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Abstract
Purpose  Serum microRNA (miRNA) holds great potential as a non-invasive biomarker for diagnosing breast cancer (BrC). 
However, most diagnostic models rely on the absolute expression levels of miRNAs, which are susceptible to batch effects 
and challenging for clinical transformation. Furthermore, current studies on liquid biopsy diagnostic biomarkers for BrC 
mainly focus on distinguishing BrC patients from healthy controls, needing more specificity assessment.
Methods  We collected a large number of miRNA expression data involving 8465 samples from GEO, including 13 different 
cancer types and non-cancer controls. Based on the relative expression orderings (REOs) of miRNAs within each sample, 
we applied the greedy, LASSO multiple linear regression, and random forest algorithms to identify a qualitative biomarker 
specific to BrC by comparing BrC samples to samples of other cancers as controls.
Results  We developed a BrC-specific biomarker called 7-miRPairs, consisting of seven miRNA pairs. It demonstrated 
comparable classification performance in our analyzed machine learning algorithms while requiring fewer miRNA pairs, 
accurately distinguishing BrC from 12 other cancer types. The diagnostic performance of 7-miRPairs was favorable in the 
training set (accuracy = 98.47%, specificity = 98.14%, sensitivity = 99.25%), and similar results were obtained in the test set 
(accuracy = 97.22%, specificity = 96.87%, sensitivity = 98.02%). KEGG pathway enrichment analysis of the 11 miRNAs 
within the 7-miRPairs revealed significant enrichment of target mRNAs in pathways associated with BrC.
Conclusion  Our study provides evidence that utilizing serum miRNA pairs can offer significant advantages for BrC-specific 
diagnosis in clinical practice by directly comparing serum samples with BrC to other cancer types.
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Abbreviations
BrC	� Breast cancer
REO	� Relative expression ordering
miRNA	� microRNA
miRPair	� miRNA pair
ACC​	� Accuracy
SPE	� Specificity
SEN	� Sensitivity

NPV	� Negative predictive value
PPV	� Positive predictive value
AUC​	� Area under the curve

Introduction

The incidence rate and mortality of breast cancer (BrC) 
rank first among gynecological malignancies [1]. The 
5-year survival rate is 99% in patients with localized 
BrC, but that plummets to 29% for patients with meta-
static disease [2]. Therefore, early diagnosis of BrC is 
critical for improving survival. The commonly used clini-
cal diagnostic method for BrC is imaging examination. 
However, the positive detection rate of breast X-ray is low 
[3], while magnetic resonance imaging with higher accu-
racy is expensive [4]. Histopathological examination is 
the gold standard for diagnosing BrC [5]. However, as an 
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invasive examination, it is unsuitable for daily screening 
and comes with a risk of infection. Therefore, developing a 
robust non-invasive diagnostic biomarker for BrC remains 
a challenge.

The abnormal expression of microRNAs (miRNAs) is 
closely related to the occurrence and development of many 
diseases, such as cancer [6]. Previous studies have shown 
that there are stable miRNA signals in the serum of cancer 
patients that reflect the origin of the tumor [7]. Extracel-
lular vesicles, abundant in serum and mainly divided into 
exosomes, microcapsules, and apoptotic bodies, are an 
important source of circulating miRNAs [8]. Research-
ers have reported that four serum miRNAs derived from 
exosomes are associated with the occurrence and metastasis 
of gastric cancer [9]. In addition, serum biomarkers have 
the advantages of easy sampling, low invasion, and ease of 
clinical verification and transformation [10], making serum 
miRNAs a hotspot in screening risk biomarkers for BrC. 
For example, Liu et al. reported serum miR-103a-3p as a 
biomarker for the diagnosis and prognosis of BrC [11]. Du 
et al. found that serum miR-92b-3p is of great significance 
in the diagnosis and prognosis of BrC [12]. However, the 
diagnostic area under the curve (AUC) for miR-103a-3p was 
only 0.697, with sensitivity and specificity of 78.2% and 
74.7%, respectively. Although the diagnostic AUC for miR-
92b-3p is 0.88, its sensitivity and specificity are only 88.39% 
and 79.46%. Therefore, the accuracy of the serum miRNA 
diagnostic biomarkers still needs to be improved.

Moreover, most of the existing serum diagnostic models 
for BrC are constructed based on the absolute expression 
levels of miRNAs, which are easily influenced by technolog-
ical fluctuations, batch effects, and individual genetics [13], 
making it difficult for the classification thresholds to apply to 
independent data. To solve this problem, we should include 
the sample(s) to be predicted in the data normalization [14]. 
However, this is not easy to achieve in clinical practice and 
may even distort biological signals. Thus, biomarkers con-
structed based on absolute signal levels in a specific study 
cannot be directly transferred to independent samples.

More importantly, current studies on BrC liquid biopsy 
diagnostic biomarkers mainly aim to distinguish BrC 
patients from healthy controls [15]. Few studies focus on 
BrC-specific biomarkers. Recently, a study has included 
serum samples of healthy controls, other cancer types, and 
non-breast benign diseases (including benign prostate, pan-
creatic, and biliary diseases) into training and reported a 
set of five serum miRNAs for early diagnosis for BrC [16]. 
However, they only tested these serum miRNAs in distin-
guishing BrC from benign breast diseases and healthy con-
trol samples. Whether these serum miRNAs could distin-
guish BrC from other cancer types in independent datasets 
is still unknown. Considering the complex and heterogene-
ous sources of serum miRNAs [17, 18], it is still necessary 

to further evaluate the specificity of diagnostic biomarkers 
based on serum miRNAs.

Previous studies have shown that models based on 
pairwise gene relative expression orderings (REOs) can 
overcome issues such as batch effects and can be directly 
applied to predict independent samples without normaliza-
tion preprocessing [19, 20]. Such REOs-based biomarkers 
have already been developed for diagnosis and treatment 
[21] in bulk transcriptome [22], single-cell transcriptome 
[23], genome DNA methylation [24], and human proteome 
[25]. Considering the superiority of the REO-based meth-
ods, we carried out an extensive case study, including 2910 
non-cancer samples and 5555 tumor samples from 13 cancer 
types, to understand whether REOs of serum miRNA pairs 
could contribute to a more accurate, robust, and specific 
diagnostic model. First, we evaluated whether REOs of pair-
wise miRNAs in serum differed between BrC and non-BrC 
samples are BrC specific. Then, based on the differential 
REOs of miRNA pairs between BrC and non-BrC samples, 
we built the final diagnostic model by comparing different 
feature selection methods, including the greedy algorithm, 
LASSO multiple linear regression algorithm, and random 
forest algorithm, and investigated its potential to aid specific 
diagnosis of BrC.

Materials and methods

Data source and data preprocessing

We downloaded seven sets of serum miRNA expression 
profiles from the Gene Expression Omnibus (GEO, http://​
www.​ncbi.​nlm.​nih.​gov/​geo/) database. These seven datasets 
involved 8465 samples, including 2910 non-cancer control 
or healthy samples and 5555 tumor samples from 13 can-
cer types (Table 1). MiRNA profiling was performed using 
either 3D-Gene Human miRNA V20_1.0.0 (for datasets 
GSE124158 and GSE73002) or 3D-Gene Human miRNA 
V21_1.0.0 (for the remaining five datasets). Only those 
serum miRNAs assayed by both platforms were analyzed in 
this study. The probe and its mapped miRNAs are deleted if 
the same probe is mapped to different miRNAs. The miR-
Base (http://​www.​mirba​se.​org/​index.​shtml) database is used 
to unify the symbols and IDs of miRNAs. Missing values 
were imputed by the k-nearest neighbor algorithm using the 
DMwR R package.

To ensure the reliability of the data, we removed outlier 
samples from each phenotype in each data set [32]. Briefly, 
we first calculated the correlation coefficients between the 
expression levels of miRNAs of any two samples. Then, we 
removed those samples whose mean value of correlation 
coefficients with the other samples fell outside twice the 
standard deviation from the group mean. The exact sample 
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sizes for each dataset after sample filtration are shown in 
Table 1. After data preprocessing, we merged all samples 
together and removed duplicate samples by calculating their 
Euclidean distance. Any duplicate samples with a distance 
value less than one were excluded from the dataset. Then, 
BrC and non-BrC samples were randomly divided into 70% 
training and 30% testing samples (Table S1).

Determination of candidate miRNA pairs based 
on REOs

The serum miRNAs were paired to form n(n-1) miRNA 
pairs (miRPairs), where n was the number of miRNAs ana-
lyzed in the study. For a pair of two miRNAs (a and b), 
let EmiRNAa and EmiRNAb denote their expression levels in a 
sample, respectively. The REO of this miRPair within this 
sample is either EmiRNAa > EmiRNAb or EmiRNAa ≤ EmiRNAb. If the 
REO distribution in two groups of samples is significantly 
different, then this REO can be used to predict the group to 
which an unknown sample belongs [32].

For a miRPair (miRNAa, miRNAb), the percentage of 
samples exhibiting an REO of EmiRNAa > EmiRNAb in a group 
can be calculated as PCT(EmiRNAa > EmiRNAb) = k/m × 100%
, where k is the number of samples exhibiting an REO of 
EmiRNAa > EmiRNAb and m is the total number of samples in the 
group. A miRPair with a PCT value greater than an adjust-
able threshold (for example, 95%) in the control sample 
group is referred to as a stable miRPair.

For a miRPair, the numbers of control and case samples 
showing the REOs of EmiRNAa > EmiRNAb and EmiRNAa ≤ EmiRNAb 
can be calculated and denoted by n1 and n2 and m1 and m2, 
respectively. Fisher’s exact test was used to test whether 
the REO distribution was significantly different between 
control and case samples. After multiple test adjustments 
using the Benjamin–Hochberg correction method, if the 
adjusted p-value is less than 0.05, the miRPair was defined 
as a reversed miRPair.

The degree of reversal for a reversed miRPair is 
calculated by ΔPCT = PCTcontrol(EmiRNAa > EmiRNAb)-
PCTcase(EmiRNAa > EmiRNAb), which is used to determine 
the candidate miRPair. ΔPCT equals one if the REOs of 
a miRPair are EmiRNAa > EmiRNAb in all control samples and 
EmiRNAa ≤ EmiRNAb in all case samples. An enormous ΔPCT 
value indicates a more significant difference in the REO of 
a miRPair between cases and controls. Therefore, a reversed 
miRPair with a ΔPCT value greater than a threshold, such as 
0.7, which is adjustable, is identified as a candidate miRPair.

Identification of differential miRNAs

We detected two types of differentially expressed miRNAs 
in this study. The first type refers to miRNAs differentially 
expressed in each cancer compared to non-cancer control 
samples. The second type refers to miRNAs differentially 
expressed in BrC compared to other cancer types.

Table 1   The sample sizes for each dataset

a The number in the bracket represents the sample size after removing outlier samples

Sample type GSE113486 [26] GSE112264 [27] GSE113740 [28] GSE106817 [29] Total

Datasets with various cancer types
 Non-cancer 100(97)a 41(39) 10(10) 2759(2610) 2910(2756)
 Biliary tract cancer 40(39) 50(48) 25(25) – 115(112)
 Bladder cancer 392(370) 50(48) 25(24) – 467(442)
 Breast cancer 40(37) – 25(24) 115(111) 180(172)
 Colorectal cancer 40(38) 50(48) 25(24) 115(106) 230(216)
 Esophageal cancer 40(39) 50(48) 25(24) 88(83) 203(194)
 Gastric cancer 40(39) 50(49) 25(24) 115(110) 230(222)
 Glioma 40(38) 50(48) 25(24) 115(110)
 Hepatocellular carcinoma 40(39) 50(47) 40(39) 81(76) 211(201)
 Lung cancer 40(37) 50(49) 25(23) 115(109) 230(218)
 Ovarian cancer 40(37) – 25(23) 320(306) 385(366)
 Pancreatic cancer 40(39) 50(46) 25(24) 115(110) 230(219)
 Prostate cancer 40(38) 809(773) 25(24) – 874(835)
 Sarcoma 40(38) 50(48) 4(4) 115(111) 209(201)

Datasets with one cancer type
 Sample type GSE73002 [16] GSE124158 [31] GSE122497 [30] – Total
 Esophageal cancer – – 566(543) – 566(543)
 Breast cancer 1280(1221) 30(30) – – 1310(1251)
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Identification of differential miRNAs in each cancer relative 
to non‑cancer control samples

Differentially expressed miRNAs between each cancer 
and non-cancer control samples were identified using the 
limma R package. MiRNAs were considered differentially 
expressed with |log2 fold-change (FC)|> 1 and a false dis-
covery rate (FDR) smaller than 0.05.

Identification of differential miRNAs between BrC 
and non‑BrC samples based on REOs and visualization 
of them by tSNE

Differential miRNAs between serum samples with BrC 
and non-BrC are determined based on stable miRPairs and 
reversed miRPairs through the hypergeometric distribution 
model [33] as follows:

Here, M represents the number of stable miRPairs 
detected in non-BrC serum samples, N represents the 
number of reversed miRPairs in BrC serum samples, n 
represents the number of stable miRPairs involving miR-
NAa with REOs of EmiRNAa > EmiRNAb (for down-regulation) 
or EmiRNAa ≤ EmiRNAb (for up-regulation), and k represents 
the number of reversed miRPairs involving miRNAa 
with REOs of EmiRNAa ≤ EmiRNAb (for down-regulation) or 
EmiRNAa > EmiRNAb (for up-regulation). The minimum value 
of Pdown and Pup determines the significant level and direc-
tion of regulation for miRNAa. After multiple test adjust-
ments using the Benjamin–Hochberg correction method, if 
the adjusted p-value is less than 0.05, the miRNA is iden-
tified as differentially expressed in the BrC cancer state.

Then, the t-distribution random neighbor embedding 
method (tSNE) [34] was used to visualize the differential 
miRNAs, judging whether they contribute to the sample 
clustering patterns. The identified differential miRNAs are 
used to reconstruct stable miRPairs and reversed miRPairs 
for determining candidate miRPairs.

Construction of REO classification model based 
on candidate miRNA pairs

The greedy algorithm

For a group of candidate miRPairs, the top k miRPairs with 
the highest degree of reversal were selected in this study 
according to the forward selection method. The greedy 
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algorithm is used to determine the feature miRPair com-
bination based on each of the top k candidate miRPair as a 
seed. Initially, only one seed miRPair was included in the 
combination. Then, the remaining miRPairs were added 
to the combination individually, and the geometric mean 
of negative predictive value (NPV) and positive predictive 
value (PPV) of the combination were calculated. The clas-
sification of a sample into either the BrC or non-BrC group 
was determined by the majority voting of miRPairs in the 
combination, considering their REOs. According to the 
combinations sorted in descending order of 

√

NPV × PPV  
value, the test set selects the combination with the highest 
classification accuracy as the final diagnostic biomarker.

The LASSO multiple linear regression algorithm

The LASSO and multiple linear regression algorithms 
[35] were used to reduce the candidate miRPairs and con-
struct the prediction model. Analysis was performed using 
the glmnet function in the glmnet R package with default 
parameters. The penalty parameter can be chosen either by 
the minimal mean cross-validated error (denoted as ‘λmin’) 
or in such a way that it yields the sparsest model with an 
error within one standard error of the minimum (denoted 
as ‘λ1se’). After conducting a five-fold cross-validation, we 
selected the candidate miRPairs in the training set based 
on λmin and λlse, respectively. Next, the optimal model 
will be determined again using multiple linear regression 
analysis based on the Akaike Information Criterion (AIC) 
method. The model with the lowest AIC value is consid-
ered to be the best diagnostic prediction model, and the 
corresponding miRPairs are considered to be characteris-
tic miRPairs related to the diagnosis of BrC [36]. Subse-
quently, the drop1 function was used to optimize the two 
models and obtain the final prediction models. Finally, the 
test set was used to validate the models.

The random forest algorithm

Random forest is an integrated algorithm that obtains 
the final result by combining multiple weak classifiers to 
vote or average. The results of the whole model have high 
accuracy and generalization performance and can avoid 
over-fitting [37]. Based on the candidate miRPairs in the 
training set, 500 classification trees are randomly gener-
ated using the random Forest function in the random For-
est R package to build a random forest model. Out-of-bag 
error is used to measure the performance of the random 
forest model [38]. Finally, a test set was used to validate 
this model.
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Functional enrichment analysis of characteristic 
miRNA

The miRNA Enrichment and Annotation (miEAA) online 
tool [39] was utilized to conduct pathway enrichment 
analysis for the characteristic miRNAs involved in the 
prediction model based on the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database. This tool can 
automatically predict target mRNAs for identified miR-
NAs and perform pathway enrichment analysis. The 
KEGG pathways with P-values lower than 0.05 were 
considered significant.

Statistic analysis

All statistical analyses of this study were conducted using 
R4.2.0 software.

Results

Commonality in cancer miRNA expression 
by pan‑cancer analysis

We performed a pan-cancer analysis by examining the dif-
ferential expression of miRNAs in the GSE113486 dataset. 
We randomly selected 40 cases from the 370 bladder can-
cer samples and 40 controls from the 97 non-cancer control 
samples, as the sample size was approximately 40 cases 
for the other cancer type. Limma differential expression 
analysis showed that, when comparing each cancer type to 
non-cancer controls, there were 223 miRNAs differentially 
expressed in only one cancer type, and 2102 miRNAs dis-
played differential expression in at least two cancer types. 
Notably, 979 miRNAs displayed differential expression in 
all 13 cancer types (Fig. 1). Similar results were observed in 
GSE112264, GSE113740, and GSE106817 datasets (Figs. 
S1, S2, and S3). The above results suggested the existence of 

Fig. 1   Differential miRNAs in 13 cancer types relative to non-cancer control samples in the GSE113486 dataset
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common differential signals in serum samples from different 
cancer types. Therefore, constructing a serum miRNA diag-
nostic model for a cancer type by comparing the cancer sam-
ples solely to non-cancer control or healthy control samples 
may be difficult to obtain cancer-type-specific information. 
To develop BrC biomarkers, combining samples of all other 
cancers as controls might be more reasonable.

Classification potential of differential miRNAs 
identified based on differential REOs of miRNAs 
between BrC and non‑BrC serum samples

To illustrate the feasibility of identifying BrC-specific 
serum biomarkers using other cancer samples as controls, 
we applied the tSNE algorithm to evaluate whether the sam-
ples are separable by differential miRNAs detected based on 
REOs in the training set (N = 3532).

First, among the 3,189,075 miRPairs paired by the 2526 
miRNAs analyzed, we identified 1,161,392 stable miRPairs 
in the control group with a PCT(EmiRNAa > EmiRNAb) ≥ 80%. In 
the BrC group, 614,475 stable miRPairs showed significant 
reversal REOs (FDR < 5%, Fisher’s exact test). Based on 
1,161,392 stable miRPairs and 614,475 reversed miRPairs, 
we identified 621 differentially expressed miRNAs (p < 0.05, 
hypergeometric test).

The tSNE visualization and cluster analysis of these 621 
differential miRNAs revealed the presence of two miRNA 
expression patterns (Fig. 2). Individuals falling within the 
two clusters corresponded to the BrC and non-BrC samples, 
respectively, suggesting that these differential miRNAs have 
the potential to distinguish BrC samples from other types of 
cancer samples.

BrC‑specific models developed using REO‑based 
methods

7‑miRPairs diagnostic model specific for BrC constructed 
by the greedy algorithm

In order to further identify BrC-specific biomarkers, 
we utilized the above 621 differentially expressed miR-
NAs to construct a classification model. In the train-
ing set (N = 3532), we designated the BrC serum sam-
ples as the positive group (cases) and the non-BrC serum 
samples as the negative group (controls). By setting 
PCT(EmiRNAa > EmiRNAb) ≥ 80% in the non-BrC samples, we 
identified 132,310 stable miRPairs. Among them, 45,162 
exhibited significant reversal in REOs within the BrC group 
(FDR < 5%, Fisher exact test). With the threshold of the 
degree of reversal being ΔPCT ≥ 0.7, where ΔPCT = PCT-
non-BrC(EmiRNAa > EmiRNAb)−PCTBrC(EmiRNAa > EmiRNAb), we 
obtained 253 candidate miRPairs.

Using a greedy algorithm, we utilized these 253 candi-
date miRPairs to select the top 10 locally optimal miRPair 
combinations. The results showed that the second and fourth 
combinations had the highest 

√

NPV × PPV  value among 
all the miRPairs (Fig. 3a). Interestingly, both combina-
tions shared the same seven miRPairs, with a remarkable 
accuracy of 98.47% in the training set (N = 3532). These 
seven miRPairs, involving 11 miRNAs as listed in Table S2, 
were therefore selected as BrC-specific serum biomarkers 
achieved through the greedy algorithm and collectively 
referred to as 7-miRPairs.

Then, we evaluated the classification performance of 
7-miRPairs using the test set (N = 1185). All indicators 
for performance evaluation showed that 7-miRPairs could 
provide good discrimination between BrC and other cancer 
types, with all scores above 93% (Table 2), indicating that 
7-miRPairs had BrC specificity.

BrC‑specific diagnostic models constructed by LASSO 
multiple linear regression and random forest algorithm

We also applied two machine learning algorithms to develop 
the diagnostic models, including the LASSO multiple linear 
regression and random forest, to reduce the calculation bias 
initiated by algorithms.

The LASSO multiple linear regression analyses yielded 
two models based on the 253 candidate miRPairs, includ-
ing the λmin model involving 139 candidate miRPairs 
(139-miRPairs) and the λlse model involving 106 candidate 
miRPairs (106-miRPairs), respectively. The accuracy of the 

Fig. 2   tSNE projection and clustering analysis of the differential 
miRNAs
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139-miRPairs model for classifying training and test set was 
98.95% and 98.14%, while the accuracy of the 106-miRPairs 
model for classifying training and test set was 98.90% and 
97.97%, respectively (Table 2). The standardized regression 
coefficients arranged in descending order were used to evalu-
ate the importance of the 7-miRPairs in the LASSO multiple 
linear regression model. The results showed that five char-
acteristic miRPairs in 7-miRPairs ranked 136, 79, 105, 19, 
and 86 in the λmin model and 104, 60, 82, 11, and 58 in the 
λlse model. Two characteristic miRPairs did not appear in 
LASSO multiple linear regressions.

The random forest model (253-miRPairs) was also con-
structed based on the 253 candidate miRPairs. The results 
showed that the out-of-bag error was 1.36% and the clas-
sification accuracy of the training and test sets was 100% 
and 98.23%, respectively (Table 2). The mean decrease 

Gini values in descending order were used as evaluation 
criteria to evaluate the importance of 7-miRPairs in the 
random forest model. The results showed that the charac-
teristic miRPairs in 7-miRPairs ranked 16, 8, 51, 42, 96, 
70, and 101 in the random forest model.

The classification models constructed based on the 
253 candidate miRPairs all had a classification accuracy 
higher than 97% in the training and test sets, regardless 
of whether the greedy algorithm, LASSO multiple linear 
regression, or random forest algorithm was used, indicat-
ing that the BrC-specific biomarkers developed by the 
REO-based methods had high stability. According to the 
above results, we selected the 7-miRPairs as the final BrC-
specific biomarkers as this model had the least number of 
characterized miRNAs.

Fig. 3   a The geometric mean of PPV and NPV of candidate miR-
Pair combination in the training set. The square boxes on the figure 
represent the miRPair combinations, as labeled on the x-axis, which 

attained the highest geometric mean of Positive Predictive Value 
(PPV) and Negative Predictive Value (NPV) indicated by the dashed 
line. b Pathway enrichment analysis of 7-miRPairs

Table 2   The classification 
performance for all prediction 
models analyzed in this study

AUC​ area under the curve, ACC​ accuracy, SPE specificity, SEN sensitivity, NPV negative predictive value, 
PPV positive predictive value

model dataset AUC​ ACC (%) SPE (%) SEN (%) NPV (%) PPV (%)

7-miRPairs Training 0.987 98.47 98.14 99.25 99.67 95.82
Test 0.974 97.22 96.87 98.02 99.14 93.03

139-miRPairs Training 1.000 98.95 98.58 99.81 99.92 96.80
Test 0.998 98.14 97.59 99.44 99.75 94.62

106-miRPairs Training 1.000 98.90 98.50 99.81 99.92 96.63
Test 0.997 97.97 97.47 99.15 99.63 94.35

253-miRPairs training 1.000 100 100 100 100 100
Test 0.986 98.23 97.71 99.44 99.75 94.88

5-miRNAs Training 0.779 82.53 89.47 66.38 86.09 73.06
Test 0.782 82.70 89.41 66.95 86.40 72.92
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Functional enrichment analysis of the 11 
characteristic miRNAs

The KEGG pathway enrichment analysis was conducted 
for the 11 miRNAs in 7-miRPairs using the miEAA tool. 
As shown in Fig. 3b, the target mRNAs of these miRNAs 
were significantly enriched in the ErbB signaling pathway 
(p = 0.013), FoxO signaling pathway (p = 0.013), Adherens 
junction pathway (p = 0.013), and Natural killer cell-medi-
ated cytotoxicity pathway (p = 0.033). These pathways have 
been reported to be related to BrC [40–43].

Comparison with the diagnostic model 
from Shimomura et al.

In order to further evaluate the diagnostic ability of 7-miR-
Pairs, we compared its diagnostic performance with the 
model from Shimomura et al. [16]. This model is composed 
of five miRNAs, referred to as 5-miRNAs. The training 
set for 5-miRNAs contained healthy controls, non-breast 
benign diseases, and non-BrC samples, as negatives, while 
our training and test sets contained only non-BrC samples. 
Our data showed that 5-miRNAs resulted in lower classifi-
cation performance in all indicators than 7-miRPairs, with 
sensitivity low at 66% in both of our training and test sets 
(Table 2). The above results further indicated that the BrC-
specific biomarkers developed in our study have predictive 
solid ability.

Discussion

BrC is a highly prevalent and invasive malignant tumor. 
Many BrC patients are diagnosed with metastases or at an 
advanced stage [44]. Although imaging and histopathologi-
cal examinations are commonly used for diagnosis, they 
have limitations [3–5]. Therefore, developing accurate bio-
markers to support clinical diagnosis for BrC remains an 
important issue.

Research has been increasing in recent years on non-inva-
sive circulating tumor biomarkers, particularly in serum bio-
markers. Serum miRNAs, which are relatively stable in the 
blood, have been explored as potential biomarkers [45]. Cur-
rently, most serum diagnostic biomarkers for BrC are iden-
tified by comparing BrC samples to non-cancer or healthy 
controls [15]. When comparing samples with different can-
cer types to non-cancer controls, we identified common dif-
ferential signals in miRNA expression. Therefore, obtaining 
BrC-specific biomarkers by training on BrC and healthy or 
non-cancer control serum data may be challenging.

New research findings have provided valuable data on 
the expression of miRNA in the serum for various types 
of cancer [16, 26–31]. This data enables us to compare the 

expression information from other cancer types to develop 
diagnostic models specifically for BrC. Although integrat-
ing large sample sizes from different studies can establish 
reliable biomarkers, combining miRNA expression data 
generated by different laboratories is challenging. Fortu-
nately, REO-based biomarkers are unaffected by systematic 
biases in microarray measurements and individual genetic 
variations. Therefore, we can incorporate different datasets 
by considering the REO of serum miRNA in pairs. In our 
analysis, we combined a total of 2910 non-cancer controls 
and 5555 cases from 13 different cancer types. Although 
REOs of miRNAs provide qualitative information, they may 
overlook some quantitative aspects [14]. To address this, 
we defined the degree of reversal for miRPairs as a criterion 
for selecting the featured miRNA pairs by the greedy algo-
rithm. We constructed a diagnostic model of seven miRNA 
pairs using this integrated training dataset. We also applied 
other machine learning techniques, such as random forest 
and LASSO multiple linear regression feature selection, to 
further validate the accuracy and robustness of the REO-
based biomarkers. The 7-miRPairs model demonstrated 
similar classification performance compared to the other 
two machine learning methods in the training and test sets. 
Considering the number of characterized miRNA pairs, we 
selected the 7-miRPairs model as the final model for pre-
cisely diagnosing BrC.

Our study has shown promising results in identifying 
a specific and non-invasive biomarker for BrC diagnosis. 
However, it is important to note that one limitation is the 
absence of information on cancer stage, grade, and subtype 
at the time of diagnosis. Therefore, further investigation is 
needed to determine whether the identified 7-miRPairs can 
serve as biomarkers for early-stage diagnosis of BrC and to 
apply the biomarker in real-world clinical settings.

The following steps in our research involve conducting 
a larger-scale validation study, including diverse patient 
populations, to confirm the accuracy and reliability of our 
biomarker. We will recruit BrC patients from the First Affili-
ated Hospital of Gannan Medical University. Each patient 
will provide informed consent following the approved proto-
col by the hospital’s Ethics Committee. The Breast Disease 
Diagnosis and Treatment Center will admit patients diag-
nosed with BrC between November 2023 and November 
2024, and we aim to enroll 200 patients. Specific guide-
lines for patient selection include being 18 years or older, 
having histologically confirmed BrC with information on 
TNM stage (I–IV), Nottingham grading system (I–III), and 
subtype, not having received radiotherapy, chemotherapy, 
or surgical resection prior to enrollment, and showing no 
evidence of organ metastasis. Once we obtain blood samples 
from the enrolled patients, we will use RT-PCR techniques 
to determine the expression of individual serum mRNAs 
of the 7-miRPairs. This crucial step aims to validate the 



483Breast Cancer Research and Treatment (2024) 204:475–484	

predictive efficacy of the biomarkers and assess their con-
sistency and reproducibility across our research and real-
world clinical applications. Once the validation experiments 
are passed, we can ensure the clinical importance of 7-miR-
Pairs in the serum and highlight its diagnostic value as a 
liquid biopsy tool in the daily clinical routine.

In conclusion, our study successfully identified a specific 
and non-invasive biomarker for BrC diagnosis using REOs 
of serum miRNA expression. This biomarker demonstrated 
high accuracy in distinguishing BrC from other cancer types. 
Our findings suggest that this REO-based method could be 
applied in clinical practice, but further research and valida-
tion in prospective studies are necessary.
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