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Abstract
Background This review summarizes the available data on the effectiveness of indocyanine green fluorescence imaging 
(ICG-FI) for real-time detection of breast cancer (BC) tumors with perioperative imaging technologies.
Methods PubMed and Scopus databases were exhaustively searched for publications on the use of the real-time ICG-FI 
evaluation of BC tumors with non-conventional breast imaging technologies.
Results Twenty-three studies were included in this review. ICG-FI has been used for BC tumor identification in 12 ortho-
topic animal tumor experiences, 4 studies on animal assessment, and for 7 human clinical applications. The BC tumor-to-
background ratio (TBR) was 1.1–8.5 in orthotopic tumor models and 1.4–3.9 in animal experiences.
The detection of primary human BC tumors varied from 40% to 100%. The mean TBR reported for human BC varied from 
2.1 to 3.7. In two studies evaluating BC surgical margins, good sensitivity (93.3% and 100%) and specificity (60% and 96%) 
have been reported, with a negative predictive value of ICG-FI to predict margin involvement intraoperatively of 100% in 
one study.
Conclusions The use of ICG-FI as a guiding tool for the real-time identification of BC tumors and for the assessment of tumor 
boundaries is promising. There is great variability between the studies with regard to timing and dose. Further evidence is 
needed to assess whether ICG-guided BC surgery may be implemented as a standard of care.
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Introduction

Breast cancer (BC) is the leading cause of cancer in women, 
affecting approximately 2.3 million women annually and 
accounting for the highest number of cancer-related deaths 
[1]. The primary treatment modalities for BC include sur-
gery, hormonotherapy, and/or chemotherapy, depending on 

tumor characteristics [2]. Successful BC surgery involves 
achieving complete resection of palpable tumors and the 
resection of small non-palpable (infra-clinical) tumors 
with microscopically negative margins, while preserving as 
much normal breast tissue as possible for optimal aesthetic 
breast reconstruction [3]. Despite significant advancements 
in preoperative and intraoperative imaging techniques for 
improved tumor detection, the rate of positive microscopic 
margins after conservative BC surgery remains high, ranging 
from 14.9% to 26% in the literature [3–5].

Precise localization of the breast tumor lesion and the 
ability to distinguish between malignant and benign tissue 
during surgery are critical for the successful surgical treat-
ment of BC patients. Various pathological and imaging tech-
niques have been reported for this purpose [5].

Recently, near-infrared (NIR) fluorescence imaging (FI) 
has emerged as a promising nonionizing imaging technique 
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for detection of cancerous tissue in different clinical condi-
tions, including BC [4, 6, 7]. NIR-FI utilizes light properties 
in the NIR spectrum (700–900 nm) to image tissue. NIR 
fluorescence offers advantages such as high tissue penetra-
tion (millimeters to centimeters in depth) and low autofluo-
rescence emitted by natural fluorophores in the human body 
(e.g., porphyrins), enabling good discrimination between tis-
sues containing fluorophores and those that do not, resulting 
in a high signal-to-noise ratio (SNR) [8, 9].

Several fluorophores that emit in the NIR spectrum have 
been investigated for BC detection in preclinical and clini-
cal studies, including specific and nonspecific fluorescent 
probes [4, 8, 10–26]. Specific fluorophores include pegu-
licianine [16], bevacizumab–IRDye800CW [17], indocya-
nine green (ICG) in combination with different particles to 
enhance tumor avidity and specificity, such as human serum 
albumin [18], Pseudomonas aeruginosa azurin peptide p28 
[19], low molecular weight heparin (LMWH) ICG-loaded 
liposomes (LMWH-ICG-Lip) [20], ICG-loaded H-Ferritin 
(HFn) nanoparticles [21], and functionalized erbium-based 
rare-earth nanoparticles [22]. However, specific fluorescent 
probes are currently not approved for clinical use and will 
not be discussed in this review.

Non-specific fluorophores include methylene blue (MB) 
[24, 25], 5-aminolevulinic acid (5-ALA) [26], and ICG. 
Among these, ICG is the most popular and widely used 
fluorophore. ICG is a water-soluble amphiphilic tricarbo-
cyanine with a molecular weight of 775 Da and a hydrody-
namic diameter of 1.2 nm, making it an excellent vascular 
and lymphatic contrast agent when injected intravenously 
(IV) or into the lymphatic system via subcutaneous injec-
tion. Initially developed for photography during World War 
II, ICG was later utilized for determining cardiac output, 
hepatic function, and ophthalmic perfusion. Its rapid Food 
and Drug Administration (FDA) registration was attributed 
to favorable characteristics, including confinement to the 
vascular compartment through binding to plasma proteins, 
fast and almost exclusive excretion into the bile, and low 
toxicity. In the 1970s, it was discovered that protein-bound 
ICG emitted fluorescence under illumination with NIR light 
(750–810 nm), peaking at around 840 nm [27, 28]. ICG is 
approved by the FDA and the European Medicines Agency 
(EMA) for clinical applications as a vascular contrast agent. 
Due to its safety, affordability, and availability, ICG has 
become the foundation of NIR-FI for tumor detection [29]. 
Intraoperative indocyanine green fluorescence imaging 
(ICG-FI) navigation has emerged as a promising technique 
for detecting cancerous tissue, including liver, colon, ovar-
ian, head and neck, lung, and breast tumors, enabling sur-
geons to customize surgery based on real-time intraoperative 
imaging findings.

Since the first successful detection of BC tumors using 
ICG-FI reported by Ntziachristos and colleagues in the 

early 2000s, numerous preclinical and a few clinical pilot 
studies have demonstrated the detectability of BC tumors 
using ICG-FI after ICG IV injection [4, 11, 13–15, 29]. The 
exact physiological mechanism underlying the preferential 
uptake of ICG in tumor tissues after intravenous injection is 
not fully understood. The most plausible hypothesis is the 
‘enhanced permeability and retention’ (EPR) effect observed 
in tumoral tissue due to neoangiogenesis [4, 6, 8, 10, 30]. 
Following intravenous injection, ICG acts as a macromole-
cule due to its high binding to plasma proteins. In healthy tis-
sues, macromolecule-bound ICG serves as an excellent con-
trast agent, remaining in the intravascular compartment. In 
contrast, according to the EPR effect, these macromolecules 
are thought to extravasate from abnormal tumor vessels into 
the malignant tumor’s extracellular space. As the half-life 
of ICG in blood circulation is 3–5 min, ICG rapidly washes 
out from the intravascular space. Consequently, under NIR 
illumination, ICG that has accumulated in tumoral tissue 
emits a fluorescence signal that can be visualized through 
5–10 mm of connective tissue thickness, resulting in the 
observed hyperfluorescence of tumoral tissue in contrast to 
surrounding normal tissue [30–34].

The objectives of this study were to conduct a systematic 
literature review on ICG-FI for real-time detection of BC 
tumors in preclinical and clinical studies of perioperative 
imaging technologies and provide a summary of evidence-
based data on the effectiveness of ICG-FI in BC.

Methods

This systematic literature review was conducted following 
the recommendations established by the Preferred Reporting 
in Systematic Review and Meta-Analysis (PRISMA).

Inclusion and Exclusion Criteria: The focus of our search 
was on studies that reported real-time perioperative (ex-vivo 
and in-vivo) ICG-FI in primary breast malignant tumors. 
This included the following aspects: (1) identification of 
primary BC tumors using ICG-FI, (2) evaluation of tumor 
margins after BC surgery using ICG-FI, (3) assessment of 
fluorescence intensity in BC tumors, and (4) accuracy of 
ICG-FI in detecting primary BC. In cases where two papers 
reported on the same population, only the first published 
study was included. We included either French or English 
language papers.

The following topics were excluded from the review: 
Conventional breast imaging for detection of BC, angio-
graphic characterizations of ICG-FI, such as mastectomy 
flap and breast reconstructive flap vascularization and visu-
alization, sentinel lymph node (SLN) detection, and infra-
clinical BC tumor marking. Additionally, editorials, reviews, 
commentaries, letters, and book chapters were excluded.
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Sources and Literature Search: A comprehensive search 
was conducted in the PubMed and Scopus databases with 
the assistance of a professional medical librarian. The search 
encompassed articles published before December 2022. Fur-
thermore, the reference lists of the retained articles were 
analyzed for additional relevant studies that met the inclu-
sion criteria.

The following MeSH terms were used: “Optical Imag-
ing”, “Indocyanine Green”, “Breast Neoplasms”, “breast 
neoplasms/surgery”, “Mastectomy” and “mammary neo-
plasms/animal”. Free search terms included: “breast cancer”, 
“breast neoplasia”, “breast-conserving surgery”, “mastec-
tomy”, “breast surgery”, “fluorescence imaging”, “ICG”, 
“residual tumor”, “margins” and “animal”. These terms were 
used in various combinations.

Screening of Titles, Abstracts, and Full Texts: The titles, 
abstracts, and full texts of relevant studies were screened 
against the inclusion and exclusion criteria.

Data Extraction and Categorization: Full-text versions of 
studies that met the inclusion criteria were obtained for com-
prehensive assessment. The following data were extracted: 
year of publication, authors, study design, number of sub-
jects, histological cancer type, technical details of ICG-FI 
(timing, volume/dose of ICG injection, type of FI system, FI 
intensity analysis program, depth of detection), and, when 
reported, the accuracy and/or detection rate.

These data were then analyzed and categorized into two 
groups based on the stage of the experiment: Preclinical 

experiences (including orthotopic tumor models and animal 
studies related to BC) or human clinical applications.

Results

The search strategy yielded a total of 2607 studies. After 
removing duplicates, 23 studies published between 1995 and 
2022 fulfilled the inclusion criteria and were included in this 
review. Of these, 16 studies were animal studies, including 
12 studies reporting on orthotopic tumor model experiences 
and 4 studies reporting on preclinical animal assessments. 
Additionally, 7 studies reported on human clinical applica-
tions of ICG-FI. A PRISMA flow diagram illustrating the 
study selection process is presented in Fig. 1.

Animal experience in breast cancers with ICG‑FI

Preclinical orthotopic tumor models for breast cancer 
tumor detection by ICG‑FI

Twelve studies were included in the analysis of ICG-FI 
detection of orthotopic BC models [10–12, 18–21, 35–39]. 
Table 1 provides a summary of the characteristics of these 
studies. The majority of the studies utilized mouse models 
with subject numbers ranging from 5 to 60. The 4T1-Luc BC 
cells were predominantly used [10, 12, 18, 20, 21, 35–38]. 
Seven studies reported both ex-vivo and in-vivo FI, while 

Fig. 1  PRISMA flow chart of the study
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one study reported only ex-vivo imaging. Various FI systems 
were employed including, for example, Li et al. and Goto 
et al. who used the PDE system (Hamamatsu) [11, 19], and 
Sitia et al. and Sevieri et al. who used the STORZ endo-
scopic system (Karl Storz Se & Co) [21, 38]. The injected 
dose of ICG ranged from 0.015 to 7.5 mg/kg. The timing for 
imaging after ICG IV injection varied across studies, with 
most studies performing imaging at 24 h post-injection. The 
detection rate of orthotopic BC tumors ranged from 78% to 
100%, and the fluorescence intensity reported as tumor-to-
background ratio (TBR) varied from 1.1 to 8.5. Notably, 
even with short delays in ICG injection (< 8 min and 2 h), 
the fluorescence intensity remained higher in tumors (TBR 
at 2.5 and 100 arbitrary units (AU)) [11, 18].

ICG‑FI and preclinical animal experiences

Four studies were included in this category [13, 14, 40, 41], 
all conducted on dogs. Table 2 summarizes the principal 
characteristics of these animal experiences with self-devel-
oped BC tumors. The number of subjects varied from 1 to 
16, with the evaluation of 1 to 20 malignant breast tumors 
per dog. All studies employed in vivo evaluation of BC 
using ICG-FI, with different FI systems utilized. ICG doses 
ranged from 1 to 5 mg/kg, and the reported TBR of BC var-
ied between 1.3 and 3.9 AU. Two studies utilized the ImageJ 
software (NIH, Bethesda) for quantification of fluorescence 
intensity and TBR calculation [14, 41]. Similar to orthotopic 
model studies, the timing for performing ICG-FI after ICG 
IV injection varied across studies, ranging from 10–23 min 
to 48–72 h. Ex-vivo FI identified BC tumors in 24 out of 28 
cases, while in-vivo imaging identified tumors in 21 out of 
28 cases. The sensitivity of ICG-FI in detecting BC tumors 
in dogs ranged from 80% to 100%. All three tumors with a 
short ICG IV injection delay (minutes) were visible by FI 
[13, 40]. The mean TBR reported for BC tumors in dogs 
varied from 1.4 to 3.9, with higher values observed in cases 
with a short ICG injection time (<30 min) [13, 40].

ICG‑FI clinical experience in human breast cancers

Breast cancer detection

Clinical experiences with ICG-FI in the detection of BC 
started in 2016 with a study by Keating et al. [10]. Since 
then, six other studies have been published on human clini-
cal applications of ICG-FI in BC [4, 15, 16, 31–33]. Table 3 
summarizes the characteristics of these studies. All studies 
were pilot studies that aimed to evaluate the feasibility of BC 
detection using ICG-FI (phase 0–2 studies) and included a 
limited number of patients, ranging from 8 to 43 patients per 
study [16, 31]. Patients with both histological adenocarci-
noma types, ductal and lobular invasive BC, were included. Ta
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Histological characteristics of BC were reported in two out 
of seven studies [4, 31]. Six studies explored primary BC 
during upfront surgery, while one study investigated neoad-
juvant chemotherapy (NAC) [31].

All seven studies included evaluations of ICG-FI using 
ex-vivo FI, and four studies reported concomitant in-vivo 
imaging. Different imaging systems were used in each 
study, except for Veys et al. and Pop et al., who both used 
the Fluobeam 800 system (Fluoptic, Grenoble, France), and 
Leiloglou et al. and Kedrzycki et al., who used their own 
developed system [4, 31–33]. For instance, Keating et al. 
tested three different FI systems in their 12 patients. The 
injected dose of ICG for BC detection varied from 0.25 mg/
kg (in four studies) to 5 mg/kg (in one study). The timing for 
imaging after IV injection varied, with some studies start-
ing intraoperatively, as soon as 5 min after ICG injection 
[32, 33], while others ranged from 20 to 135 min [4, 16, 31, 
33], and 24 h in two studies [10, 15]. Different programs, 
including IC-Calc 2.0, Matlab software (Mathworks, Inc., 
Massachusetts, USA), and ImageJ software (NIH, Bethesda), 
were used for quantifying fluorescence intensity and calcu-
lating TBR.

Ex-vivo imaging was used in all studies to visualize and 
identify BC. In the preoperative injection setting, the rate 
of BC detection varied from 40% in patients injected with 
a low dose (0.25 mg/kg) of ICG 24 h before imaging to 
100% in those injected with a high dose (5 mg/kg) the day 
before FI [10, 15]. In the intraoperative injection setting, 
the detection rate of BC varied from 72% to 100% [4, 16, 
31–33]. Notably, in one study that used intraoperative ICG 
injection with an imaging interval shorter than 5 min, the 
detection rate of BC was 85% [33]. The mean TBR reported 
for human BC varied from 2.1 to 3.7. In the preoperative 
injection setting, TBR values of 2.0 and 3.5 were reported in 
two out of five patients injected with a low dose of ICG the 
day before surgery, while a mean TBR of 3.7 was reported 
in those injected with a high dose [10, 15]. In the group of 
patients injected intraoperatively, the mean TBR reported 
was homogeneous, ranging from 2.1 to 3.3 [4, 16, 31–33].

Margin evaluation

Only three clinical studies explored the use of ICG-FI for 
evaluating surgical margins in BC [4, 10, 16]. Two different 
injection time strategies were used: one using ICG injected 
24 h before surgery and the other using ICG injected intra-
operatively or shortly before surgery (2 h). In a pilot study 
of 12 patients injected 24 h before surgery with a dose of 
5 mg/kg, Keating et al. reported residual fluorescence in the 
tumor bed in 6 out of 12 patients, but none of these patients 
had positive margins on definitive pathology [10]. Pop et al., 
in a pilot study of 35 patients injected intraoperatively with 
a dose of 0.25 mg/kg, reported a sensitivity (Se), specificity 

(Sp), and negative predictive value (NPV) of ICG-FI to 
predict margin involvement on breast operative specimens 
of 100%, 60%, and 100%, respectively [4]. Recently, Wang 
and colleagues reported their data on 43 BC patients who 
were injected with ICG at 0.5 mg/kg, 2 h before surgery, and 
found an intraoperative sensitivity and specificity for ICG-
FI in distinguishing between normal tissue (clean margins) 
and tumoral tissue (positive margins) of 93.3% and 96.0%, 
respectively [16].

Discussion

FI has the potential to be a highly beneficial technique for 
real-time tumor identification and assessment of tumor 
boundaries during surgical procedures, particularly in BC. 
However, its clinical applications for tumor resection are 
currently limited, with only a few studies conducted in BC 
[4, 10, 26, 33, 34, 42, 43].

In this systematic review of the literature, 23 studies 
were included that evaluated the efficacy of ICG-FI for 
discriminating between benign breast tissue and neoplastic 
BC. Among these studies, only 7 utilized ICG-FI in clinical 
settings, and all of them were in the proof-of-concept or 
feasibility phase [4, 15, 16, 31–33]. The results from these 
studies show promise for the use of ICG-FI in BC surgery. 
The detection rate of orthotopic BC tumors and BC tumors 
in dogs using ICG-FI ranged from 78% to 100% and 80% to 
100%, respectively [13, 14, 40, 41]. In clinical experiences, 
ICG-FI was able to detect tumoral disease in approximately 
8 out of 10 women (with a sensitivity between 80% and 
100%) when ICG was injected shortly before surgery (within 
2 h) [4, 15, 16, 31–33]. The mean TBR reported for BC 
tumor identification in these studies varied from 1.1 to 8.5, 
and in human clinical studies, it ranged from 2.1 to 3.7. 
These TBR values are higher than the threshold detection 
value (1.3–1.5) by the human eye to define the tissue as 
hyperfluorescent regardless of cancer type, evaluation type 
(in vivo or ex vivo), and the FI camera system used [31, 44].

One major challenge in BC surgery is the intraoperative 
assessment of breast surgical specimens during breast-con-
serving surgery to rapidly detect residual tumoral disease 
[3–5]. Early evidence suggests that ICG-FI can be used for 
the intraoperative evaluation of surgical margin resection 
after breast conserving surgery, potentially improving surgi-
cal treatment outcomes for BC patients [4, 10, 31–34]. With 
a reported high negative predictive value (100%), ICG-FI 
examination of the surgical bed may be able to exclude a 
positive resection margin with certainty, focusing intraop-
erative pathological evaluation only on cases where residual 
fluorescence is observed [4, 31].

However, it’s important to interpret these results with 
caution due to the variability between studies, especially 
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in terms of research stage (preclinical and clinical phase I 
settings), ICG dose, timing of ICG-FI, FI camera systems, 
and fluorescence intensity quantifications. More precision 
is needed regarding the pathophysiological mechanism of 
action, dosing, and timing of ICG-FI [42–45].

Mechanism of action of ICG in breast tumors

The mechanism of preferential uptake of ICG in tumor tis-
sues is not fully understood, but likely involves the EPR 
effect observed in tumor tissue due to abnormal neoangio-
genesis. ICG molecules injected intravenously bind to serum 
lipoproteins and accumulate in the extravascular space of 
tumor tissue, emitting fluorescence under NIR illumination. 
The fluorescence signals can be visualized through connec-
tive tissue up to 5–10 mm thick. The rapid clearance of ICG 
from the intravascular space results in the observed hyperflu-
orescence of tumoral tissue compared to surrounding normal 
tissue [7–9, 28, 29, 45, 46].

Another lesser-known mechanism of action of ICG in 
cancer cells, including BC, is its vascular contrast agent 
properties. During or shortly (3–10 min) after intravenous 
administration of an ICG bolus, the fluorescence of tumor 
cells is enhanced due to the binding of ICG to plasma lipo-
proteins. This mechanism improves the contrast between 
tumor and normal breast tissue, surpassing pure absorption 
contrast [7, 28, 29]. Recent studies have shown higher ves-
sel density and increased branch points of the vasculature 
in breast tumors, which may contribute to the angiographic 
effect of ICG in breast tumors [47].

A recent study conducted by the group at Imperial Col-
lege London provides further insight into the mechanism of 
action of ICG-FI for intraoperative detection of BC tumors 
[32, 33]. Their findings suggest that the diagnostic accu-
racy of ICG-FI is improved when the imaging is performed 
during the angiography phase (within 5 min) compared to 
longer intervals (over 25 min) after ICG administration. 
The ex-vivo TBR in the angiography cohort was 3.18 (SD 
1.74) compared to 2.10 (SD 0.92) in the later ICG-FI cohort, 
indicating better tumor detection in the angiography phase 
[33]. However, it is important to note that larger and ade-
quately powered clinical trials are necessary to confirm these 
findings.

In addition to the previously discussed pathophysiologic 
mechanisms of tumor hyperfluorescence, a new pathway for 
ICG accumulation within tumor cells has been described 
[48–51]. This mechanism involves passive tumor cell target-
ing of ICG through increased uptake via clathrin-mediated 
endocytosis (CME), facilitated by the high endocytic activity 
of tumor cells and disruption of tight junctions. This phe-
nomenon was initially observed in a mouse model of colo-
rectal cancer [48, 49] and subsequently confirmed in studies 
involving sarcoma and BC cell lines [50, 51]. It appears that 

the affinity of ICG for phospholipid components of the cell 
membrane, which are altered and enriched in tumor cells, 
contributes to its ability to bind to and pass intracellularly 
via CME [52]. Furthermore, tumor cells retain the dye for 
an extended period (at least 24 h) compared to normal tis-
sues, indicating increased cellular uptake and retention as 
the primary mechanism of tumor fluorescence, rather than 
solely relying on the EPR effect. These contrasting findings 
highlight the complexity of the intra-tumor accumulation of 
ICG, suggesting that multiple mechanisms, including dys-
regulation of cancer cell pathways, tumor microvasculature, 
and the EPR effect, likely contribute to its enhanced uptake 
in tumors. The specific factors at play may vary depend-
ing on the tumor type. Further research is needed to better 
understand the mechanisms of action of ICG at the cellular 
level within human tumor tissue, which can provide valuable 
insights for the clinical use of ICG in fluorescence-guided 
surgery and potentially other diagnostic and treatment 
applications. This deeper understanding can help optimize 
aspects such as dosage and timing of ICG administration, 
which are still not fully elucidated.

ICG dose and timing

The optimal timing and dose of ICG administration for 
visualization and delineation of BC tumors through ICG-FI 
are crucial for accurate diagnosis during surgery. However, 
reports in the literature vary considerably in terms of proto-
cols and inconsistent findings regarding the effectiveness of 
different timing and dosing strategies.

Studies have indicated that a low dose of ICG (less than 
0.5 mg/kg) administered 24 h before ICG-FI is not effec-
tive for BC tumor detection [15, 18, 19]. Even a dose of 
1 mg/kg administered the day before surgery does not appear 
to be sufficient for satisfactory tumor visualization by FI 
[12, 39, 40]. These findings suggest that preoperative injec-
tion, 24 h before surgery, is not the optimal timing for ICG 
administration.

It is worth noting that most clinical studies, except 
one, utilized intraoperative ICG injection timing (within 
≤120 min) [10]. In contrast, only 4 out of 16 preclinical 
studies used intraoperative timing. Additionally, studies have 
explored various injection times ranging from a few minutes 
to over 24 h, with inconsistent results. However, the interpre-
tation of these findings is challenging due to the variations 
in ICG dose used across different studies.

Clinical applications of ICG-FI for intraoperative BC 
detection or discrimination between benign and malignant 
tissue have mostly been conducted with short delays between 
ICG injection and FI (ranging from <5 to 143 min) and 
lower ICG doses (0.25–0.5 mg/kg). These studies reported 
relatively higher efficacy (sensitivity) ranging from 72% 
to 100% for BC tumor detection [4, 16, 31–33]. The 
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intraoperative injection timing and lower ICG dose used in 
these studies make this ICG-FI strategy more easily inte-
grated into current clinical workflows with minimal incon-
venience for patients.

It is important to note that, although the literature on the 
application of ICG-FI in human BC is limited, the exist-
ing studies demonstrate significant heterogeneity and varia-
tion in reporting the efficacy of ICG-FI. Some studies focus 
solely on TBR, while others report sensitivity, specificity, 
negative predictive value, and false-positive rate. To ensure 
accurate evaluation and comparison of different timing, dos-
ing, and FI systems/strategies, future studies should adhere 
to reporting complete test accuracy data.

In summary, there is a need for standardized protocols 
and comprehensive reporting of test accuracy data in future 
studies on ICG-FI for BC. This will facilitate better compari-
sons and understanding of the optimal timing and dose of 
ICG administration, as well as the effectiveness of different 
FI systems and strategies.

Imaging systems and FI quantification

We highlight an important limitation in the field of ICG-FI 
for BC detection, which is the wide variety of FI systems 
used in both preclinical and clinical settings. In clinical 
applications alone, seven different FI systems were utilized 
across seven different studies, with one study even testing 
three different FI systems in just 12 patients [10]. This vari-
ability in FI systems makes it challenging to compare and 
interpret the results of these early experiences of ICG-FI 
in BC.

Furthermore, the handheld camera models used for intra-
operative imaging may not be well-suited, especially for 
evaluating the breast surgical cavity after breast-conserving 
surgery. Although optical imaging systems may have similar 
characteristics, there is a lack of direct comparison between 
these systems. Standardization of functionality and results, 
along with a checklist of performance criteria, should be 
required and provided by manufacturers to enable mean-
ingful comparisons between different FI cameras. Perhaps 
certain FI systems need to be adapted for specific uses such 
as angiographic assessment, sentinel node detection, or eval-
uation of different types of tumoral tissue. However, cur-
rently, there is no recommended device specifically tailored 
for ICG-FI in BC tumors, and a comparative evaluation of 
the existing FI systems is necessary to determine the optimal 
imaging approach [53].

Another challenge in ICG-FI is the quantification of fluo-
rescence intensity, which further complicates result interpre-
tation and comparison. This issue is not limited to BC tumor 
detection but is also relevant for assessing tissue viability 
through vascular assessment [54–56]. In the reviewed stud-
ies, fluorescence signal quantification and TBR calculations 

were performed using three different programs across six out 
of the seven clinical studies that included quantification [4, 
10, 15, 16, 31, 33]. Multiple programs with varying algo-
rithms are being evaluated, but efforts should be made by 
manufacturing companies to develop quantitative imaging 
systems that are user-friendly and can facilitate the clinical 
implementation of intraoperative FI in various indications 
[54].

Perspectives and limitations

Despite the heterogeneity in ICG dose, timing, and fluores-
cence systems used in preclinical and clinical evaluations 
of BC tumors with ICG-FI, the results of the few clinical 
studies available appear promising [4, 16, 31, 33]. However, 
future prospective controlled studies are still needed to better 
define the optimal timing and ICG doses for ICG-FI and to 
strengthen the current evidence supporting its use in guiding 
BC surgery in clinical practice.

ICG-FI for BC tumor-guided surgery offers several 
advantages, including the relatively low cost of the fluores-
cent dye and its safety for patients and the medical team as 
a non-invasive agent [57].

It is important to address some limitations of the present 
review. First, the level of evidence for the results obtained 
and presented in this review is low due to the current litera-
ture, which primarily consists of case series with a small 
number of patients and considerable heterogeneity. Second, 
the review could not provide clear-cut results regarding the 
optimal dose and timing of ICG injection for ICG-FI in BC 
tumor evaluation. One reason for this is the lack of com-
parison or control groups in clinical studies. The implemen-
tation of ICG-FI in BC tumor detection does not seem to 
follow a reliable translational approach, as most preclinical 
studies use a high dose of ICG and a preoperative timing 
of 24 h, while most clinical trials employ low doses and 
short intervals until FI. This difference may be attributed to 
the authors’ tendency to use shorter intervals between ICG 
injection and surgery to better align with clinical settings. 
Additionally, the discrepant results between preclinical 
and clinical studies may be explained by differences in the 
accumulation, distribution, and persistence of fluorescence 
signals after ICG IV injections between animal orthotopic 
tumors and true human tumors.

Conclusions and future directions

This systematic review of the literature is the first summa-
rizing the results of ICG-FI in BC surgical procedures. Our 
findings demonstrate promising evidence that detection of 
BC tumoral tissue and tumor-margin delineation can be 
improved in clinical practice with the use of ICG-FI as an 
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adjunctive real-time tool. ICG-FI for BC tumor-guided sur-
gery can offer several complementary advantages, such as 
the relatively low cost of the fluorescent dye and its safety 
for the patient and the medical team. The variety of FI sys-
tems used in perioperative ICG-FI for BC detection, along 
with the lack of standardized functionality, result reporting, 
and quantification methods, poses challenges for comparing 
and interpreting results. Standardization efforts and com-
parative evaluations are needed to identify the most suitable 
FI system and establish consistent quantification approaches. 
While the current evidence on ICG-FI for BC tumor detec-
tion shows promise, further well-designed prospective con-
trolled studies are needed to determine the optimal dose and 
timing of ICG injection. This will provide stronger evidence 
to support the clinical use of ICG-FI in BC surgery.
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