Skip to main content

Advertisement

Log in

Association of physical weight statuses defined by body mass index (BMI) with molecular subtypes of premenopausal breast cancer: a systematic review and meta-analysis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background and purpose

The association between overweight/obesity and postmenopausal breast cancer has been proven. However, uncertainty exists regarding the association between physical weight statuses and premenopausal breast cancer subtypes. This study aimed to explore the association of body weight statuses with molecular subtypes of premenopausal breast cancer.

Method

A systematic search of Medline, PubMed, Embase, and Web of Science was performed. The Newcastle–Ottawa Scale (NOS) and the Joanna Briggs Institute (JBI) Critical Appraisal tools were used to evaluate the quality of the literature. STATA and R software were used to analyze the extracted data.

Result

The meta-analysis included 35 observational studies with a total of 41,049 premenopausal breast cancer patients. The study showed that the proportion of underweight patients was 4.8% (95% CI = 3.9–5.8%, P = 0.01), overweight was 29% (95%CI = 27.1–30.9%, P < 0.01), obesity was 17.8% (95% CI = 14.9–21.2%, P < 0.0001), and normal weight was 51.6% (95% CI = 46.7–56.5%, P < 0.0001). The pooled results showed that in comparison to the normal weight group, being physically underweight is related to a 1.44-fold risk (OR = 1.44, 95%CI = 1.28–1.63, P < 0.0001) of HER2 + breast cancer. Overweight is related to a 1.16-fold risk (OR = 1.16, 95%CI = 1.06–1.26, P = 0.002) of TNBC and a 16% lower risk (OR = 0.84, 95%CI = 0.75–0.93, P = 0.001) of ER + breast cancer. When compared to underweight/normal weight populations, both overweight (OR = 0.74, 95%CI = 0.56–0.97, P = 0.032) and obesity (OR = 0.70, 95%CI = 0.50–0.98, P = 0.037) can reduce the risk of ER + PR + breast cancer.

Conclusion

In the premenopausal breast cancer population, the distribution of patients’ numbers with different weight statuses was significantly distinct among the various breast cancer subtypes. Additionally, the associations between physical weight statuses and the risk of premenopausal breast cancer subtypes are divergent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Heer E, Harper A, Escandor N, Sung H, McCormack V, Fidler-Benaoudia MM (2020) Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study. Lancet Glob Health 8(8):e1027–e1037

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71(3):209–249

    PubMed  Google Scholar 

  3. Pang Y, Wei Y, Kartsonaki C (2022) Associations of adiposity and weight change with recurrence and survival in breast cancer patients: a systematic review and meta-analysis. Breast cancer (Tokyo, Japan) 29(4):575–588

    Article  PubMed  Google Scholar 

  4. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K (2016) Body fatness and cancer-viewpoint of the IARC Working Group. N Engl J Med 375(8):794–798

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O’Brien KM, Adami HO, Baglietto L, Bernstein L, Bertrand KA et al (2018) Association of body mass index and age with subsequent breast cancer risk in premenopausal women. JAMA Oncol 4(11):e181771

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matthews SB, Thompson HJ (2016) The obesity-breast cancer conundrum: an analysis of the issues. Int J Mol Sci 17(6):989

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME (2014) How many etiological subtypes of breast cancer: two, three, four, or more? J Natl Cancer Inst 106(8):165

    Article  Google Scholar 

  8. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. The lancet 371(9612):569–578

    Article  Google Scholar 

  9. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A (2014) Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev 36(1):114–136

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Liu L, Zhou Q, Imam MU, Cai J, Wang Y, Qi M, Sun P, Ping Z, Fu X (2017) Body mass index had different effects on premenopausal and postmenopausal breast cancer risks: a dose-response meta-analysis with 3,318,796 subjects from 31 cohort studies. BMC Public Health 17(1):936

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berclaz G, Li S, Price KN, Coates AS, Castiglione-Gertsch M, Rudenstam CM, Holmberg SB, Lindtner J, Erien D, Collins J et al (2004) Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience. Ann Oncol 15(6):875–884

    Article  CAS  PubMed  Google Scholar 

  12. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591

    Article  CAS  PubMed  Google Scholar 

  13. Kawai M, Minami Y, Nishino Y, Fukamachi K, Ohuchi N, Kakugawa Y (2012) Body mass index and survival after breast cancer diagnosis in Japanese women. BMC Cancer 12:149

    Article  PubMed  PubMed Central  Google Scholar 

  14. Biglia N, Peano E, Sgandurra P, Moggio G, Pecchio S, Maggiorotto F, Sismondi P (2013) Body mass index (BMI) and breast cancer: impact on tumor histopathologic features, cancer subtypes and recurrence rate in pre and postmenopausal women. Gynecol Endocrinol 29(3):263–267

    Article  PubMed  Google Scholar 

  15. Torres-de la Roche LA, Steljes I, Janni W, Friedl TWP, De Wilde RL (2020) The association between obesity and premenopausal breast cancer according to intrinsic subtypes - a systematic review. Geburtshilfe Frauenheilkd 80(6):601–610

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagrani R, Mhatre S, Rajaraman P, Soerjomataram I, Boffetta P, Gupta S, Parmar V, Badwe R, Dikshit R (2016) Central obesity increases risk of breast cancer irrespective of menopausal and hormonal receptor status in women of South Asian Ethnicity. Eur J 66:153–161

    CAS  Google Scholar 

  17. Cecchini RS, Costantino JP, Cauley JA, Cronin WM, Wickerham DL, Land SR, Weissfeld JL, Wolmark N (2012) Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res (Phila) 5(4):583–592

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Sun X, Miller E, Wang Q, Tao P, Liu L, Zhao Y, Wang M, Qi Y, Li J (2017) BMI, reproductive factors, and breast cancer molecular subtypes: A case-control study and meta-analysis. J Epidemiol 27(4):143–151

    Article  PubMed  Google Scholar 

  19. Bandera EV, Chandran U, Zirpoli G, Gong Z, McCann SE, Hong CC, Ciupak G, Pawlish K, Ambrosone CB (2013) Body fatness and breast cancer risk in women of African ancestry. BMC Cancer 13:475

    Article  PubMed  PubMed Central  Google Scholar 

  20. Urbute A, Frederiksen K, Kjaer SK (2022) Early adulthood overweight and obesity and risk of premenopausal ovarian cancer, and premenopausal breast cancer including receptor status: prospective cohort study of nearly 500,000 Danish women. Ann Epidemiol 70:61–67

    Article  PubMed  Google Scholar 

  21. Dartois L, Fagherazzi G, Baglietto L, Boutron-Ruault MC, Delaloge S, Mesrine S, Clavel-Chapelon F (2016) Proportion of premenopausal and postmenopausal breast cancers attributable to known risk factors: Estimates from the E3N-EPIC cohort. Int J Cancer 138(10):2415–2427

    Article  CAS  PubMed  Google Scholar 

  22. Chan DSM, Abar L, Cariolou M, Nanu N, Greenwood DC, Bandera EV, McTiernan A, Norat T (2019) World Cancer Research Fund International: Continuous Update Project-systematic literature review and meta-analysis of observational cohort studies on physical activity, sedentary behavior, adiposity, and weight change and breast cancer risk. Cancer causes & control : CCC 30(11):1183–1200

    Article  PubMed  Google Scholar 

  23. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647

    Article  PubMed  Google Scholar 

  24. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363(9403):157–163.

  25. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization technical report series 2000, 894:i-xii, 1–253.

  26. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, Senn HJ (2013) Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24(9):2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brandão M, Guisseve A, Damasceno A, Bata G, Silva-Matos C, Alberto M, Ferro J, Garcia C, Zaqueu C, Lorenzoni C et al (2021) Risk factors for breast cancer, overall and by tumor subtype, among women from mozambique, Sub-Saharan Africa. Cancer Epidemiol Biomarkers Prev 30(6):1250–1259

    Article  PubMed  Google Scholar 

  29. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605

    Article  PubMed  Google Scholar 

  30. Du Y, Lv Y, Zha W, Zhou N, Hong X (2021) Association of body mass index (BMI) with critical COVID-19 and in-hospital mortality: a dose-response meta-analysis. Metabolism 117:154373

    Article  CAS  PubMed  Google Scholar 

  31. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

  32. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berstad P, Coates RJ, Bernstein L, Folger SG, Malone KE, Marchbanks PA, Weiss LK, Liff JM, McDonald JA, Strom BL et al (2010) A case-control study of body mass index and breast cancer risk in white and African-American women. Cancer Epidemiol Biomarkers Prev 19(6):1532–1544

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Liu L, Cui S, Tian F, Fan Z, Geng C, Cao X, Yang Z, Wang X, Liang H et al (2017) Distinct effects of body mass index and Waist/Hip ratio on risk of breast cancer by joint estrogen and progestogen receptor status: results from a case-control study in northern and eastern china and implications for chemoprevention. Oncologist 22(12):1431–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shieh Y, Scott CG, Jensen MR, Norman AD, Bertrand KA, Pankratz VS, Brandt KR, Visscher DW, Shepherd JA, Tamimi RM et al (2019) Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype. Breast Cancer Res 21(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bandera EV, Chandran U, Hong CC, Troester MA, Bethea TN, Adams-Campbell LL, Haiman CA, Park SY, Olshan AF, Ambrosone CB et al (2015) Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. Breast Cancer Res Treat 150(3):655–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCarthy AM, Friebel-Klingner T, Ehsan S, He W, Welch M, Chen J, Kontos D, Domchek SM, Conant EF, Semine A et al (2021) Relationship of established risk factors with breast cancer subtypes. Cancer Med 10(18):6456–6467

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horn-Ross PL, Canchola AJ, Bernstein L, Neuhausen SL, Nelson DO, Reynolds P (2016) Lifetime body size and estrogen-receptor-positive breast cancer risk in the California Teachers Study cohort. Breast Cancer Res 18(1):132

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nichols HB, Trentham-Dietz A, Love RR, Hampton JM, Hoang Anh PT, Allred DC, Mohsin SK, Newcomb PA (2005) Differences in breast cancer risk factors by tumor marker subtypes among premenopausal Vietnamese and Chinese women. Cancer Epidemiol Biomarkers Prev 14(1):41–47

    Article  CAS  PubMed  Google Scholar 

  40. Fagherazzi G, Chabbert-Buffet N, Fabre A, Guillas G, Boutron-Ruault MC, Mesrine S, Clavel-Chapelon F (2012) Hip circumference is associated with the risk of premenopausal ER-/PR- breast cancer. Int J Obes 36(3):431–439

    Article  CAS  Google Scholar 

  41. Oh H, Eliassen AH, Beck AH, Rosner B, Schnitt SJ, Collins LC, Connolly JL, Montaser-Kouhsari L, Willett WC, Tamimi RM (2017) Breast cancer risk factors in relation to estrogen receptor, progesterone receptor, insulin-like growth factor-1 receptor, and Ki67 expression in normal breast tissue. NPJ Breast Cancer 3:39

    Article  PubMed  PubMed Central  Google Scholar 

  42. Turkoz FP, Solak M, Petekkaya I, Keskin O, Kertmen N, Sarici F, Arik Z, Babacan T, Ozisik Y, Altundag K (2013) The prognostic impact of obesity on molecular subtypes of breast cancer in premenopausal women. J BUON 18(2):335–341

    CAS  PubMed  Google Scholar 

  43. Moore J, Pal T, Beeghly-Fadiel A, Fadden MK, Munro HM, Dujon SA, Reid S, Tezak A, Blasingame M, Ware J et al (2022) A pooled case-only analysis of obesity and breast cancer subtype among Black women in the southeastern United States. Cancer Causes Control 33(4):515–524

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bouguerra H, Guissouma H, Labidi S, Stambouli N, Marrakchi R, Chouaib S, Ben Ammar Elgaaied A, Boussen H, Gati A (2014) Breast cancer in Tunisia: association of body mass index with histopathological aspects of tumors. Asian Pacific J Cancer Prev 15(16):6805–6810

    Article  Google Scholar 

  45. Cuello-López J, Fidalgo-Zapata A, Vásquez-Trespalacios E (2017) Obesity and prognostic variables in colombian breast cancer patients: a cross-sectional study. Int J Breast Cancer 2017:9574874

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gaudet MM, Press MF, Haile RW, Lynch CF, Glaser SL, Schildkraut J, Gammon MD, Douglas Thompson W, Bernstein JL (2011) Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger. Breast Cancer Res Treat 130(2):587–597

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gravena AAF, Romeiro Lopes TC, Demitto MO, Borghesan DHP, DellAgnolo CM, Brischiliari SCR, Carvalho MDB, Pelloso SM (2018) The obesity and the risk of breast cancer among pre and postmenopausal women. Asian Pacific Cancer Prev 19(9):2429–2436

    CAS  Google Scholar 

  48. Lara-Medina F, Pérez-Sánchez V, Saavedra-Pérez D, Blake-Cerda M, Arce C, Motola-Kuba D, Villarreal-Garza C, González-Angulo AM, Bargalló E, Aguilar JL et al (2011) Triple-negative breast cancer in Hispanic patients: high prevalence, poor prognosis, and association with menopausal status, body mass index, and parity. Cancer 117(16):3658–3669

    Article  PubMed  Google Scholar 

  49. Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, Blayney DW, Niland JC, Winer EP, Weeks JC (2012) Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118(22):5463–5472

    Article  PubMed  Google Scholar 

  50. Petekkaya I, Sahin U, Gezgen G, Solak M, Yuce D, Dizdar O, Arslan C, Ayyildiz V, Altundag K (2013) Association of breast cancer subtypes and body mass index. Tumori 99(2):129–133

    Article  PubMed  Google Scholar 

  51. Somali I, Ustaoglu BY, Tarhan MO, Yigit SC, Demir L, Ellidokuz H, Erten C, Alacacioglu A (2013) Clinicopathologic and demographic evaluation of triple- negative breast cancer patients among a turkish patient population: a single center experience. Asian Pacific J Cancer Prev 14(10):6013–6017

    Article  Google Scholar 

  52. Sahin S, Erdem GU, Karatas F, Aytekin A, Sever AR, Ozisik Y, Altundag K (2017) The association between body mass index and immunohistochemical subtypes in breast cancer. Breast 32:227–236

    Article  PubMed  Google Scholar 

  53. Jeong SH, An Y, Ahn C, Park B, Lee MH, Noh DY, Park SK (2020) Body mass index and risk of breast cancer molecular subtypes in Korean women: a case-control study. Breast Cancer Res Treat 179(2):459–470

    Article  PubMed  Google Scholar 

  54. Ma H, Ursin G, Xu X, Lee E, Togawa K, Malone KE, Marchbanks PA, McDonald JA, Simon MS, Folger SG et al (2018) Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res 20(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang K, Wu YT, Zhang X, Chen L, Zhu WM, Zhang AJ, Zheng K, Yin XD, Li F, Kong LQ et al (2019) Clinicopathologic and prognostic significance of Body Mass Index (BMI) among breast cancer patients in western china: a retrospective multicenter cohort based on western china clinical cooperation group (WCCCG). Biomed Res Int 2019:3692093

    PubMed  PubMed Central  Google Scholar 

  56. Sueta A, Ito H, Islam T, Hosono S, Watanabe M, Hirose K, Fujita T, Yatabe Y, Iwata H, Tajima K et al (2012) Differential impact of body mass index and its change on the risk of breast cancer by molecular subtype: A case-control study in Japanese women. Springerplus 1(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  57. John EM, Sangaramoorthy M, Hines LM, Stern MC, Baumgartner KB, Giuliano AR, Wolff RK, Slattery ML (2015) Overall and abdominal adiposity and premenopausal breast cancer risk among hispanic women: the breast cancer health disparities study. Cancer Epidemiol Biomarkers Prev 24(1):138–147

    Article  PubMed  Google Scholar 

  58. John EM, Sangaramoorthy M, Phipps AI, Koo J, Horn-Ross PL (2011) Adult body size, hormone receptor status, and premenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area breast cancer study. Am J Epidemiol 173(2):201–216

    Article  PubMed  Google Scholar 

  59. Kawai M, Kakugawa Y, Nishino Y, Hamanaka Y, Ohuchi N, Minami Y (2013) Anthropometric factors, physical activity, and breast cancer risk in relation to hormone receptor and menopausal status in Japanese women: a case-control study. Cancer Causes Control : CCC 24(5):1033–1044

    Article  PubMed  Google Scholar 

  60. Michels KB, Terry KL, Willett WC (2006) Longitudinal study on the role of body size in premenopausal breast cancer. Arch Intern Med 166(21):2395–2402

    Article  PubMed  Google Scholar 

  61. Suzuki R, Orsini N, Saji S, Key TJ, Wolk A (2009) Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status–a meta-analysis. Int J Cancer 124(3):698–712

    Article  CAS  PubMed  Google Scholar 

  62. Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103(3):250–263

    Article  PubMed  Google Scholar 

  63. Bao PP, Shu XO, Gao YT, Zheng Y, Cai H, Deming SL, Ruan ZX, Su Y, Gu K, Lu W et al (2011) Association of hormone-related characteristics and breast cancer risk by estrogen receptor/progesterone receptor status in the shanghai breast cancer study. Am J Epidemiol 174(6):661–671

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pierobon M, Frankenfeld CL (2013) Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 137(1):307–314

    Article  PubMed  Google Scholar 

  65. Agurs-Collins T, Ross SA, Dunn BK (2019) The many faces of obesity and its influence on breast cancer risk. Front Oncol 9:765

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boyle P (2012) Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol 23:7–12

    Article  Google Scholar 

  67. Gierach GL, Burke A, Anderson WF (2010) Epidemiology of triple negative breast cancers. Breast Dis 32(1–2):5–24

    PubMed  Google Scholar 

  68. Goodwin PJ (2017) Obesity and breast cancer - what’s new? Expert Rev Endocrinol Metab 12(1):35–43

    Article  CAS  PubMed  Google Scholar 

  69. Laudisio D, Muscogiuri G, Barrea L, Savastano S, Colao A (2018) Obesity and breast cancer in premenopausal women: Current evidence and future perspectives. Eur J Obstet Gynecol Reprod Biol 230:217–221

    Article  PubMed  Google Scholar 

  70. Kwan ML, Kushi LH, Weltzien E, Maring B, Kutner SE, Fulton RS, Lee MM, Ambrosone CB, Caan BJ (2009) Epidemiology of breast cancer subtypes in two prospective cohort studies of breast cancer survivors. Breast Cancer Res 11(3):R31

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen FY, Ou HY, Wang SM, Wu YH, Yan GJ, Tang LL (2013) Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women. Ther Clin Risk Manag 9:131–137

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang B, Zhu L, Jiang S, Zhao L, Zhou Y, Niu L, Yan Y, Wang K (2020) Association between body mass index and clinical characteristics, as well as with management, in Chinese patients with breast cancer. J Int Med Res 48(8):300060520949041

    Article  CAS  PubMed  Google Scholar 

  73. Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109(1):123–139

    Article  PubMed  Google Scholar 

  74. Chen L, Cook LS, Tang MT, Porter PL, Hill DA, Wiggins CL, Li CI (2016) Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer. Breast Cancer Res Treat 157(3):545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ursin G, Longnecker MP, Haile RW, Greenland S (1995) A meta-analysis of body mass index and risk of premenopausal breast cancer. Epidemiology 6(2):137–141

    Article  CAS  PubMed  Google Scholar 

  76. Amadou A, Hainaut P, Romieu I (2013) Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncolo 2013:906495

    Article  Google Scholar 

  77. Atoum MF, Alzoughool F, Al-Hourani H (2020) Linkage between obesity leptin and breast cancer. Breast Cancer 14:1178223419898458

    PubMed  PubMed Central  Google Scholar 

  78. Kolb R, Zhang W: Obesity and Breast Cancer: A Case of Inflamed Adipose Tissue. Cancers 2020, 12(6).

  79. Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11(6):530–542

    Article  PubMed  Google Scholar 

  80. Rose DP, Vona-Davis L (2010) Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 66(1):33–38

    Article  PubMed  Google Scholar 

  81. Key TJ, Pike MC (1988) The role of oestrogens and progestagens in the epidemiology and prevention of breast cancer. Eur J Cancer Clin Oncol 24(1):29–43

    Article  CAS  PubMed  Google Scholar 

  82. Key TJ, Appleby PN, Reeves GK, Travis RC, Alberg AJ, Barricarte A, Berrino F, Krogh V, Sieri S, Brinton LA et al (2013) Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol 14(10):1009–1019

    Article  CAS  PubMed  Google Scholar 

  83. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35

    Article  CAS  PubMed  Google Scholar 

  84. Campagnoli C, Abbà C, Ambroggio S, Peris C (2005) Pregnancy, progesterone and progestins in relation to breast cancer risk. J Steroid Biochem Mol Biol 97(5):441–450

    Article  CAS  PubMed  Google Scholar 

  85. Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, Biessy C, Secreto G, Amiano P, Bingham S, Boeing H et al (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97(10):755–765

    Article  CAS  PubMed  Google Scholar 

  86. Schernhammer ES, Sperati F, Razavi P, Agnoli C, Sieri S, Berrino F, Krogh V, Abbagnato C, Grioni S, Blandino G et al (2013) Endogenous sex steroids in premenopausal women and risk of breast cancer: the ORDET cohort. Breast Cancer Res 15(3):R46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, de Braud F, Vernieri C (2022) Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Therapeutic Adv Med Oncol 14:17588359221079124

    CAS  Google Scholar 

  88. Giordano C, Vizza D, Panza S, Barone I, Bonofiglio D, Lanzino M, Sisci D, De Amicis F, Fuqua SA, Catalano S et al (2013) Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol 7(3):379–391

    Article  CAS  PubMed  Google Scholar 

  89. Vazquez-Martin A, Colomer R, Brunet J, Lupu R, Menendez JA (2008) Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells. Cell Prolif 41(1):59–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JM et al (2013) An international Ki67 reproducibility study. J Natl Cancer Inst 105(24):1897–1906

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XL and QH. Data curation: XL and XZ. Formal analysis: XL and XZ. Funding acquisition: XL and FC. Investigation: XL and FC. Methodology: JL and FC. Project administration: JL and FC. Software: JL and FC. Supervision: JL and FC. Validation: XZ and QH. Visualization: XL and QH. Writing of the original draft: XL, JL, QH, XZ, and FC. Writing, reviewing, and editing of the manuscript: XL, JL, QH, XZ and FC.

Corresponding author

Correspondence to Fang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1876 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, J., Hu, Q. et al. Association of physical weight statuses defined by body mass index (BMI) with molecular subtypes of premenopausal breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 203, 429–447 (2024). https://doi.org/10.1007/s10549-023-07139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-07139-z

Keywords

Navigation