Multivariable-adjusted ^a HR (95% CI)	Multivariable- adjusted + treatment receipt ^b HR (95% CI)
ER+/PR-	1233	144	1.62 (1.35 to 1.94)	1.43 (1.17 to 1.75)	1.58 (1.27 to 1.97)
ER-/PR+	161	25	2.06 (1.38 to 3.07)	1.39 (0.94 to 2.13)	1.08 (0.65 to 1.79)
ER-/PR-	1904	325	2.53 (2.21 to 2.89)	1.59 (1.35 to 1.88)	1.47 (1.12 to 1.92)

HR hazard ratio, ER estrogen receptor, PR progesterone receptor

^aAdjusted for race (white, Black or other/unknown), BMI (<25, 25–30, \geq 30, missing), and study site (KP Colorado, KP Washington) and stratified the baseline hazard by age at diagnosis (5-year groups: <30, 30–35; 35–40; 40–45; 45–50; 50–55; 55–60; 60–65; 65–70; 70–75; 75–80; \geq 80), grade (well differentiated, moderately differentiated, poorly differentiated, undifferentiated, unknown), stage (0, I, II, III/IV), and histology (ductal, lobular, mixed, other)

^bAdjusted for race (white, Black or other/unknown), study site (KP Colorado, KP Washington), initial surgery combined with radiotherapy (breast conserving surgery alone, breast conserving surgery including unilateral mastectomy and radiotherapy, and bilateral mastectomy), BMI (<25, 25–30, \geq 30, missing), and the baseline hazard was stratified by age at diagnosis (5-year groups: <30, 30–35; 35–40; 40–45; 45–50; 50–55; 55–60; 60–65; 65–70; 70–75; 75–80; \geq 80), grade (well differentiated, moderately differentiated, poorly differentiated, undifferentiated, unknown), stage (0, I, II, III/IV), histology (ductal, lobular, mixed, other), ever receiving chemotherapy (yes, no), and ever taking adjuvant endocrine therapy (yes, no; women were considered users of adjuvant endocrine therapy if they had accumulated at least 90 days of therapy during any one treatment course)

Reference

cancer-specific mortality within US integrated healthcare systems. Cancer Causes Control 33(7):1019–1023

1. Ramin C, Gierach GL, Abubakar M et al (2022) The influence of treatment on hormone receptor subgroups and breast