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Abstract
A disease risk model is a statistical method which assesses the probability that an individual will develop one or more 
diseases within a stated period of time. Such models take into account the presence or absence of specific epidemiological 
risk factors associated with the disease and thereby potentially identify individuals at higher risk. Such models are currently 
used clinically to identify people at higher risk, including identifying women who are at increased risk of developing breast 
cancer. Many genetic and non-genetic breast cancer risk models have been developed previously. We have evaluated existing 
non-genetic/non-clinical models for breast cancer that incorporate modifiable risk factors. This review focuses on risk models 
that can be used by women themselves in the community in the absence of clinical risk factors characterization. The inclu-
sion of modifiable factors in these models means that they can be used to improve primary prevention and health education 
pertinent for breast cancer. Literature searches were conducted using PubMed, ScienceDirect and the Cochrane Database of 
Systematic Reviews. Fourteen studies were eligible for review with sample sizes ranging from 654 to 248,407 participants. 
All models reviewed had acceptable calibration measures, with expected/observed (E/O) ratios ranging from 0.79 to 1.17. 
However, discrimination measures were variable across studies with concordance statistics (C-statistics) ranging from 0.56 
to 0.89. We conclude that breast cancer risk models that include modifiable risk factors have been well calibrated but have 
less ability to discriminate. The latter may be a consequence of the omission of some significant risk factors in the models 
or from applying models to studies with limited sample sizes. More importantly, external validation is missing for most of 
the models. Generalization across models is also problematic as some variables may not be considered applicable to some 
populations and each model performance is conditioned by particular population characteristics. In conclusion, it is clear that 
there is still a need to develop a more reliable model for estimating breast cancer risk which has a good calibration, ability 
to accurately discriminate high risk and with better generalizability across populations.

Keywords Assessment risk tool · Calibration · Discrimination · Risk factors · Risk prediction · Concordance and E/O 
statistics
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NCI  National Cancer Institute
E/O  Expected/observed

Introduction

Breast cancer is the most common cancer among females in 
high-, middle- and low-income countries and it accounts for 
23% of all new female cancers globally [1, 2]. While there 
has been a significant reduction in mortality, incidence rates 
have continued to rise [3]. Breast cancer incidence rates are 
high in North America, Australia, New Zealand, and West-
ern and Northern Europe. It has intermediate levels of inci-
dence in South America, Northern Africa, and the Caribbean 
but is lower in Asia and sub-Saharan Africa [1].

Early detection of breast cancer improves prognosis and 
increases survival. Mammographic imaging is the best 
method available for early detection [4] contributing sub-
stantially in reducing the deaths caused by breast cancer [5]. 
Unfortunately mammography mass screening still leads to 
some levels of over-diagnosis and over-treatment [6]. As 
yet routine mammography screening is not readily available 
globally, particularly in some developing countries [7, 8]. 
This is supported by the observations that for every mil-
lion adult women there are only four mammogram screening 
machines in Sudan has four mammogram machines, whereas 
Mexico has 37 and Canada has 72 [9]. Under these circum-
stances, it is clearly more appropriate to prioritize access 
to mammographic screening or other targeted interventions 
(such as tamoxifen chemoprevention) for higher-risk indi-
viduals who could be identified using a sensitive and specific 
risk prediction model [10]. Such risk prediction models are 
individualized statistical methods to estimate the probabil-
ity of developing certain medical diseases. This is based on 
specific risk factors in currently healthy individuals within 
a defined period of time [11]. Such prediction models have a 
number of potential uses such as planning intervention trials, 
designing population prevention policies, improving clinical 
decision-making, assisting in creating benefit/risk indices 
and estimating the burden cost of disease in population [10].

A general case can also be made for using risk models 
for certain diseases. For example, their use can allow the 
application of risk-reducing interventions that may actu-
ally prevent the disease in question. If their application can 
be based on use of existing health records this will avoid 
increasing levels of anxiety in at least low to moderate 
risk individuals. The National Cancer Institute of the USA 
(NCI) has confirmed that the application of “risk predic-
tion” approaches has an extraordinary chance of enhancing 
“The Nation’s Investment in Cancer Research” [12]. This 
provides an explanation for the rapid increase in the number 
of models now being reported in the literature [11, 13]. It 
is clear that not all developed models are valid or can be 

widely used across populations. The minimum performance 
measures required for a useful and robust risk prediction 
model in clinical decision making are discrimination and 
calibration [14].

We recognize that risk models are increasingly now being 
used as part of a “triage” assessment for mammography and/
or for receipt of other more personalized medical care. There 
is a growing interest in applying risk prediction models as 
educational tools.

The models developed can differ significantly with regard 
to; the specific risk factors that are included; the statistical 
methodology used to estimate, validate and calibrate risk; in 
the study design used; and in the populations investigated to 
assess the models. These differences make it essential that 
any assessment of model usefulness takes into account both 
their internal and external validity. Here, we focus on the 
reliability, discriminatory accuracy and generalizability of 
breast cancer risk models that exclude clinical (any variable 
which needs physician input e.g., presence of atypical hyper-
plasia) and any genetic risk factors. Accurate assessment of 
risk using easily acquired data is essential as a first stage of 
tackling the rising burden of breast disease globally. Well-
validated models with high predictive power are preferable 
although this is not the case for all models. The usability 
of any model is dependent on the purpose the model will 
be used for and its target populations [15]. Furthermore, it 
has been suggested that adapting existing predictive models 
to the local circumstances of a new population rather than 
developing a new model for each time is a better approach 
[16].

This review focuses on breast cancer risk predicting mod-
els that incorporated modifiable risk factors and/or factors 
that can be self-reported. Such models could be applied as 
an educational tool and potentially used to advice at risk 
individuals on appropriate behavioural changes.

Methods

Databases

The following databases were searched for all related publi-
cations (up to July 2016): PubMed (https ://www.ncbi.nlm.
nih.gov/pubme d/); ScienceDirect (http://www.scien cedir 
ect.com/); the Cochrane Database of Systematic Reviews 
(CDSR) (http://www.cochr aneli brary .com/). Terms used for 
the search were “assessment tool, assessment model, risk 
prediction model, predictive model, prediction score, risk 
index, breast cancer, breast neoplasm, breast index, Har-
vard model, Rosner and Colditz model, and Gail model”. 
Risk models were retrieved based on any study design, study 
population or types of risk factors.

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.cochranelibrary.com/
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A Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) approach was applied for select-
ing reviewed articles [17]. A total of 61 genetic and non-
genetic breast cancer risk models were identified and then 
filtered to include only risk models with non-clinical factors 
(Fig. 1). These models contain variables which are consid-
ered to be modifiable and/or self-reported by the respond-
ents. For this review, 14 studies were eventually considered 
to be eligible. No literature reviews were found on breast 
cancer risk models solely focusing on epidemiological risk 
factors although all the selected reviews summarized generic 
composite risk models. The literature search was extended to 
include publications relating to systematic reviews and meta-
analyses; this did not reveal any appropriate publications.

Confidence in risk factors

Details relating to the degree of confidence in variables used 
as risk factors in the risk models were taken from the Har-
vard report [18]. The degree of confidence was categorized 
as either:

• definite (an established association between outcome 
and exposure where chance, bias [systematic error], con-
founders [misrepresentation of an association by unmeas-
ured factor/s] are eliminated with significant confidence)

• probable (an association exists between the outcome and 
the exposure where chance, bias, confounders cannot 
be eliminated with sufficient confidence—inconsistent 
results found with different studies)

• possible (inconclusive or insufficient evidence of an asso-
ciation between the outcome and the exposure)

Results

Potential risk factors included in breast cancer 
non‑clinical predictive models

The variables used in the 14 models under review and speci-
fies the degree of confidence (definite, probable or possible) 
in those variables as risk factors for breast cancer based on 
the current literature are summarized in Table 1.

Fig. 1  Identification of eligible 
risk models using PRISMA 
flowchart
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Age, age at first birth, age at menarche, family history 
of breast cancer, and self-reported history of biopsies were 
the most common variables used amongst the 14 models 
selected. These variables are considered as definite risk 
factors for developing breast cancer [18]. Other additional 
variables were observed in fewer models. These included 
ethnicity (Jewish—definite), definite hormonal replacement 
therapy, diet (some probable and others possible), physical 
activity (possible), height (definite), weight (probable- for 
pre-menopausal women and definite for post-menopausal 
women). Among pre-menopausal females, weight is consid-
ered to be a protective factor [19]. In contrast amongst post-
menopausal women, weight is considered to be a risk factor 
[20–22] as is parity, oral contraceptive pill use (definite), 
pregnancy history, timing and type of menopause (definite), 
menstrual regularity (possible), menstrual duration and ges-
tation period (probable), smoking (possible), mammogram 
screening (probable) and age of onset of breast cancer in a 
relative (definite).

The largest number of definite factors included in a model 
(n = 10 variables) was seen in the study reported by Colditz 
and Rosner [18]. This was followed by studies by reported 
by Park [23], Novotny [24] and Rosner [25]. We evaluated 
the number of the definite, probable and possible variables 
in the models to compare their performance based on the 
type and number of the variable included.

Evaluation measures of the risk models

The most important measures used to assess the perfor-
mance of the models were considered to be as follows:

• Calibration (reliability): the E/O statistic measures the 
calibration performance of the predictive model. Calibra-
tion involves comparing the expected versus observed 
numbers of the event using goodness-of-fit or chi square 
statistics. A well-calibrated model will have a number 
close to 1 indicating little difference between the E and 
O events. If the E/O statistic is below 1.0 then the event 
incidence is underestimated, while if the E/O ratio is 
above 1.0 then incidence is overestimated [14, 26].

• Discrimination (precision): the C statistic (Concordance 
statistic) measures the discrimination performance of 
the predictive model and corresponds to the area under 
a receiver operating characteristic curve. This statistic 
measures how efficiently the model is able to discrimi-
nate affected individuals from un-affected individuals. 
A C-statistic of 0.5 indicates no discrimination between 
individuals who go on to develop the condition and those 
who do not. In contrast, a C-statistic of 1 implies perfect 
discrimination [27, 28]. Good discrimination is impor-
tant for screening individuals and for effective clinical 
decision making [10].Ta
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• Accuracy: is tested by measuring of ‘sensitivity’, ‘speci-
ficity’, ‘positive predictive value’ (PPV) and negative 
predictive value (NPV). All of these terms are defined 
in Table 2. These measures indicate how well the model 
is able to categorize specific individuals into their real 
group (i.e., 100% certain to be affected or unaffected). 
Accuracy is equally important for both individual catego-
risation and for clinical decision making. Nevertheless, 
even with good specificity or sensitivity, low positive 
predictive values may be found in rare diseases [10] as 
the predictive values also depend on disease prevalence. 
With high prevalence, PPV will increase while NPV will 
decrease [29].

• Utility: this evaluates the ease with which the target 
groups (public, clinicians, patients, policy makers) can 
submit the data required by the model. Utility evalua-
tion assesses lay understanding of risk, risk perception, 
results interpretation, level of satisfaction and worry 
[30]. This evaluation usually uses surveys or interviews 
[26].Calibration and discrimination were the most com-
mon measures used to assess the breast cancer risk mod-
els under review and these measures are summarized in 
Fig. 2. Internal calibration was performed in just three 
of the 14 models with values ranging from 0.92 to 1.08. 
These calibration values represented a good estimate of 
the affected cases using these models. For external cali-
bration, six of the 14 models used an independent cohort. 
Rosner [25] and Pfeiffer [31] reported the highest with 
E/O values of 1.00 and followed by Colditz [18] with an 
E/O of 1.01.

The C-Statistic values measuring internal discrimina-
tion ranged across studies from 0.61 to 0.65. The Park 
[23] model achieved the best outcome (C-Statistic = 0.64). 
Additionally, Park [23] showed the highest value with 
a C-Statistic of 0.89 when applied to subjects recruited 
from the NCC (National Cancer Centre) screening pro-
gram. The lowest C-Statistic (0.56) was observed in the 
Gail model [32]. Overall, this demonstrates that the mod-
els have better calibration than discrimination. Accuracy 
was only evaluated in the Lee model [33]. Sensitivity, 
specificity and overall accuracy were calculated. The val-
ues indicate low accuracy with values ranging from 0.55 
to 0.66 (Table 3).

In qualitative research relating to the impact and utility 
[34] of the Harvard Cancer Risk Index (HCRI) [18], nine 
focus groups (six female, three male) showed good over-
all satisfaction with HCRI. Participants appreciated both 
the detailed explanation and the updated inclusion of risk 
factors. On the other hand, some participants criticized the 
absence of what they considered to be important factors 
(e.g., environmental factors and poverty). Some participants 
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believed that some of the factors on which subjects had been 
assessed might cause anxiety. It is also noted, however, that 
the case has been made that such anxiety provides motiva-
tion for action to mitigate risk [35].

Overview of current models

All the models described (except for Lee et al. 2004) [36] 
are extended versions of either the Gail model or the Ros-
ner and Colditz model (Tables 4, 5). The Gail model devel-
oped in 1989 [37] was the first risk model for breast can-
cer and included the following variables: age, menarche 
age, age at first birth, breast cancer history in first-degree 
relatives, history of breast biopsies and history of atypical 
hyperplasia. The range of calibration of the Gail modi-
fied models was E/O = (0.93–1.17) and the discrimination 
range was C-Statistics = (0.56–0.65). This indicates that 
these models are well calibrated, although discrimination 
could be improved.

Ueda et al. [38] modified the Gail model by including age 
at menarche, age at first delivery, family history of breast 
cancer and BMI in post-menopausal women, as risk fac-
tors in his model for Japanese women. However, as with 
the original Gail model, no validation was performed. In 
the Boyle model [39], more factors were included such as 
alcohol intake, onset age of diagnosis in relatives, one of the 
two diet scores and BMI and HRT. This results in calibration 
with E/O close to unity and less acceptable discrimination of 
C-stat = 0.59. The Novotny model [24] added the number of 
previous breast biopsies performed on a woman and her his-
tory of benign breast disease. However, no validation assess-
ment was performed for this model. Newer models [32, 40, 
41] included the number of benign biopsies. This resulted 
in acceptable calibration but less acceptable discrimination 
(Gail [32]: E/O = 0.93; C-stat = 0.56; Matsuno: E/O = 1.17, 
C-statistic = 0.614; and Banegas E/O = 1.08). Park et al. [23] 
included menopausal status, number of pregnancies, dura-
tion of breastfeeding, oral contraceptive usage, exercise, 
smoking, drinking, and number of breast examinations as 
risk factors. This model has an E/O = 0.965; C-stat = 0.64. 
However, the C-statistic reported from the external valida-
tion cohort was high compared to the original C-statistic. 
They reported a C-statistic of 0.89 using the NCC cohort. 
This discrepancy was claimed to be caused by the popula-
tion characteristics (participants were 30 years and above, 
recruited from cancer screening program, from a teaching 
hospital in an urban area) [23]. In the same year, Pfeiffer 
et al. [23] developed a model where parity was considered 
as a factor and had E/O of 1.00 and a C-statistic of 0.58. The 
later Gail model published in 2007 used logistic regression 
to derive relative risks. These estimates are then combined 
with attributable risks and cancer registry incidence data to 
obtain estimates of the baseline hazards [32].

The Rosner and Colditz model of 1994 [42] was based on 
a cohort study of more than 91,000 women. The model used 
Poisson regression (rather than logistic regression as in the 
Gail model). The variables were as follows: age, age at all 
births, menopause age, and menarche age. This model was 
not validated. A new version in 1996 [25] included one mod-
ification (current age was excluded) and gave an E/O = 1.00 
and a C-statistic = 0.57. In 2000, Colditz et al. [18] modified 
the model with risk factors for: benign breast disease, use 
of post-menopausal hormones, type of menopause, weight, 
height, and alcohol intake. This model gave an E/O = 1.01; 
C-statistic = 0.64.

Lee et al. [36] used two control groups: a “hospitalised” 
group and a nurses and teachers group. The risk factors in 
the hospitalized controls were as follows: family history, 
menstrual regularity, total menstrual duration, age at first 
full-term pregnancy, and duration of breastfeeding. The 
risk factors in the nurses/teachers control group were as fol-
lows: age, menstrual regularity, alcohol drinking status and 
smoking status. This model was not based on Gail or Rosner 
and Colditz. Hosmer–Lemeshow goodness of fit was used 
to assess model fit which had a p value = 0.301 in (hospital 
controls) and p value = 0.871 in (nurse/teacher controls). No 
calibration or discrimination measures were reported.

Lee [33] used three evaluation techniques to assess the 
discrimination and the accuracy of their model: support vec-
tor machine, artificial neural network and Bayesian network. 
Of the three, support vector machine showed the best values 
among the Korean cohort. However, accuracy and discrimi-
nation were less acceptable in this model.

In summary, calibration performance is similar between 
models (Modified Gail and modified Rosner, Colditz), yet 
modified Gail models showed better discrimination perfor-
mance with the C-statistic of the Park model being 0.89.

Discussion

There is increasing interest among clinicians, research-
ers and the public in the use of risk models. This makes 
it important that we fully evaluate model development and 
application. Each risk model should be assessed before it 
can be recommended for any clinical application. Perfor-
mance assessment should involve the use of an independ-
ent population [43] separate from the population used to 
build the model. We have reviewed breast cancer risk models 
that include non-genetic and non-clinical risk factors but 
exclude clinical risk factors. By using PubMed, ScienceDi-
rect, Cochrane library and other research engines, 14 models 
met these criteria. The most recent model examined was 
developed in 2015 [33]. Most models were based on two 
earlier risk models developed over 20 years ago—the Gail 
model [37] and the Rosner and Colditz model [42]. The 
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modified versions of these two original models varied in 
the risk factors included and the estimation methods used. 
In 2012, there were two literature reviews published which 
analysed breast cancer risk prediction models [11, 28]; how-
ever, our review focuses particular on modifiable risk factors 
and/or self-reported factors and we have updated the models 
published after 2012 [23, 31, 33].

Most models with modifiable risk factors included report 
acceptable calibration, with E/O close to 1 but less accept-
able discrimination with C-statistic close to 0.5. Calibration 
and validation were improved when more definite factors 
were included. A possible explanation for less acceptable 
discrimination performance could be the inclusion of weaker 
evidence-based factors (probable and possible risk factors). 
All the models had combinations of probable and possible 
factors with no single model restricted to the inclusion of 
the definite factors.

Various factors affect model performance. Inclusion of 
less significant factors is likely to occur in studies with small 
sample sizes [11, 28]. Some important clinical risk factors 
were not included and this may affect the model’s final per-
formance [44]. Breast cancer heterogeneity may also con-
tribute to poor performance as different cancer types may 
have different risk factors [11]. Most of the models included 
in this review did not stratify breast cancer into its subtypes 
during model development. Rosner and Colditz however 
evaluated the model’s performance based on breast cancer 
subtypes (ER±, PR ± or HR2±) and concluded that risk fac-
tors vary according to the subtypes [45, 46]. Finally, even 
when strong risk factors are included in a model, significant 
increases in C-statistic have not been seen [47].

Model performance statistics were affected by the crite-
ria used to stratify the analysis. Four models were stratified 
by age (below 50 and above 50). One model was further 
stratified by menopausal status [38], one by ethnicity [41] 
and one by number of births [42]. Breast cancer risk mod-
els could be improved if appropriate factors were used to 
stratify the population. For example, pre-menopausal and 
post-menopausal females have different risk factors in breast 
cancer development. The models that applied menopausal 
status have some limitation in that this may not be applicable 
to women who have had hysterectomy. For example, in the 
US, hysterectomy is the second most common procedure 
performed and the likelihood of oophorectomy varies by 
age at hysterectomy [48]. Hence, completion of risk assess-
ment outside of a clinical setting is problematic as women 
may be challenged to define their menopausal status. Even 
though the overall performance of these models appears to 
be moderate in differentiating between cases and non-cases, 
they may still serve as a good educational tool as part of 
cancer prevention. Utility evaluation assesses the public’s 
knowledge of breast cancer risk factors rather well and could 
be used to promote cancer risk reduction actions.Ta
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A significant limitation in the development of risk models 
is the absence of consensus standards for defining and clas-
sifying a model’s performance. For example what is the level 
of good or acceptable calibration or measures of discrimina-
tion? what are acceptable measures of specificity and sensi-
tivity in diagnostic/prognostic/preventive models? how close 
to unity should calibration and discrimination be for a model 
to be considered valid? what is the utility cut-off in each type 
of model? All of these questions are hard to answer without 
global agreement. However, this lack of consensus is under-
standable as these values vary depending on the type of the 
model type (diagnostic, prognostic, preventive), goal (clini-
cal tool, educational tool, screening tool), targeted audience 
(public, high-risk patients, patients visiting the clinic) and 

the disease itself and its types or subtypes (such as breast 
cancer, familial breast cancer, lobular/ductal/invasive/in situ 
carcinoma breast cancer). This suggests that the closer value 
of E/O and C-statistics to 1, the better model performance. 
Such a pragmatic attitude permits us to begin to focus on 
improving the availability of effective risk reduction actions.

Furthermore, some of the models reviewed cannot be 
applied to some of the populations as the risk factors may 
vary between different populations. For example, alcohol 
consumption would not be applicable to Muslim women. 
We recommend that researchers develop a more reliable 
and valid breast cancer risk model which has good calibra-
tion, accuracy, discrimination and utility where both internal 
and external validations indicate that it can be reliable for 

i Boyle model & Park model were adjusted for age when C-statistic were calculated
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general use. In order to improve our models, the follow-
ing should be considered: (1) the model type (diagnostic, 
prognostic, preventive), goal (clinical tool, educational tool, 
screening tool), targeted audience (public, high-risk patient), 
(2) inclusion of definite risk factors while incorporating the 
clinical and/or genetic risk factors where possible, (3) divid-
ing the model into disease subtypes, age and menopausal 
status, (4) ensuring that a model is developed that can be 
validated externally.
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